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Abstract— The recently-proposed method for iterative
correlation-based controller tuning is considered in thispaper
for the tuning of multivariable Linear Time-Invariant (LTI )
controllers. The parameters of the controller are updated
directly using the data acquired in closed-loop operation.This
approach allows one to tune some elements of the controller
transfer function matrix to satisfy the desired closed-loop
performance, while the other elements are tuned to mutually
decouple the closed-loop outputs. The controller parameters
are calculated by minimization of the cross-correlation function
involving instrumental variables. A very simple choice of
the instruments is proposed. The approach is applied to a
simulation model of a gas turbine engine, and excellent results
are obtained in terms of decoupling and performance.

Index Terms— Controller tuning, correlation-based tuning,
multivariable control, instrumental variables, decoupling.

I. I NTRODUCTION

The essential ingredients of any control design procedure
include the acquisition of process knowledge and its efficient
integration into the controller. Reliable models of industrial
plants are often difficult or impossible to obtain mainly dueto
the high complexity of the plants and/or the excessive cost of
modeling. The controllers designed on the basis of reduced-
order models might well lead to unsatisfactory performance
when applied to real plants due to modeling errors.

An alternative to model-based control design is to use the
information collected on the plantdirectly for controller up-
date. This idea stems from the area of direct adaptive control,
in particular from self tuning regulation (STR) and model
reference adaptive control (MRAC) [1]. Recently, several
methods have appeared in the field of data-driven controller
tuning such as controller unfalsification [2], simultaneous
perturbation stochastic approximation control [3], iterative
feedback tuning [4] and virtual reference feedback tuning
[5]. An important question that arises in this research area
is how to cope with the noise that necessarily corrupts
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the measurements and therefore also affects the closed-loop
performance.

In the recently-proposed Correlation-based Tuning (CbT)
approach, the problem of measurement noise is addressed
differently [6]. The underlying idea is inspired from the
correlation approach that uses instrumental variables and
is well known in the system identification community [7].
The controller parameters are tuned to make the closed-loop
output error between the designed and achieved closed-loop
systems uncorrelated with the external reference signal. This
way, the closed-loop output error ideally only contains the
contribution of the noise, while the achieved closed-loop
system captures the dynamics of the designed one. More-
over, the calculated controller parameters are asymptotically
insensitive to measurement noise. The iterative correlation-
based tuning approach has been successfully applied to a
laboratory-scale magnetic suspension system in [6]. The
controller parameters are calculated iteratively as the solu-
tion of a cross-correlation equation involving instrumental
variables. In [8], the tuning objective is reformulated as
the minimization of the 2-norm of the correlation function
between the closed-loop output error and the reference sig-
nal. Also, a frequency-domain interpretation of the criterion
shows that the algorithm minimizes the integral of the
squared difference between the achieved and designed output
sensitivity functions weighted by the square of the reference
signal spectrum. In [9], a generalized correlation criterion
is proposed that allows tuning the controller parameters so
as to decorrelate as much as possible the reference signal
with both the input and output closed-loop errors. It has
been shown that, by minimizing this generalized criterion,
the desired closed-loop output can be approached while
taking into account some penalty on the control action, i.e.
it is possible to handle the mixed sensitivity specifications.
In [10], an adaptation of this approach to the disturbance
rejection problem has been treated. A theoretical survey of
this method can be found in [11].

The application of data-driven methods to the control of
LTI multivariable systems has a few drawbacks. One of the
main difficulties is the calculation of the gradient of the



criterion. Typically, the number of experiments needed to
estimate the gradient increases with the number of plant
inputs,nu, and outputs,ny. An example is the IFT approach
wherenynu +1 experiments per iteration are necessary [12].
However, some efforts have been done recently to reduce
the number of experiments with this approach (for more
details see [13], [14], [15]). Another problem is the designof
decouplers. For a method that minimizes a norm of an error
signal, it is not possible to incorporate the decoupler design
into the criterion if all references are excited simultaneously.
Instead, for eliminating the influence of a reference on a
particular output, it is necessary to excite that referencewhile
keeping the other references constant and minimize an error
signal norm related to that output. For MIMO systems with
largenu andny, this requires a large number of experiments.

In this work, the tuning of LTI multivariable controllers
using the correlation approach is proposed. Assuming that
the number of inputs and outputs is equal, the off-diagonal
elements of the controller transfer function matrix are tuned
to eliminate any interaction between the controlled outputs
(in the sequel this will be called “diagonalization of the
closed-loop system”), while the elements on the main diago-
nal are tuned to provide the desired closed-loop performance.
The fact that the decoupling is done in a natural way by
decorrelating a certain input from an output without the need
for additional experiments makes CbT particularly appealing
for the tuning of MIMO controllers. The controllers on the
main diagonal feature the same characteristics as those for
SISO systems. The parameters of the resulting decouplers
and controllers are asymptotically not affected by the noise.
Only one experiment per iteration is needed for the tuning
of all controllers and decouplers regardless of the number of
inputs and outputs since all reference inputs can be excited
simultaneously.

The design of decouplers using standard methods may
be very sensitive to modelling errors and uncertainties. The
proposed method is model free and, if the data are acquired
under sufficient persistency of excitation, the decouplersare
most accurate where the output sensitivity is large [8].

The remainder of the paper is organized as follows.
Some notations and the basic idea of the CbT approach
are given in Section II. Section III deals with the tuning
of LTI multivariable controllers. The simulation results are
presented in Section IV. Finally, some concluding remarks
are given in Section V.

II. PRELIMINARIES

A. Notations

Consider an unknown LTI multivariable discrete-time sys-
tem described by:

y(t) = G(q−1)u(t) + v(t) (1)

wherey(t) ∈ Rny denotes the outputs of the true plant at
time t, u(t) ∈ Rnu the control signals,v(t) ∈ Rny the
disturbances acting at the output andG(q−1) ∈ Rny×nu
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Fig. 1. Achieved multivariable closed-loop system and its reference model

a transfer function matrix withq−1 being the backward-
shift operator. It is assumed thatv(t) is a zero-mean quasi-
stationary stochastic process.

Consider the block diagram of the model-following prob-
lem presented in Fig. 1. The upper part shows the achieved
closed-loop system with the true plant, whereK(ρ) ∈
Rnu×ny is a transfer function matrix parameterized by some
parameter vectorρ ∈ Rnρ , and r(t) ∈ Rny represents
external reference signals. The reference signalsr(t) are
assumed to be uncorrelated with the disturbancesv(t).
Furthermore, the elements of the reference signal vectorr(t)
are assumed to be mutually independent.

The lower part in Fig. 1 shows the reference modelMd

defining the desired behavior of the closed-loop outputs
yd(t). The reference model can be constructed, for example,
as the desired closed-loop system containing a model of
the plant G0 and the controllerK0. It is assumed that
the reference modelMd has a diagonal structure. In this
way, the controllerK0 meets the control and decoupling
specifications with respect toG0.

The closed-loop output error is defined as:

εoe(ρ, t) = y(ρ, t) − yd(t). (2)

Let the following sensitivity functions be defined:

• Output sensitivity function:

S = (I + GK)−1 (3)

• Complementary sensitivity function:

T = (I + GK)−1GK (4)

whereI ∈ Rny×ny is the identity matrix. The closed-loop
response can be written as:

y(ρ, t) = T r(t) + Sv(t), (5)

and the control error is:

e(ρ, t) = r(t) − y(ρ, t) = S (r(t) − v(t)) . (6)

The (i, j)th element of the controller transfer function
matrix is in the form of following one-degree-of-freedom
controller:

K(ij)(q−1,ρ) =
S(ij)(q−1,ρ)

R(ij)(q−1,ρ)
(7)



where

R(ij)(q−1,ρ) = 1 + r
(i,j)
1 q−1 + · · · + r(ij)nr

q−nr

S(ij)(q−1,ρ) = s
(ij)
0 + s

(ij)
1 q−1 + · · · + s

(ij)
ns−1q

−ns+1

For simplicity, it is assumed that all controllers
K(ij)(q−1,ρ), i = 1, . . . , nu, j = 1, . . . , ny have the
same order. The controller parameter vectorρ is written as
follows:

ρ
T = [ρ(11)T

,ρ(12)T

, . . . ,ρ(1ny)T

,ρ(21)T

, . . . ,ρ(nuny)T

]

where

ρ
(ij)T

= [r
(ij)
1 , r

(ij)
2 , . . . , r(ij)nr

, s
(ij)
0 , s

(ij)
1 , . . . , s

(ij)
ns−1]

Note thatnρ = (nr + ns)nuny. It will be assumed in the
sequel thatρ is expressed as:

ρ
T = [ρ(1), ρ(2), . . . , ρ(nρ)] (8)

As far as the notations are concerned, the signals collected
under closed-loop operation using the controllerK(ρ) will
carry the argumentρ. The elements of vector signals and
transfer function matrices will carry the position as a super-
script in the parenthesis and will not be in bold. For example,
y(i)(ρ, t) will denote theith component of the output vector
y(ρ, t). Furthermore, the backward-shift operatorq−1 will
be omitted whenever appropriate.

B. Idea of Multivariable Correlation-Based Tuning

Consider again the model-following problem shown in
Fig. 1, and assume for simplicity thatny = nu = 2 with
the controller given in Fig. 2 operating in the loop. Let
the design specification be as follows: ControllersK(21)(ρ)
andK(12)(ρ) decouple the outputsy(2)(ρ, t) andy(1)(ρ, t)
from r(1)(t) and r(2)(t), respectively; controllersK(11)(ρ)

and K(22)(ρ) provide satisfactory tracking ofy(1)
d (t) by

y(1)(ρ, t) andy(2)
d (t) by y(2)(ρ, t), respectively.

Consider the outputy(1)(ρ, t). When applying the con-
troller K0 to the true plant excited by the reference signals
r(t), the outputy(1)(ρ, t) contains the contributions due to
the disturbancesv(t) and the reference signalsr(1)(t) and
r(2)(t). The reference signalsr(1)(t) andr(2)(t) are mutually
independent and uncorrelated withv(t). Hence, the idea of
adjusting the parameters ofK(12)(ρ) is to make the output
y(1)(ρ, t) uncorrelated with the reference signalr(2)(t). The
resulting decoupler providesy(1)(ρ, t) that contains only the
contributions due tov(1)(t) andr(1)(t), i.e. the influence of
r(2)(t) andv(2)(t) on y(1)(ρ, t) is eliminated.

Now consider the tuning ofK(11)(ρ). Again, with K0

operating in the loop, the observed closed-loop output error
ε
(1)
oe (ρ, t) contains a contribution due to the disturbances

v(t) and another contribution stemming from the difference
betweenG and G0 that, in turn, has two parts originating
from r(1)(t) andr(2)(t). The idea is to adjust the parameters
of K(11)(ρ) so as to makeε(1)oe (ρ, t) uncorrelated with
r(1)(t). The controller updated in such a way compensates
the effect of modeling errors to the extent that the closed-loop
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Fig. 2. Multivariable2 × 2 controller

error ε(1)oe (ρ, t) contains onlyv(1)(t) filtered by the closed-
loop system. This way, the outputy(1)(ρ, t) will achieve the
desired outputy(1)

d (t). Note that the effect of modeling errors
due tor(2)(t) is eliminated by the decouplerK(12)(ρ).

A similar reasoning follows for the outputy(2)(ρ, t).

III. C ORRELATION REDUCTION FORMIMO SYSTEMS

A. Control Design Criterion

Without loss of generality, it is assumed that the plant has
an equal number of inputs and outputsny = nu. In this
work, the elements of the controller transfer matrixK(ρ)
will be tuned in the following way:

• The diagonal elementsK(ii)(ρ), i = 1, . . . , nu are
tuned to satisfy the control specifications defined by
Md.

• The off-diagonal elementsK(ij)(ρ), i 6= j, i, j =
1, . . . , nu are tuned to be decouplers. That is, controller
K(ij)(ρ) is tuned to eliminate the influence of the
reference signalr(j)(t) on the outputy(i)(ρ, t). This
in turn means that, if the decouplerK(ji)(ρ) has been
tuned similarly, the mutual influence ofy(j)(ρ, t) and
y(i)(ρ, t) is suppressed.

Introduce the following control design criterion:

J(ρ) = FT (ρ)F (ρ) (9)

with the cross-correlation functionF (ρ) defined as:

F (ρ) = E
{

F̄ (ρ)
}

(10)

whereE{·} is the mathematical expectation, and the vector
F̄ (ρ) ∈ Rnznunu reads:

F̄T (ρ) = [ f̄T
11(ρ), f̄T

12(ρ), . . . , f̄T
1nu

(ρ),

f̄T
21(ρ), . . . , f̄T

nunu
(ρ)
]

(11)

with

f̄ij(ρ) =
1

N

N
∑

t=1

ζij(t)ηij(ρ, t) (12)

whereN is the number of data, andnz the dimension of the
instrumental variable vectorζij . The component̄fij(ρ) ∈
Rnz corresponds to the controllerK(ij)(ρ). The way the
instrumental variablesζij(t) and the variableηij(ρ, t) ∈ R



are constructed depends on whether or not the controller
K(ij)(ρ) is on the main diagonal ofK(ρ):

• i = j: K(i,i)(ρ) is tuned so as to reduce the correla-

tion betweenε(i)oe (ρ, t) andr(i)(t). Taking into account
that the tuning of the controllersK(i,i)(ρ) and the
decouplersK(i,j)(ρ) is done simultaneously, the output
y(i)(ρ, t) will follow y

(i)
d (t) up to the effect of the

disturbance error in the case of perfect decorrelation.
Thus, the vector of instrumental variablesζii(t) ∈ Rnz

should be chosen to be correlated with the reference
signalr(i)(t) and independent of the disturbancev(i)(t).
Here, a shifted version of the reference signalr(i)(t) is
adopted:

ζT
ii (t) = [r(i)(t+ l), . . . , r(i)(t), . . . , r(i)(t− l)] (13)

wherel is large enough with respect to the number of
controller parameters, i.e.nz = 2l + 1 ≥ nr + ns.
Furthermore:

ηii(ρ, t) = ε(i)oe (ρ, t) (14)

The reader is referred to [11] for a discussion on
the properties and implementation aspects of the CbT
approach.

• i 6= j: To eliminate the influence ofr(j)(t) on y(i)(t), it
is sufficient to decorrelate these two signals. Therefore,
ζij(t) andηij(ρ, t) can be chosen as:

ζT
ij(t) = [r(j)(t+ l), . . . , r(j)(t), . . . , r(j)(t− l)] (15)

and
ηij(ρ, t) = y(i)(ρ, t). (16)

To tune the decouplerK(i,j)(ρ) by a method that
minimizes the 2-norm of the closed-loop output error
(such as IFT), it is necessary to excite the component
j of the reference signalr(t) while keeping the other
components equal to zero and then minimize the 2-
norm of y(i)(ρ, t). For MIMO systems with a large
number of inputs and outputs, this requires a large
number of experiments per iteration to tune all decou-
plersK(i,j)(ρ), i 6= j. Moreover, by minimizing the 2-
norm ofy(i)(ρ, t), one makes a trade-off between noise
attenuation and elimination of the influence ofr(j)(t)
on y(i)(ρ, t). In contrast, with the CbT approach, only
one experiment per iteration is needed for the tuning
of all controllersK(i,j)(ρ). Furthermore, the criterion
(9)-(12) is not influenced by the noise. All this makes
the correlation-based approach particularly adequate for
the tuning of decouplers.

Note thatnz ≥ nr +ns. Whennz = nr +ns, the parameters
of K(ρ) are the solution of a cross-correlation equation
F (ρ) = 0. Note also that the vector̄F (ρ) can be expressed
in compact form as:

F̄ (ρ) =
1

N

N
∑

t=1

Z(t)∆(ρ, t) (17)

whereZ(t) ∈ Rnznunu×nunu is a matrix of instrumental
variables in block diagonal form:

Z(t) = diag ( ζ11(t), ζ12(t), . . . , ζ1nu
(t),

ζ21(t), . . . , ζnunu
(t)) (18)

and vector∆(ρ, t) ∈ Rnunu follows as:

∆T (ρ, t) = [ η11(ρ, t), η12(ρ, t), . . . , η1nu
(ρ, t),

η21(ρ, t), . . . , ηnunu
(ρ, t)] . (19)

The minimization of criterion (9) is intractable since
it involves the product of expectations that are unknown.
Therefore, let us define the following criterion:

J̄(ρ) = E
{

F̄T (ρ)F̄ (ρ)
}

(20)

This new criterion can be minimized using the stochastic
approximation method. It can be shown thatJ(ρ) ≤ J̄(ρ),
i.e. by minimizing (20) one minimizes, in fact, an upper
bound on (9) [11].

B. Iterative Solution

A local minimum of (20) can be found as the solution of:

J̄ ′(ρ) = E

{

∂F̄ (ρ)

∂ρ
F̄ (ρ)

}

= 0 (21)

which can be obtained using the following iterative formula
[17]:

ρi+1 = ρi − γi

∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ
i

F̄ (ρi) (22)

whereγi is a scalar step size. Under the standard assump-
tions of the stochastic approximation methods, this scheme
converges to a local minimum of the criterion as the number
of iterations goes to infinity.

Since the matrix of instrumentsZ(t) is independent ofρ,
the derivative ofF̄ (ρ) is determined as follows:

∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ=ρ
i

=
1

N

N
∑

i=1

∂∆(ρ, t)

∂ρ

∣

∣

∣

∣

ρ
i

ZT (t)

=
1

N

N
∑

i=1

∂y(ρ, t)

∂ρ

∣

∣

∣

∣

ρ
i

ΓZT (t) (23)

The latter equality in (23) follows due to the fact that (i)
the elements of the vector∆(ρ, t) are either the compo-
nents ofεoe(ρ, t) or the components ofy(ρ, t), and (ii)
∂εoe(ρ, t)/∂ρ = ∂y(ρ, t)/∂ρ. The linear transformation
matrix Γ ∈ Rnu×nunu is in block diagonal form:

Γ = diag
(

gT , gT , . . . , gT
)

(24)

with the vectorg ∈ Rnu beinggT = [1, 1, . . . , 1].
An accurate value of the derivative (23) cannot be com-

puted because the derivative ofy(ρ, t) with respect toρ is
unknown. Nevertheless, one can write formally:

∂yT (ρ, t)

∂ρ

∣

∣

∣

∣

ρ
i

=
[

ψ1(ρ
(1)
i , t), ψ2(ρ

(2)
i , t), . . . , ψnρ

(ρ
(nρ)
i , t)

]



with

ψk(ρ
(k)
i , t) =

∂y(ρ, t)

∂ρ(k)

∣

∣

∣

∣

ρ
(k)
i

= SG
∂K(ρ)

∂ρ(k)

∣

∣

∣

∣

ρ
(k)
i

e(ρi, t)

Although the transfer function matricesS and G are typ-
ically unknown, they can be identified and replaced by
their estimatesŜ andĜ. Note that an unbiased estimate of
∂yT (ρ,t)

∂ρ
can alternatively be obtained at the cost ofnunu

additional closed-loop experiments, as is done in the IFT
approach for MIMO systems [12].

ForN sufficiently large, the criterion (20) can be consid-
ered as deterministic and minimized using the much faster
Gauss-Newton iterative algorithm:

ρi+1 = ρi −Q−1 ∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ
i

F̄ (ρi) (25)

whereQ is chosen as:

Q(ρi) =
∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ
i

(

∂F̄ (ρ)

∂ρ

∣

∣

∣

∣

ρ
i

)T

(26)

This section has presented the principles of iterative
correlation-based tuning of multivariable LTI controllers. The
vector of parameters is found by minimizing the cross-
correlation criterion (20) using the stochastic approximation
method. This algorithm converges to a stationary point
provided an unbiased estimate of the gradient is available.
However, obtaining an unbiased estimate of the gradient for
MIMO systems is very costly. It is proposed here to compute
the gradient using an identified MIMO model, which requires
only one experiment with the closed-loop system regardless
of the number of inputs and outputs. However, in this case,
local convergence of the algorithm is guaranteed only if an
unbiased model can be identified.

IV. SIMULATION EXAMPLE

In this section, the basic features of the proposed algorithm
are investigated and compared to the ones of IFT for MIMO
systems. The aim is to tune a multivariable PI controller
for a LV100 gas turbine engine [18]. The initial controller
and simulation conditions are taken from [12]. The plant
is represented by a continuous-time state-space model with
five states, two inputs and two outputs. The model is dis-
cretized using Tustin approximation with the sampling period
Ts = 0.1s. Each experiment is performed with a different
realization of the measurement noisev(t) that is generated
as a zero-mean, stationary, white Gaussian sequence with
variance0.0025I.

The initial 2 × 2 controllerK0 (see Fig. 2) is given as:

K0 =

(

1−0.99q−1

1−q−1
0.1−0.099q−1

1−q−1

− 1−0.99q−1

1−q−1
1−0.99q−1

1−q−1

)

(27)

Eight numerator coefficients are tuned (two for each transfer
function element), while the denominators are kept fixed at
1 − q−1. The following reference model is given:

Md =

(

0.4q−1

1−0.6q−1 0

0 0.4q−1

1−0.6q−1

)

(28)
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The reference signalsr(t) are given in Fig. 3. The algorithm
(25) is used to calculate the controller parameters.

A discrete-time state-space model with three states is
identified to calculate the estimatêG. After eight iterations,
this procedure provides the closed-loop response shown in
Fig. 3. A comparison with the desired response (dotted line)
shows that these two curves are nearly superposed except for
the effect of noise. In addition, the change of the reference
signals r(1)(t) and r(2)(t) does not provoke any visible
change on the outputsy(2)(t) and y(1)(t), respectively. In
other words, the closed-loop system is almost fully diago-
nalized. The value of the tuning criterion is reduced by more



than 99%. The CbT controller is given as follows:

KCbT =

(

0.3636−0.09866q−1

1−q−1
0.3653−0.2691q−1

1−q−1

18.69−18.16q−1

1−q−1
−3.453+2.652q−1

1−q−1

)

(29)

In order to compare the IFT controller provided in [12],

KIFT =

(

0.248−0.03q−1

1−q−1
0.38−0.199q−1

1−q−1

16.47−15.91q−1

1−q−1
0.063+0.054q−1

1−q−1

)

(30)

with the CbT controller, an experiment is performed with the
simulation conditions mentioned above. Define the sum of
squared output errors as:

SSOE =
1

N

N
∑

t=1

ε
T
oe(ρ, t)εoe(ρ, t)

where N = 151. The observedSSOE with the CbT
controller is 0.0050, while that with the IFT controller is
0.0082. Since IFT contains a noise-rejection objective, while
CbT does not, one would expect IFT to perform better in
a noisy situation. However,SSOE obtained with CbT is
smaller. This is due to the fact that IFT did not succeed in (i)
fully decoupling the closed-loop system, and (ii) completely
satisfying the model-following specification. To illustrate
this, an additional experiment without noise is performed.
The results are shown in Fig. 4. The closed-loop response
obtained with the CbT controller follows almost perfectly
the desired response. In contrast, the closed-loop response
obtained with the IFT controller shows some discrepancy in
the last 5 seconds of the response. In addition, the influence
of the change in the reference signalr(1)(t) at the instants
0s and 5s is visible ony(2)(t).

In terms of experimental cost, the IFT controller is ob-
tained after 6 iterations (and a total of 30 experiments)
compared to 8 iterations (and a total of 8 experiments) with
the CbT controller.

V. CONCLUSIONS

In this contribution, the parameters of a linear time invari-
ant multivariable controller have been tuned by minimizing
a cross-correlation function. The diagonal controllers are
tuned to fulfill the desired output specifications, while the
off-diagonal controllers are tuned to decouple the various
outputs. In contrast to the approaches where decouplers are
designed first and diagonal controllers second, the design of
the controllers and decouplers is done simultaneously here.

The cross-correlation criterion is minimized iteratively
using the stochastic approximation method. An unbiased es-
timate of the gradient of the output is necessary to guarantee
convergence of the algorithm to a stationary point. It has been
proposed here to compute the gradient using an identified
MIMO model, which requires only one experiment with the
closed-loop system regardless of the number of inputs and
outputs.

Simulation results illustrate the features and the appli-
cability of this tuning approach to a LTI MIMO system.
Comparison of the proposed tuning method with IFT on
the simulation model of a LV100 gas turbine engine shows

that the correlation-based controller tuning provides better
tracking performance in fewer experiments. In addition,
CbT controller diagonalizes almost perfectly the closed-loop
system.
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