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Abstract— An algebraic formulation is proposed for the static
output feedback (SOF) problem: the Hermite stability criterion
is applied on the closed-loop characteristic polynomial, resulting
in a non-convex bilinear matrix inequality (BMI) optimization
problem for SIMO or MISO systems. As a result, the BMI
problem is formulated directly in the controller parameters,
without additional Lyapunov variables. The publicly available
solver PENBMI 2.0 interfaced with YALMIP 3.0 is then applied
to solve benchmark examples. Implementation and numerical
aspects are widely discussed.

Index Terms— Static output feedback, BMI optimization,
polynomials.

I. I NTRODUCTION

Even though several relevant control problems boil down
to solving convex linear matrix inequalities (LMI) –see [4]
for a long list – there are still fundamental problems for
which no convex LMI formulation has been found. The
most fundamental of these problems is perhaps static output
feedback (SOF) stabilization: given a triplet of state-space
matricesA,B,C of suitable dimensions, find a matrixK such
that the eigenvalues of matrixA+ BKC are all in a given
region of the complex plane, say the open left half-plane.

No LMI formulation is known for the SOF stabilization
problem, but a straightforward application of Lyapunov’s
stability theory leads to a bilinear matrix inequality (BMI)
formulation. The BMI formulation of control problems was
made popular in the mid 1990s [6]; at that time there were,
however, no computational methods for solving non-convex
BMIs, in contrast with convex LMIs for which powerful
interior-point algorithms were available.

One decade later, this unsatisfactory state in BMI solvers
is almost unchanged. Several researchers have tried to apply
global or nonlinear optimization techniques to BMI prob-
lems, with moderate success so far. To our knowledge,
PENBMI [10] is the first available general-purpose solver
for BMIs. The algorithm, described in [9], is based on
the augmented Lagrangian method. It can be viewed as
a generalization to nonlinear semidefinite problems of the

D. Henrion is with LAAS-CNRS, 7 Avenue du Colonel Roche,
31077 Toulouse, France. He is also with the Department of Control
Engineering, Faculty of Electrical Engineering, Czech Technical University
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J. Löfberg is with the Automatic Control Laboratory, Swiss Federal
Institute of Technology (ETH), Physikstrasse 3, ETL I22, 8092 Zürich,
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penalty-barrier-multiplier method originally introduced in [3]
for convex optimization. Convergence to a critical point sat-
isfying first order KKT optimality conditions is guaranteed.
The solver PENBMI is fully integrated within the Matlab
environment through version 3.0 of the YALMIP interface
[13].

When following a state-space approach, the SOF problem
can be formulated as the BMI

(A+BKC)?P + P (A+BKC) ≺ 0, P = P ? � 0

in decision variablesK and P where ≺ 0 and � 0
stand for negative and positive definite, respectively, and the
star denotes the conjugate transpose. Ifn,m, p denote the
state, input, and output dimensions respectively, we see that
SOF matrixK (the actual problem unknown) containsnm
scalar entries, whereas Lyapunov matrixP (instrumental to
ensuring stability) containsn(n+1)/2 scalar entries. Whenn
is significantly larger thanmp, the large number of resulting
Lyapunov variables may be computationally prohibitive.

A first contribution of this paper is to propose an alterna-
tive BMI formulation of the SOF problem featuring entries of
matrixK only. In order to get rid of the Lyapunov variables,
we focus on a polynomial formulation of the SOF problem,
applying the Hermite stability criterion on the closed-loop
characteristic polynomial, in the spirit of [7]. The resulting
matrix inequality constraint is bilinear1 (BMI) when m = 1
(SIMO systems) orp = 1 (MISO systems).

A second contribution of this paper is in reporting nu-
merical examples showing that PENBMI can indeed prove
useful in solving non-trivial SOF problems formulated in
this polynomial setting. The problems are extracted from the
publicly available benchmark collection COMPleib [11].

II. PROBLEM STATEMENT

Consider the linear system

ẋ = Ax+Bu
y = Cx

of order n with m inputs andp outputs, that we want to
stabilize by static output feedback

u = Ky.

In other words, given matricesA ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, we want to find matrixK ∈ Rm×p such that the

1Strictly speaking, the matrix constraint is quadratic, not bilinear. By a
slight abuse of terminology and to avoid introducing new acronyms, we use
the term BMI to refer to these quadratic matrix inequalities.



eigenvalues of closed-loop matrixA + BKC all belong to
a region

D = {s ∈ C : d0 + d1(s+ s?) + d2ss
? < 0}

of the complex plane, whered0, d1, d2 ∈ R are given scalars.
Typical choices ared0 = d2 = 0, d1 = 1 for the left half-
plane (continuous-time stability) andd2 = −d0 = 1, d1 = 0
for the unit disk (discrete-time stability).

Problem SOF: Given matrices A,B,C, find matrix K
such that eigenvalues of matrix A+BKC all belong to given
stability region D.

III. PMI FORMULATION

A. Characteristic polynomial

Let k ∈ R
mp be the vector obtained by stacking the

columns of matrixK. Define

q(s, k) = det (sI −A−BKC) =
n∑
i=0

qi(k)si (1)

as the characteristic polynomial of matrixA+BKC. Coeffi-
cients of increasing powers of indeterminates in polynomial
q(s, k) are multivariate polynomials ink, i.e.

qi(k) =
∑
α

qiαk
α (2)

whereα ∈ Nmp describes all monomial powers.

B. Hermite stability criterion

The roots of polynomialq(s, k) belong to stability region
D if and only if

H(k) =
n∑
i=0

n∑
j=0

qi(k)qj(k)Hij � 0

whereH(k) = H?(k) ∈ Rn×n is the Hermite matrix of
q(s, k). CoefficientsHij = H?

ij ∈ R
n×n depend on the

stability regionD only, see [12] or [8].

C. Polynomial matrix inequality

Hermite matrixH(k) depends polynomially on vectork,
hence the equivalent notation

H(k) =
∑
α

Hαk
α � 0 (3)

where matricesHα = H?
α ∈ Rn×n are obtained by com-

bining matricesHij , andα ∈ Nmp describes all monomial
powers.

Lemma 3.1:Problem SOF is solved if and only if matrix
K solves the PMI (3).

Corollary 3.2: Note that if rank B = 1 (single input) or
rank C = 1 (single output) thendeg qi(k) = 1 and hence
deg H(k) = 2, meaning that PMI (3) in Lemma 3.1 is a
BMI.

IV. N UMERICAL ASPECTS

A. Computing the characteristic polynomial

In order to build up characteristic polynomialq(s, k) we
need to evaluate coefficientsqiα of the determinant of the
first degree multivariate polynomial matrixsI −A−BKC.

One possible way could be to transform the multivariate
polynomial matrix into some triangular form so that com-
putation of its determinant would be reduced to a sequence
of routine multivariate polynomial multiplications. We have
chosen another strategy avoiding computationally costly
symbolic computations. We proceed numerically by inter-
polation: coefficients ofq(s, k) are determined by solving a
linear system of equation built on a truncated multivariate
Vandermonde matrix.

Characteristic polynomialq(s, k) is expressed in (1) in
the standard multivariate power monomial basis with inde-
terminatess, k1, . . . , kmp. In order to avoid introducing ill-
conditioning into the numerical problem, we choose complex
interpolation points uniformly distributed along the unit cir-
cle and we proceed by oversampling. The rectangular linear
system of equations is over-determined, but with unitary
vectors. As a result, only unitary matrix multiplication is used
for solving the system and retrieving polynomial coefficients.

The idea is better illustrated with a simple example.
Consider a two-variable polynomial

q(x1, x2) = q00 + q01x2 + q12x1x
2
2.

We would like to interpolate coefficientsq00, q01 and q12

from values taken byq(x1, x2) at given pointsx. Our
polynomial is of degree1 in variable x1 and degree2 in
variable x2, so we use2 samplesx10, x11 for x1, and 3
samplesx20, x21, x22 for x2. Let

V1 =
[
x1

0
0 x1

1
0

x1
0
1 x1

1
1

]
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
be the corresponding Vandermonde matrices, and let

V = V2 ⊗ V1

be the6-by-6 Vandermonde obtained by sampling all pos-
sible second degree monomials, where⊗ denotes the Kro-
necker product. Removing columns 2, 4 and 5 inV we obtain
the over-determined consistent linear system of equations

Aq =
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
 q00

q01

q12



=


q(x10, x20)
q(x11, x20)
q(x10, x21)
q(x11, x21)
q(x10, x22)
q(x11, x22)

 = b



linking the truncated Vandermonde matrixA, the vector
q of coefficients and the vectorb of values taken at the
interpolation points.

If we choose complex samplesx10 = ei0, x11 = eiπ, and
x20 = ei0, x21 = ei2π/3, x22 = ei4π/3 uniformly along the
unit disk, then normalized Vandermonde matrices(

√
2/2)V1

and(
√

3/3)V2 are unitary. Consequently, columns in matrix
(
√

6/6)A are orthonormal, so that

q =
1
6
A?b

and no matrix inversion is required to solve the interpolation
problem.

Suppose that when evaluating a given polynomial
q(x1, x2) at these points we obtain

b =


6
0

−1.5000− i0.8660
1.5000 + i4.3301
−1.5000 + i0.8660
1.5000− i4.3301

 .

Its coefficients are then given by

q= 1
6


1 1 1
1 1 −1
1 −0.5000 + i0.8660 −0.5000− i0.8660
1 −0.5000 + i0.8660 0.5000 + i0.8660
1 −0.5000− i0.8660 −0.5000 + i0.8660
1 −0.5000− i0.8660 0.5000− i0.8660



?

b

=

 1
2
3


hence

q(x1, x2) = 1 + 2x2 + 3x1x
2
2.

B. Building up the Hermite matrix

Once coefficientsqi(k) of the characteristic polynomial
are given, we need only coefficientsHij of the Hermite
matrix in order to build matrix inequality (3). These matrix
coefficients depend only on the stability regionD. They are
computed numerically by solving a simple linear system of
equations, as shown in [8].

Note also that whenD is the left half-plane (d0 = d2 =
0, d1 = 1) the Hermite matrix has a special structure: by
permuting odd and even rows and columns we obtain a block
diagonal matrix with two blocks of half size. This block
structure can be exploited when solving the BMI.

As an illustrative example, consider problemNN1 in [11]:

A =

 0 1 0
0 0 1
0 13 0

 B =

 0
0
1

 C =
[

0 5 −1
−1 −1 0

]
with

K =
[
k1 k2

]
.

The characteristic polynomial is

q(s, k) = det (sI −A−BKC)
= k2 + (−13− 5k1 + k2)s+ k1s

2 + s3

= q0(k) + q1(k)s+ q2(k)s2 + q3(k)s3

The Hermite matrix corresponding to the left half-planeD =
{s ∈ C : s + s? < 0}, after permutation of odd and even
rows and columns, is given by

H(k) =

 q0q1 q0q3 0
q0q3 q2q3 0

0 0 q1q2 − q0q3


=

−13k2 − 5k1k2 + k2
2 k2 0

k2 k1 0
0 0 −13k1 − k2 − 5k2

1 + k1k2

 .
It is positive definite if and only ifk1 > 0, −13−5k1 +k2 >
0 and−13k1 − k2 − 5k2

1 + k1k2 > 0, which corresponds to
the interior of a hyperbolic branch in the positive orthant,
see Figure 1.

Fig. 1. SOF exampleNN1. Region of stabilizing gains (in gray).

C. Convexity and non-convexity

Notice that the stability region in the parameter space
k1, k2 is convex for the example of section IV-B, see Figure
1. Using the classification established in [2], it is actually
the convex branch of a hyperbola that can equivalently be
described by the LMI[

−1 + k1 1
1 −1− 5

18k1 + 1
18k2

]
� 0

which was not apparent by inspecting the original Hermite
BMI. In other words, in this particular case, the SOF prob-
lem boils down to solving a convex LMI problem in the
parameter space.

From these observations, it makes sense to apply a BMI
solver which can exploit convexity of the optimization space.
The algorithm implemented in PENBMI, as an extension of
an algorithm originally developed for convex optimization,
has this important feature.



Generally speaking, it would be interesting to design an
algorithm detecting from the outset the hidden convexity of
stability conditions in the parameter space, and to derive the
corresponding LMI formulation when possible. See [5] for
recent results on detecting convexity of polynomial matrix
functions.

D. Strict feasibility and BMI optimization

In order to solve the strict BMI feasibility problem (3),
we can solve the non-strict BMI optimization problem

max λ
s.t. H(k) � λI.

If λ > 0 in the above problem thenk is a strictly feasible
point for BMI (3).

In practice however the feasibility set of BMI (3) can be
unbounded in some directions, see e.g. Figure 1, and hence
λ can grow unreasonably large. Practice then reveals that the
BMI optimization problem

max λ− µ‖k‖
s.t. H(k) � λI

is more appropriate, whereµ > 0 is a parameter and‖.‖ is
any suitable norm. Parameterµ allows to trade off between
feasibility of the BMI and a moderate norm of SOF matrix
K, which is generally desirable in practice, to avoid large
feedback signals.

Returning to the numerical example of section IV-B, we
see that strict feasibility of the BMI is essential, otherwise the
point k1 = k2 = 0 is a trivial solution of the non-strict BMI.
Note that this point does not even belong to the boundary of
the feasible set !

Notice also that maximizingλ under the BMI constraint−13k2 − 5k1k2 + k2
2 k2 0

k2 k1 0
0 0 −13k1 − k2 − 5k2

1 + k1k2

 � λI
is actually an unbounded problem. Indeed, with the choice
k2 = 13k1 + 10 the Hermite matrixH(k) becomes a mono-
variate polynomial matrix

H(k1) =

 65k1 + 50k2
1 13 + 10k1 0

13 + 10k1 k1 0
0 0 −13− 10k1 + 5k2

1


whose zeros (the roots of its determinant) are−1.3000,
−0.8974 and 2.8974. For k1 > 2.8974 matrix H(k1) is
positive definite and its minimum eigenvalue can be made
arbitrary large by choosingk1 large enough.

On the other hand, a strictly feasible point with small
Euclidean norm isk1 = 2.8845, k2 = 41.9791, but it lies
very near the stability boundary. The resulting SOF controller
is extremely fragile and a tiny perturbation on the open-loop
system matricesA, B, C or on the SOF gain matrixK itself
destabilizes the closed-loop system.

It is recommended to introduce parameterµ so as to trade
off between these two extreme cases.

As an alternative option, one can introduce additional
redundant constraints, such as sufficiently loose lower and

upper bounds on the individual entrieski (large SOF co-
efficients are not recommended for physical implementa-
tion reasons), or simple linear cuts derived from necessary
stability conditions (e.g. all coefficients strictly positive for
continuous-time stability, which excludes the origin for the
above example). This option is not pursued here however.

V. NUMERICAL EXAMPLES

The numerical examples are processed with YALMIP
3.0 [13] and Matlab 7 running on a SunBlade 100 Unix
workstation. We use version 2.0 of PENBMI [10] to solve
the BMI problems. We set the PENBMI penalty parameter
P0 by default to 0.001 (note that this is not the default
YALMIP 3.0 setting). The SOF problems are extracted from
Leibfritz’s database [11]. Numerical values are provided with
5 significant digits.

A. Default tunings

Two tuning parameters which are central to a good per-
formance of PENBMI are initial pointK0 (since it is a local
solver) and weighting parameterµ (tradeoff between BMI
feasibility and SOF feedback norm). For many BMI SOF
problems we observe a good solver behavior with the default
tuningK0 = 0 andµ = 1.

For example, problemAC7 (n = 9, mp = 2) is solved
after 36 iterations (CPU time = 1.13s). The resulting SOF is

K = [1.3340 − 0.44245]

andλ = 104.29.
ProblemAC8 (n = 9,mp = 5) is solved after 10 iterations

(CPU time = 0.23s). The resulting SOF is

K = [0.38150 − 0.051265 − 0.47018 − 0.0083111 − 0.45831]

andλ = 141.78.
Problem REA3 (n = 12, mp = 3) is solved after 8

iterations (CPU time = 0.02s). The resulting SOF

K =
[
1.3304 · 10−15 − 6.9350 · 10−8 − 2.1498 · 10−6

]
has very little norm, indicating that PENBMI found a feasible
point very close to the initial point. Note that this feedback
matrix may be sensitive to modeling or round-off error. We
return to this example in the next section.

B. Tradeoff between feasibility and SOF matrix norm

For default tunings on problemPAS (n = 5, mp = 3)
PENBMI after 9 iterations (CPU time = 0.03s) returns an
almost zero feedback matrixK with λ = −1.5429 · 10−11

slightly negative. As a result, one closed-loop pole of matrix
A+BKC is located at3.7999·10−10, in the right half-plane.
This is a typical behavior when PENBMI is not able to find
a strictly stabilizing feedback.

In order to ensure positivity ofλ and hence strict feasi-
bility of the BMI, we chooseµ = 10−4 as a new weighting
parameter. After 17 iterations (CPU time = 0.08s), PENBMI
returns the SOF

K =
[
−2.5775 · 10−4 − 58.350 − 37.751

]



andλ = 146.58, ensuring closed-loop stability.
Returning to exampleREA3, the settingµ = 10−4 results

after 28 iterations (CPU time = 0.76s) in an SOF

K =
[
−1.3964 · 10−6 − 3684.6 − 6893.1

]
of significant norm when compared with the result of the
previous section obtained forµ = 1. It is likely that
this feedback is more robust, although checking this would
require appropriate tools which are out of the scope of this
paper.

C. Singularity of the Hermite matrix

Consider problemNN17 (n = 3, mp = 2). With default
tuning µ = 1, PENBMI after 19 iterations (CPU time =
0.09s) returns the feedback

K =
[
−0.26682
0.14816

]
and λ = −3.0558 · 10−12. Note that contrary to the above
examplePAS, the norm ofK is not close to zero. However,
since λ is slightly negative, one can expect that stability
is not achieved. Indeed, closed-loop poles are located at
−2.2668 (stable),−1.0817 (stable) and1.0817 (unstable).
Inspection of the resulting3×3 Hermite matrixH(k) reveals
eigenvalues at10.7402, 1.470 · 10−11 and−2.980 · 10−11.
In words, the Hermite matrix is almost singular, and not
positive definite. Singularity of the Hermite matrix is related
with location of a root along the stability boundary, but also
with symmetry of the spectrum with respect to this boundary
(here the imaginary axis), see [12] for more details. This is
also a typical behavior of PENBMI when failing to find a
strictly stabilizing point.

With the choiceµ = 10−3, PENBMI solves this problem
in 16 iterations (CPU time = 0.12s) and returns the stabilizing
feedback

K =
[
−99.363
3000.2

]
.

D. Choice of initial point

Since PENBMI is a local optimization solver, it can be
sensitive to the choice of the initial point. Since we have
generally no guess on the approximate location of a feasible
point for BMI (3), in most of the numerical examples we
choose the origin as the initial point. However, this is not
always an appropriate choice, as illustrated below.

Consider problemNN1 (n = 3, mp = 2) already studied
in section IV-B. With µ = 10−4 and the initial condition
K0 = [0 0], PENBMI after 46 iterations (CPU time = 0.52s)
returns a slightly negative value ofλ and a feedbackK which
is not stabilizing. With initial condition e.g.K0 = [0 30],
PENBMI after 10 iterations (CPU time = 0.04s) converges
to a stabilizing SOF

K = [343.60 1828.5] .

Note that as shown in section IV-C in this case the feasi-
bility region is convex. Despite convexity on the underlying
optimization problem, its BMI formulation however renders
PENBMI sensitive to the initial condition.

Fig. 2. SOF exampleHE11. Region of stabilizing gains (in gray).

Consider now problemHE1 (n = 4, mp = 2). Default
tunings do not allow PENBMI to find out a stabilizing SOF,
the resulting Hermite matrix being singular. However, with
the choiceK0 = [1 1]? which is not a stabilizing SOF,
PENBMI converges after 10 iterations (CPU time = 0.03s)
to the stabilizing SOF

K =
[
−3.3208
7.6991

]
for which λ = 138.91. Note that for the choiceK0 =
[0 1]?, a stabilizing SOF, PENBMI converges to the same
stabilizing SOF as above. The non-convex feasible set for
this example is represented on Figure 2.

It would be welcome to characterize the basin of attraction
for which PENBMI converges to a feasible point. The
polynomial formulation allows to carry out 2D graphical
experiments in the casemp = 2 since the optimization is
over the SOF coefficients only.

E. Ill-conditioning and scaling

Finally, for some of the SOF problems we faced numerical
problems that are certainly related with ill-conditioning or at
least bad data scaling.

ProblemsNN6 and NN7, both with n = 9 andmp = 4,
produce a Hermite matrix which is ill-conditioned around
the origin (ratio of maximum and minimum singular values
around10−17). Note that this has nothing to do with the way
characteristic polynomial coefficients are computed, since
the truncated Vandermonde matrix is unitary, see section IV-
A. We suspect that ill-conditioning here is related with the
choice of the monomial basis1, s, s2 . . . used to represent
the characteristic polynomial. See the conclusion for more
comments on this particular point.

Ill-conditioning and bad data scaling are however not
only related with the polynomial formulation. For problem
PAS (n = 5, mp = 3) the B matrix has Euclidean norm
1.5548·10−2. PENBMI fails to find a stabilizing SOF for this
problem. However, by solving the SOF problem of the scaled



triplet (A, 1000B, 1000C) and with µ = 10−8, PENBMI
after 7 iterations (CPU time = 0.05s) returns the SOF

K = [−0.16422 − 6266.9 − 0.38369]

stabilizing the original triplet(A,B,C). The development
of appropriate data scaling, or pre-conditioning policies for
SOF problems (in state-space or polynomial setting) is also
an interesting subject of research.

VI. CONCLUSION

In this paper SOF problems from the COMPleib library
were formulated in a polynomial setting and solved with
the publicly available PENBMI solver. The user controls
two basic tuning parameters: the initial feedback estimate
K0 and the weighting parameterµ trading off between
feasibility of the BMI and norm of the feedback. Generally,
default tunings (K0 = 0, µ = 1) suffice, but for some
problems it may be necessary to decreaseµ and/or to try
different initial conditionsK0. Other aspects specific to the
local convergence nature of the optimization algorithm were
touched on via numerical examples.

Characteristic polynomialq(s, k) is expressed in (1) in
the standard multivariate monomial basis with indetermi-
natess, k1, . . . , kmp. While this basis is most convenient
for notational purposes, it is well-known that its numerical
conditioning is not optimal. Orthogonal polynomial bases
such as Chebyshev or Legendre polynomials are certainly
more appropriate in the interpolation scheme of Section IV-
A. The use of alternative polynomial bases in this context is,
in our opinion, an interesting subject of further research.

As it is described in this paper, the approach is restricted
to SIMO or MISO SOF problems, otherwise the Hermite
stability criterion results in a polynomial matrix inequality
(PMI) in the feedback matrix entries. In order to deal
with MIMO SOF problems, one can try to obtain a matrix
polynomial version of the Hermite criterion, see [1] for an
early and only partially successful attempt. By introducing
lifting variables, PMI can be rewritten as BMI problems with
explicit additional equality constraints that should be handled
by next versions of PENBMI. Another way out could be to
extend PENBMI to cope with general PMI problems, which
can be done without major theoretical or technical restriction.
The PMI formulation is already fully covered in version 3.0
of the YALMIP software.
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