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Abstract— Periodic Lyapunov, Sylvester and Riccati differ- or in the control form
ential equations have many important applications in the .
analysis and design of linear periodic control systems. For —X(t)=AT(t)X (t)+X (t)A(t)+Q(t)-X (t)R(t) X (t) (5)
the numerical solution of these equations efficient numerically
reliable algorithms based on the periodic Schur decomposition where Qt) = QT(t) >0, R(t) = RT(t) > 0, and A(t),
are proposed. The new multi-shot type algorithms compute Q(t), R(t) are n x n T-periodic matrices. Solving these

periodic solutions in an arbitrary number of time moments . o . -
within one period by employing suitable discretizations of the equations for the stabilizing solution plays an important role

continuous-time problems. In contrast to traditionally usedone-  IN periodic filtering or control problems [7], [4], [3].

shot periodic generator methods, themulti-shot type methods In this paper we propose reliable numerical methods to
have the advantage to be able to address problems with large compute the periodic solutiol (t) = X (t+T) of equations
per'|10c_is and/or unstable dynamllcs. Applications of the proposded (1)-(5). Both one-shot periodic generatamethods as well
techniques to compute several system norms are presented. as multi-shot type methods are discussed. Thuaulti-shot

. INTRODUCTION type methods rely on discretization techniques, which turn

We consider the numerical computation of the periodif:he continuous-time problems into equivalent discrete-time

solutions to three classes of periodic matrix differentiaProIOIemS for which satisfactory numerical methods already
equations: exist. The main appeal of these methods is that the periodic

1) Periodic Lyapunov differential equatiofRLDE) either solution X(l.f) s comqued simultaneously In many time
in the direct form moments within one pgnod, S0 that the numencql difficulties
related to numerical integrations for large periods and/or
X(t)=ADX )+ XOAT ) + Q1) (1) unstable dynamics are highly alleviated. The solution for
intermediary values of timé can be computed using special
numerical integration by initializing the solution in the near-
—X(t) = ATOX () + X(H)A®1) + Q(t) (2) esttime moment. Applications of the proposed techniques
- - to compute the Hankel¥{,- and H,-norms of a periodic
where Q(t) = QT (t), Q(t) = Q" (t) and A(t), Q(t), and  system are presented.
Q(t) aren x n T-periodic matrices (i.et A(t+1) = A(t), The key numerical ingredient for solving the discrete-
Q(t+T) = Q(t), Q(t+T) = Q(t)). These equations play an time problems is theperiodic real Schur form(PRSF) of
important role in the analysis of controllability/observability 5 periodic matrix sequence [8], [9]. The underlying com-
of linear continuous-time periodic systems [1], in solvingyytational methods to solve discrete-time periodic Lyapunov
periodic stabilization problems [2], computing Hankel- ang10] and Sylvester equations [11] employ the PRSF to reduce
Hs-norms of periodic systems [3], or in solving periodic dif-the problem matrices to condensed forms which allows an
ferential Riccati equations by employing Newtons’ metho&asy solution of the reduced equations. In the case of the

or in the adjoint form

[4]. solution of PRDEs, the main technique is the computation

2) Periodic Sylvester differential equatiq®SDE) of the  of an ordered PRSF of a symplectic periodic matrix together

form ) with the corresponding periodic basis of the stable invariant
X(t)=A)X () + X(#)B(t) +C() (3)  subspace [8], [9].

where A(t), B(t), andC(t) are respectivelyn x m, n x n,
andm x n T-periodic matrices. The PDSE (3) is useful in
solving periodic eigenvalue assignment problems [5], [6]. Let ®4(¢,7) denote the transition matrix corresponding to
3) Periodic Riccati differential equatiofPRDE) in the A(t) satisfying
filtering form 0P A (L, 7)

X(t)=AOX ) +X AT (1)+R(t)-XH)QM)X(t) (4) ot
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Il. SoLUTION OF PLDES

=AW)Pa(t, 7)), Pa(r,7)=1 (6)



Existence conditions of periodic solutions of PLDEs havevhereX; := X ((k — 1)A), Fi, := ®4 (kA, (k — 1)A), and
been discussed in [12]. We recall the main result of [12]. W), := W (kA, (k — 1)A). By imposing Xy11 = X1, the
Theorem 1:The PLDE (1) or (2) admits a uniqu&- N coupled equations in (11) fat = 1,..., N represent a
periodic solutionX (¢) if and only if ¥ 4(7) does not have discrete-time forward periodic Lyapunov equation. Thus, by
reciprocal eigenvalues. solving the N simultaneous equations (11), we determine
In what follows, we assume the above condition fulfilled.N values of the solutionX (¢) at equidistant time instants.
- Since the time incremem\ can be chosen arbitrary small,
A. Periodic generator method this multi-shot approach certainly alleviates the numerical
The computation of the solution of (1) can be done in tw@jifficulties associated with large periods and/or unstable

steps using thperiodic generator methodrirst we solve for dynamics when evaluating), andW;,, k =1,..., N.
a given time, say = 0, the standard discrete-time Lyapunov A similar approach can be developed to solve the adjoint
equation satisfied by (0) (= X (7)) [1] PDLE (2). The solutionX (¢) at time moments and¢ — A

are related as [1]

X(t—A) =04 (t,t — ANX)PA(t,t — A)+ W(t,t— A)

X(0) = WA(0)X (0)¥}(0) + W(T,0) ()

where
t Thus, the solution at successive time momehts 1)A and
W(t, to) := / D4 (t,7)Q(T) @Y (¢, T)dT (8) kA satisfies N
fo Xi = FI Xpp1 By + Wy (12)
Then, we integrate fromm= 0 to ¢t = T the matrix differen- —~ —~ . )
tial equation (1) using any standard integration method foitnere Wi := W (kA, (k —1)A). By imposing X1 =

ODEs. Observe that because of the symmetr¢f), only -t1» the NV coupled equations in (12) for=1,..., N rep-
(n+1) resent a discrete-time backward periodic Lyapunov equation.

=5 equations must be integrated. A . i
To solve the periodic discrete-time Lyapunov equations
\ﬁtcl)) and (12) the numerically reliable methods proposed in

For the adjoint Lyapunov differential equation (2) a similar
approach can be used with obvious replacements. First
PP P ] can be used. These methods are based on computing the

solve the standard discrete-time Lyapunov equation satisfi

by X(T) (= X(0)) real Schur for_m(RSF) of the monodro.my. matri)I!_A(O) =
. Fy --- Fo Fy via the PRSF of the periodic matrik. For
X(T) = ¥4 (0)X(T)T 4(0) + W(T,0) (9) the computation of PRSF numerically stable algorithms have

been proposed in [8], [9] and robust numerical software
implementations are available in the recently developed
PERIODIC SYSTEMS Toolbox for MATLAB [13]. For the
solution of the periodic Lyapunov equations (11) and (12)
and then integrate (2) backward in time fréne: T to t — 0. robust numerical software is also available in this toolbox.

The one-shotapproach has several potential numerical The computation off, Wi and Wy, for k = 1,..., N

difficulties for long periods and/or unstable dynamics ash the equations (11) and (12) can be done using numeri-

sociated with A(t). For example, the computation of thecaI integration of appropriate ordinary differential equations

free term W (7,0) in (7) using the methods described in(ODES)‘ -LO gomputel;k,fthe nlatr]i:x diffeArentia;lAequgtion
the next subsection can be hardly done with high accura’%@) must be integrated from = (k — 1)A to using

where

Wit 1) = /t LT (OB a(r ) (10)

for long periods. The same is true for evaluating the mo ippropriate methods for ODEs. Since the time sfepan

odromy matrix® (T, 0) for large values ofT’. Moreover, e chosen arbitrarily smal!, the numericgl intgg_ratiqn even
for unstableA(t) (i.e., some eigenvalues @4 (T, 0) have for unstableA(t) will not raise any num(_ancal difficulties.
magnitudes larger than 1), the differential equations are ill- To compute W"j Qbserve that for giverto, .Y(t) =
conditioned and thus any numerical integration algorithm foW(t’tO) in (8) satisfies the Lyapunov differential equation
ODEs becomes numerically unstable. This is why, generally Y (t) = A(t)Y (t) + Y (1) AT (t) + Q(t), Y (to) =0 (13)

the one-shot method is not recommended to solve periodi% . .
differential Lyapunov equations. Thus, W}, can be computed a8, = Y (kA) by integrating

the above equation frory = (k—1)Atot; = kKA.

B. Multi-shot approach __To compute W), observe similarly that for giverty,
The values of the solutioX (¢) of the PDLE (1) at time Y (t) := W(t;,t) in (10) satisfies the Lyapunov differential

momentst and¢ + A are related as [1] equation

XtE+A) =04t +AOXBPL(E+A )+ W(t+A L) —Y()=ADY () + Y () AT () + Q(t), Y(tf) =0 (14)

Let N > 1 be an integer such thak := T/N represents a Thus, W,, can be computed a&/, = Y((k — 1)A) by

meaningful time increment to determine the solutidift). integrating the above equation backward in the time from

Then, the solution at successive time moméhts 1)A and ¢ty = kA totp = (k — 1)A.

kA satisfies To integrate the PLDEs (13) and (14) it is important to
Xpp1 = Fe Xp FF + W, (11) use methods which preserve the symmetry of the solution



and if appropriate, also its positive definiteness. For examplthe obvious replacement of(t) by BT (¢). To computelVy,
methods which are able to preserve positive definiteness has@nsider

been proposed in [14]. t
W(t) == /
I1l. SoLuTION OF PSDES .

Existence conditions similar to those for periodic solution¥/hich satisfies the Sylvester differential equation

of PLDEs can be easily stated. The following result is a yi7(4) = A(t)W (¢) + W(£)B(¢) + C(t), W (ts) = 0
straightforward generalization of Theorem 1 and we give it

D 4(t, T)C(T)@ET (t,T)dr

to

without proof. Thus, W, can be computed al/(kA) by integrating the
Theorem 2:The PSDE (3) admits a uniqué-periodic above equation between = (k — 1)A andt = kA.
solution X (¢) if and only if ¥ 4(7) and ¥ z(7) do not have IV. SOLUTION OF PRDEs

mutual!y remprocal eigenvalues. L ) We address the computation of the periodic stabilizing
In this section, we assume the above condition is fulfilled,, .o X (1) of the PRDE (4) or (5) for whichA(f) —

A. Periodic generator method X(t)R(t) or, respectively,A(t) — Q(t)X(t) is stable. The

The computation of the solution of the PSDE (3) can b(faollowmg result from [7] gives necessary and sufficient

done similarly to solving the PLDE (1). First we solve forcondmons for the existence of a stabilizing solution:

. . - : . Theorem 3:The PRDE (4) or (5) admits a uniqué-
aglvi:inr:lmet,i Sf?%BO Bheit?d;rd ci|screte-t|me SylVe‘c’terperiodic stabilizing solutionX (t) = X7 (t) > 0 if and
equation satisfied byt (0) (= X(T)) 1] only if the pair (A(t), R(t)) is stabilizable and the pair

X(0) = ®4(T,0)X(0)®%(T,0)+ (A(t),Q(t)) is detectable.
foT & (T, 7)C(1)®%, (T, 7)dr fi|||er;| this section, we assume the above conditions are ful-

Then, we integrate fromm= 0 to ¢t = T the matrix differen-

tial equation (3) using any standard integration method fdf- Periodic generator method

ODEs. Thisone-shotapproach leads to the same numerical Let H(¢) be the Hamiltonian matrix corresponding to the
difficulties as for PLDEs for long periods and/or unstabldiltering PRDE (4)

dynamics associated witA(¢) or B(t). Thus, generally the AT Q)

one-shot methods are not recommended to solve periodic H(t) = { R(t)  A) ]

differential Sylvester equations.
or to the control PRDE (5)

B. Multi-shot methods

gy [ AD  —R@®)
The values of the solutioX (¢) of the PSDE (3) at time (t) = —Q(t) —AT(t)
momentst andt¢ + A are related as [1] ;
0
X(t+A) = Qs+ AHXOPL(t+A 1)+ In both cases/H (t)+ HT(t)J = O, where J = {—1 0}

[ 2 @4t + A, 7)C(T)®5, (t+ A, 7)dr  and thusH (t) is indeed a Hamiltonian matrix. The theorem
above ensures that the monodromy matig (0) is di-
chotomic and this property is the key aspect of the following
approach to solve either the PRDEs (4) or (5) (see [15]):
1. Compute the symplectic transition matrixy (7',0) (i.e.,
oL (T,0)J®y(T,0) = J) which has eigenvalues sym-
metric with respect to the unit circle.

where X, := X ((k—1A), F = P4 (kA (kF=1)A), 2 compute orthogona to reducedy (T, 0) to an ordered

Let N > 1 be an integer such thak := T/N represents
a meaningful time increment for the solutioxi(¢). Then,
the solution at successive time momefts— 1)A and kA
satisfies

X1 = Fr XpGE + Wy (15)

G, := Ppr (KA, (k—1)A) and RSF such that
kA 011 ©
Wem [ @abar)C0I0E (40,7)dr Zeuroz=| G G| as
(k—1)A

where ©,; hasn eigenvalues inside the unit circle and

By imposing X = X4, the N coupled equations in (11 . ) o
yimp 94N ! P a (11) O42 hasn eigenvalues outside the unit circle.

for k=1,..., N represent a discrete-time forward periodic
Sylvester equation. To solve this equation the numericalB; Partition Z in n x n blocks
reliable method proposed in [11] can be used. This method Zi Zio
is based on the PRSFs of the periodic matriegsand G. Z = [ Zo1 Zoo ]
The computation offy, Gy, and Wy for k = 1,... N ) o )
and integrate front = 0 to ¢t = T the matrix differential

in the equation (15) can be done as follows. To compute
Iy, the matrix differential equation (6) must be integrated
from 7 = (kK — 1)A to kA using appropriate methods for

ODEs. G, can be determined completely analogously with

equation

S(6) = H(1)S(t), S(0) = [ g; }



From the conformably partitioned solution V. APPLICATIONS. COMPUTATION OF SYSTEM NORMS

S(t) = [ Si(t) } The proposed multi-shot techniques can be applied to
Sa(t) solve norm computation problems for continuous-time pe-
computeX (t) = Sy (t)S7 1 (t). riodic systems of the form

This approach is potentially numerically unreliable be- S = A(Da2(t) + B(Oult
cause it involves the numerical integration of two ODEs with xgt; _ CEt%iEt% i D((t>)z((t>)
unstable dynamics: the first to compule;(T,0) and the Y
second to c_omputél(t). Thgrefore_, for large periods, this \ynere At) € R™", B(t) € R™™, C(t) € R"*",
approach will almost certainly fail because of the uncongng D(t) € RP*™ are periodic matrices of period’.
trolled accumulation of roundoff errors. In this section we assume that the periodic sys@m=
B. Multi-shot methods (A(1), B(1),C(t), D(1)) is stable (i.e.A(t) is stable).

To alleviate the numerical difficulties related to the peri- SYStem norms are important in solving many computa-
odic generator method, we propose an alternative approadn@! problems. For example, Hankel-norm based bounds
which relies on determining the transition mate; (7,0) ~2Ppear in solving model reduction problems of continuous-
in a product form (recommended in [16]) time periodic systems [20], while th#&{;-norm and™ .-

norm play an important role in solving the periodit;- or

ep(T,0)=2u(T, T —A)--- 2x(2A,A)21(A,0) (17) .. -norm control synthesis problems [21], [22], [3].
whereA = T'/N for a suitably chosen integer peridd. We ~ All these system norms can be defined (see [21]) in terms
denoteH;, := @ (kA, (k — 1)A) for k = 1,2,..., which  of the input-output operatay,, (7) which relates the inputs
is obviously anN-periodic matrix. Using the algorithm of «(t) and outputsy(t) for zero initial conditions at = T,

[8], we can determine an orthogonal-periodic matrixz, €.

(19)

to reduceH}, to an ordered PRSF such that y(t) = [Gop(T)u](t), t > T
Ji: Ji. e . .
Zysr Hy Z) = { ’Z’)” J:i;z ] : (18) Due to periodicity, the norms are defined to be independent

) o _of 7 and the definitions for constant systems are recovered.
whereJy.11 - - - J2;11J1;11 hasn eigenvalues inside the unit

cirple _andJN.zgg -+ Jap9J1.90 hasn eigenvalyes outside the 5 Computation of Hankel-norm

unit circle. Since®y(T,0) = Hy --- HyH;, it follows that ) .

ZT®y(T,0)Z; is in the ordered RSF (16), where both Analogously to the dlscrete—tlme.case [23], the_computa—
O11 = Jna1 - Jaa1diar and Ogy = Jyos - Jasa iy HON of the Hankel-norm||G,, || relies on computing the
are in RSF, andZ is simply Z;. If we partition Z;, in n x n  POsitive semidefinite periodic reachability and observability
blocks as GramiansP(t) and Q(t), respectively, defined as

7 = { Zi11 i1z }
Zi21 Liso2
we obtain the solution of PRDE at= (k — 1)A as
X((k=1A) = Zro1 Zpyy

Some computational aspects are relevant for a robust
implementation of this approach. Since each maffix iS |t is well-know that the periodic Gramians satisfy the PDLEs
symplectic, it is important to employ numerical integrators
which are able to guarantee this property. Note that standard P(t) = A(t)P(t) + P(t) AT (t) + B(t)BT (¢) (20)
methods (even the simple explicit Euler method) do not
ensure that;, will be symplectic. Among methods able to —Q(t) = AT()Q(t) + Q1) A(t) + CT(t)C(t) (21)
compute symplectic solutions are the Gauss-Legendre (diag-
onal Paé approximants) methods which belong to the clasEhe Hankel-norm of the system is defined from
of symplectic Runge-Kutta methods [15], [17WATLAB
software for symplectic integration is freely available [18]. 1Gopll7r = max Amax (P(7)Q(7))

To compute the values of the solutidfi(¢) between two =
discretization moments = (k—1)A andt; = kA, special When using the multi-shot approach to solve the PDLEs
ODE solvers as those proposed in [19], [14] can be used (80) and (21), we have the values &f(¢t) and Q(t) in
integrate (4) in forward time witlX (¢p) = X ((k—1)A) or  the discrete time grid pointd < A < 2A < ... <
(5) in backward time withX (¢;) = X (kA). A distinctive (N — 1)A. For practical Hankel-norm determination, we
feature of solvers discussed in [14] is their capability to precan choose a sufficiently dense time grid and compute the
serve the positivity of the numerical solution of differentialmaximum eigenvalues only in the grid points. Furthermore,
Riccati equations and in particular of differential Lyapunovinterpolation can be employed to determine the norm to
equations. higher accuracy.

Plt) = /t T @At ) B(r) BT (1)0T (¢, 7)dr

Q) = /_ BT (7, 1)CT (7)C(r)® A (7, t)dlr



B. Computation of{3-norm for a given~ in terms of the characteristic multipliers of the
In this subsection we assuni&(t) = 0. For the computa- associated Hamiltonian matrix

tion of the Hs-norm of the system (19) we mention only j(t) ,ﬁ(t)

two recently proposed methods. The approximation-based H,(t) = —@(t) _A\T(t)

method of [24], [25] relies on finite truncation of infinite-

dimensional structured matrices. For this method the chois¥here

of truncation order guaranteeing a given accuracy of the normi(t) = A(t)+ B({t)(v*I — DT(t)D(t)) DT (#)C(t)
is the most critical aspect. Closed-form formulas to computer(;) = —B(t)(42I — DT(t)D(t)) "' BT (t)

the H,-norm have been proposed in [26], [27]. The formula 5 ) = CT@#)I - DH)DT(t)y~2)"1C(t)

in [27] involves the evaluation of a double matrix integral by . .
integrating a large system of ODEs which includes the conf:ccording to [21], for a stable system (19), the condition

putation of the transition matrices corresponding to the stabl&orll < 7 is equivalent to the fact that the associated
direct and unstabledjoint system dynamics. To circumvent Monodromy matrixb . (1, 0) does not have eigenvalues on
unstable integrations, the inversion of the direct transitiof!® Unit circle. This characterization can be used to compute
matrix at each time moment is necessary. Additionally, §1€ #~-norm using a standard bisection algorithm:
complex matrix integral must be evaluated via complek- Select an upper bound,, and a lower boundy;, such
residuals, which involves potentially sensitive computations thatyi < [[Gopllee < vup @and setyr, = vip, Y0 = Yup-

in the case of multiple characteristic multipliers. 2.1f (yv — v2)/vL < tol (a given tolerance), then set
The straightforward method which we propose relies on |G, ||, = (v + v1)/2, Stop; otherwise go to next step.

the evaluation of the trace formula [3] 3. Sety = (v +71)/2 and test|Gop |l < 7 by computing

1 7 the characteristic multipliers of the associat€d(t).
19,11 = trace | 7. [ cPrICT (| (@2) e -
T Jo 4.If H,(t) has characteristic multipliers on the unit circle,

where P(t) is the uniqueT'-periodic solution of the PDLE setyr, = .7; otherW|se, Sty =11 g0 f0 Step_2.
After ¢ iterations, we haveyy — v, = 279(yu —

20). LetA = T/N be an appropriate discretization interval . - . .
(20) / pprop vw). Thus, to increase the efficiency of computations it

and let denotet;, := (kK — 1)A and P, = P(t;) for /' T L
E—1 N the values of the solution determined by th s important to have good initial approximations for the
o unds. It is possible to start with a lower boung >

proposed multi-shot method (to be always preferred ov 7 _ . .
the periodic generator method). Then, we can compute th&**t<[0.7] o(D(t)), whereo () denotes the maximum singu-
lar value, and increasg; until no characteristic multipliers

squared norm|G,,|12 = w(T)/T by integrating(2 ith o |
au M|Gopll> = p(T)/T by integrating (20) wi lie on the unit circle. The corresponding value can be taken

initial condition P(0) = P, jointly with the equation
th " 0) 1 Jonty Wi quat as .- Alternatively, the lower bound can be taken such
fi(t) = trace [C()P(t)CT (t)] , pu(0) =0 that~y,, > max{max,c(o71(D(t)), [|Gop| z}, while for the

upper bound the valug,, = max;cjo, 7 7(D(t))+2[|Gopl
can be used.

In the above algorithm we do not need to solve any peri-
) o . Bic Riccati equation, but only to compute the eigenvalues of
too 'hlgh, the numer_lcalilntegratlc.)n (20) can be completely . monodromy matrix . (T,0) and check for values on
f"‘VO'ded .by employing |nterpolat|on'formula's to evaluate thfhe unit circle. Similarly ta the case when solving a PDRE,
integral in (22) ba?ed on the availablé discrete values we choose an appropriate discretization step= T/N,
trace [C(t) P(t:)C7 (84)], k=1,...,N. nd compute®y (kA,(k — 1)A) for k = 1,...,N by

If parallelization of computz;tlonls is Bossmle, the squareaumerical integration to obtaift;;. (T, 0) in a product form

_ ¥ )

norrrr]] can be evaluated ﬁ§0p||2. T 2i=1 Hi(kA), where as in (17). As before, for numerical integrations the special
eachyu(t) for t € [ty ti.] satisfies symplectic integration methods are appropriate [18]. For the

jus (1) = trace [C(t)P(t)CT(t)] L (k= 1)A) =0 computation of the eigenvalues &f;_ (7', 0) the PRSF based

algorithm can be used [8], [9].

over the interval0, 7. This computation involves (provided

which is integrated jointly with an equation of the for(20)

with initial condition P(t;,) = Pj. Thus all N terms of the VI. NUMERICAL EXAMPLE

sum can be evaluated in parallel. To illustrate the capabilities of the multi-shot approach,
. we consider the numerical solution of the PLDE (1), where

C. Computation of{,,-norm we consider

The approximate computation of{..-norm of linear 0 1
continuous-time periodic systems has been addressed in fre- A(t) = { —10 cos (t) — 1 —24 — 10 sin (¢) }
guency domain in [24] relying on handling finite truncations , i
of infinite-dimensional matrices. In this paper we propos&nd We choos€(t) such that the exact solution of (1) is
a time-domain approach to thE.,-norm computation by X(t) = [ 1+ cos (t) 0 }
exploiting the characterization of the conditidg,, || < 7 B 0 1+ sin (¢)



The period of the problem i§" = 27. The characteristic
multipliers of A(t) are e=0-%46T and ¢=23-97 thus the
problem is moderately stiff and moderately ill-conditioned. 3]
We computed the unique periodic solutiaf(t) of (1) us-
ing sampling periodé\ = T'/N, for N = 1, 16, 64, 128, 256.
The value of N = 1 corresponds to the one-shot method.
For the discretization of the continuoous-time problem ands]
solution of the resulting discretized periodic Lyapunov equa-
tions tools available in the’ERIODIC SYSTEMS Toolbox g
[13] have been used. In Table 1 we present accuracy results
obtained using thre&1ATLAB ODE solvers: the Dormand-
Prince Runge-Kutta (4,5) codmle45 , the non-stiff variable
order Adams-Bashforth-Moulton solvesdel13 and the

(2]

(4]

numerical differentiation formulas based stiff solesle15s (8]
all with both the relative and absolute tolerances saiio.
The accuracy of solution is evaluated |85 (t) — X (tx)]|2 9]
in each pointt, = (k — 1)A, fork=1,..., N.
TABLE | [20]
ACCURACY RESULTS FORmax || X (tx) — X (tg)|l2 [11]
N ode45 odell3 odel5s
1 1.6-100% 19.107% 24-10"7
16 14-1006 83.107° 2.1-10"8 [12]
64 1.1-1007 56-107% 54-10°8
128 9.0-1072 9.1-1072 1.1-1077 [13]
256 1.1-1072 83-1079 8.9-10"%
[14]

While the accuracy of the multi-shot method is always
better than that of the one-shot approach, the accuracy gajns
obtained for the Runge-Kutta method are remarkable. Notice
that the more accurate multistep methods implemented Eﬂs]
odell3 and odel5s achieve their limiting accuracy al- [17]
ready forN = 64 and N = 16, respectively.

VIlI. CONCLUSIONS [18]

We proposed severalulti-shottype algorithms for solving
various periodic matrix differential equations. These method®]
compute the periodic solutions in an arbitrary number of
equidistant time instants within one period, by employingo)
suitable discretizations of the continuous-time problems. In
contrast to traditionally use@ne-shotperiodic generator (21]
methods, themulti-shot methods have the advantage to be
able to successfully tackle problems with large periods and/&#2]
unstable dynamics. We presented straightforward applica-g]
tions of the developed techniques in computing various
periodic system norms.

All computational techniques involves as preprocessinl_g4
step and sometimes also as postprocessing step the numerical
integration of specific matrix differential equations. This
part of computations is usually the most computer intensivé®!
processing and we assumed tacitly that existing standard
or symplectic techniques can be used to perform them. [R6]
appears that in all cases these computations are "embarrass-
ingly” parallelizable, which makes the multi-shot approach
very appealing on parallel machines. [27]
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