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Abstract— Traditionally, scheduled controllers are obtained
by interpolation of a bank of linear feedback gains. The
strategy adopted here is quite different as the controller is
directly designed in scheduled form. The key idea consists
of designing the feedback gain in LFT (Linear Fractional
Transformation) form, the system to be controlled being itself in
LFT form. Using an observer-based scheduled feedback and the
corresponding Q-parameterization, robust control design can
be treated by alternating µ-analysis for worst case identification
and multimodel control for simultaneous treatment of the worst
cases.

I. INTRODUCTION

This paper illustrates feedback gain synthesis in LFT

form. An LFT model can be viewed to some extent as a

symbolic representation involving only rational operations. If

a system depending on some parameters is given in symbolic

form, it is natural to attempt to design a feedback law in

symbolic form which would naturally lead to a scheduled

feedback gain. However, such laws are not practically imple-

mented on account of the numerical difficulties that would

be encountered. LFT modeling and then, feedback design

in LFT form does not present these drawbacks for several

reasons. The main reason is that most computation can be

performed off-line in the LFT case, in addition, several tools

are available in order to reduce significantly the complexity

(see [1], [2], [3]).

Using the object-oriented LFRT Toolbox [3], some ma-

trix operations relative to matrices (addition, multiplication,

inversion, concatenation, conjugation, real and imaginary

parts, kernel computation) can also be applied to LFT

objects. Therefore, deriving a feedback gain in LFT form

becomes straightforward. Indeed, any classical algorithm

involving only matrix operations that can also be applied to

LFT objects, is potentially an algorithm for LFT-scheduled

gain design because it suffices to apply the considered

algorithm to the LFT version of the matrices describing the

system. Eigenstructure assignment ([4]) satisfies the above

requirement, it is this technique that will be considered in

this paper.

Most alternative contributions to gain scheduling (see

[5], [6] and the references therein) consider a posteriori
interpolation or realization of feedback gains. Interpolation

becomes cumbersome when there are too many parameters

(3 or more). On the contrary, LFT-scheduled gains become

simpler when there are many parameters. The LPV approach

is an alternative approach to design LFT-scheduled gains

([7], [8], [9]). The LPV approach gives some stability guar-

antees but leads to conservative control design. In contrast

the technique proposed in this paper avoids conservatism but

stability with respect to neglected nonlinear effects must be

checked a posteriori.
In this paper, we shall assume that the system to be

controlled is in LFT form. Usually, the LFT model is a

continuum of linearized models. It can also be a quasi-LPV

model (e.g., the missile LPV-model in [5]). We shall use

extensively µ-analysis because this analysis tool is efficient

and often non-conservative. However, using µ-analysis it

must be assumed that the scheduling parameters vary slowly

The parameters of the LFT model will be divided into two

groups

• the parameters that can be measured: these parameters

will be used for scheduling

• the uncertain parameters: for these parameters robust-

ness will be considered.

The proposed algorithm can be sketched as follows.

First, a nominal observer-based controller is designed by

eigenstructure assignment ([4]). Note that this initial feed-

back law might reproduce a feedback gain that has been

designed using any alternative technique ([4], page 284).

Then, this controller is transformed to an LFT-scheduled gain

by replacing the nominal state-space matrices by their LFT

form. This step is discussed in §III. Note that the assigned

eigenvalues can also be LFTs. The third step consists of

improving the robustness of the scheduled controller. The

system and its controller being in LFT form, µ-analysis can

be used to detect the worst cases (lower bound of µ) and

the worst pole (i.e., the pole of the worst case that crosses

the imaginary axis). Then it will suffices to move to the

left the worst poles in order to flatten the µ curve. This

can be done because eigenstructure assignment can easily

be adapted to multimodel control. We shall alternate µ-

analysis for worst case identification and multimodel control

for treating together all the worst cases (see [10]). Q-

parameterization (for Luenberger observer-based controller)

is used here for a better control of the nominal performance

during the iterations for robustness improvement. The details
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are given in §IV.

Designing LFT-scheduled gains requires some attention

in order to avoid high complexity controllers, in addition,

“on line” computation of an LFT requires the inversion of

a matrix depending on scheduling parameters, this inversion

must remain feasible (well-posedness). These two problems

specific to LFT-scheduled gains are considered all along this

paper.

II. NOTATIONS AND GENERALITIES

Only real parameter variations are considered. The param-

eters are denoted δ1, . . . , δr. ∆ stands for the matrix with

diagonal blocks as follows:

∆ = Diag{δ1In1 , . . . , δrInr
} (1)

It is assumed that the parameters are normalized, i.e., −1 ≤
δi ≤ 1, i = 1, . . . , r The matrix ∆ is divided into two

diagonal sub-matrices: ∆m corresponding to the parameters

that can be measured, and ∆u corresponding to the uncertain

parameters.

∆ =
[

∆m 0
0 ∆u

]
(2)

The size k of the matrices Ik varies with each LFT object

considered in this paper. In order to alleviate notation, we
shall use ∆,∆m and ∆u in all cases regardless of the block
sizes. The complexity of the LFT objects considered in this

paper will be defined as the size of the square matrix ∆. We

shall speak of “∆-complexity”.

Modelling systems from equations of physics leads to

symbolic representations of the form y = G(s,∆)u. Mod-

elling this system in LFT form consists of finding a multi-

dimensional realization as depicted in Figure 1. The toolbox

of [3] can be used for automatic realizations from symbolic

forms.
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Fig. 1. LFT representation of a linear uncertain system

In this paper we shall use the following state-space
representation j

ẋ = A(∆) x + B(∆) u
y = C(∆) x + D(∆) u

where x is the state vector, y the output vector and u
the input vector. For a fixed value of ∆: A(∆) ∈ R

n×n,

B(∆) ∈ R
n×m, C(∆) ∈ R

p×n and D(∆) ∈ R
p×m. Using

the operator Fu defined as follows:

Fu

„»
M11 M12

M21 M22

–
, ∆

«
= M21∆(I − M11∆)−1M12 + M22

after reordering the sub-matrices of Figure 1, clearly:

»
A(∆) B(∆)
C(∆) D(∆)

–
= Fu

0
@

2
4 D11 C1 D12

B1 A B2

D21 C2 D22

3
5 , ∆

1
A (3)

In the LFT model that will be used for gain scheduling
in §III the uncertain parameters are frozen to their nominal
value. This system can be extracted from (3) as it suffices to
give to ∆u the numerical value corresponding to the nominal
case and to close the ∆u-loop. The corresponding system
and LFT-scheduled controller will be denoted»

A(∆m) B(∆m)
C(∆m) D(∆m)

–
; u(s) = K(∆m) y(s) (4)

where

K(∆m) = K22 + K21∆m(I − K11∆m)−1K12 (5)

for some matrices K11, K12, K21 and K22 (note that we

shall use observer-based controllers, therefore, we shall not

consider directly dynamic LFT-scheduled gain of the form

K(s,∆m)).
For implementation of such a feedback gain, we must

check that (I − K11∆m) can be inverted for all admissible

values of ∆m (i.e. for all admissible operating point). It

is well known that this matrix can be inverted for all ∆m

structured as in (1) and such that ‖∆m‖ < 1 if and only if

µ(K11) < 1 (6)

this is a well-posedness condition (see [11], [12] for the

definition and computation of µ) that will be considered in

§III-D. It is natural to define the well-posedness radius as

Rwp

„
Fu

„»
M11 M12

M21 M22

–
, ∆

««
=

1

µ(M11)
(7)

Similarly, the non-singularity radius can be defined as the

well-posedness radius of the inverse of an LFT (if M22 is

singular the non-singularity radius is equal to zero):

Rns

„
Fu

„»
M11 M12

M21 M22

–
, ∆

««
=

1

µ(M11 − M12M−1
22 M21)

(8)

III. LFT GAIN SCHEDULING

In this section is described an algorithm for observer-

based control design. The details can be found in [4]. It

is presented in such a way that all used operations can be

applied either to matrices or to LFTs (LFT operations are

described in Chapter 9 of [3]). Therefore, this algorithm can

be used either in the matrix or in the LFT case but in the

second case there are some specificities discussed in §III-C.

We prefer to detail Luenberger observers rather than ob-

servers with Kalman filter structure, because Luenberger ob-

servers offer more flexibility, in particular, it is not necessary

to observe all the states (in addition observers with Kalman

filter structure are special cases of Luenberger observers).
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A. Observer design

Let us consider the system of Equation (4) in which the

dependency with respect to ∆m is omitted. An no-order

Luenberger observer is a triple (U, T,Π) with U ∈ R
no×n,

T ∈ R
no×p, Π ∈ R

no×no and Π stable, satisfying

UA + TC = ΠU (9)

The corresponding observer is defined by

˙̂z = Πẑ − Ty + (UB + TD)u (10)

in which ẑ (∈ R
no ) is an estimate of Ux and the estimation

error dynamic is given by ˙̂z − ż = Π(ẑ − z)

Procedure 3.1: Design procedure of an no-order ob-
server.

1) Choose no desired observation dynamics πi, i ∈
[1 · · ·no] and no sets of matrices ei ∈ R

p, ei �= 0,

Ei ∈ R
n×p and Fi ∈ R

n×p.

2) Compute (ui, ti), i = 1, . . . , no satisfying:

[
ui ti

]
=

[
0 ei

] [
A − πi I Ei

C Fi

]−1

(11)

3) Build U , T and Π as follows

U =

2
64

u1

...
uno

3
75 ; T =

2
64

t1
...

tno

3
75 ; Π = Diag{π1 . . . πno}

(12)

Note that no can be much less than the number of states

(for minimum order observer-based control design) or much

larger (redundancy for multimodel control design). It re-

mains to connect the corresponding observer to the original

system as depicted in Figure 2. The choice of the matrices

ei, Ei and Fi is a classical modal control problem.

System -T
∫

UB + TD Π

�

� � � � � �
� �

u y

y

ẑ
� �

Fig. 2. System with observer to be used for feedback design.

The state-space form of the system of Figure 2 is:[
ẋ
˙̂z

]
=

[
A 0

−TC Π

] [
x
ẑ

]
+

[
B

UB

]
u[

y
ẑ

]
=

[
C 0
0 I

] [
x
ẑ

]
+

[
D
0

]
u

(13)

The following lemma states that the transfer function matrix

between the input and the estimating signal ẑ is equal to

the one between the input and the corresponding estimated

signal z. It is a form of the “Separation Principle”. See for

example [4] for a proof. This well-known result will be used

for Q-parameterization in § IV-A.

Lemma 3.2: The transfer function matrix between u and

ẑ (see System (10)) is equal to U(sI − A)−1B, which is

also the transfer function matrix between u and z. The

eigenvalues of Π are uncontrollable.

In the next section (Procedure 3.3), the considered feed-

back law has the following form: u = Kyy + Kz ẑ. From

the “separation principle” (Lemma 3.2), it is clear that the

system of Equation (13) is equivalent to the following one:

ẋ = Ax + Bu[
y
z

]
=

[
C
U

]
x +

[
D
0

]
u

(14)

Note that in the standard observer approach, the observer

design and the controller design (state feedback) are inde-

pendent. In the proposed design procedure, the observer must

be designed first, then the observed variables are considered

as additional measurements used for designing an output

feedback controller.

B. Observer-based control design

After having connected the observer (U, T, Π) of Algo-

rithm 3.1 as shown in Figure 2, applying the “separation

principle” we obtain the system of Equation (14). The

following output feedback design procedure is dual to some

extent to Procedure 3.1. Let us denote (14) as follows

ẋ = Ax + Bu
ỹ = C̃x + D̃u

(15)

in which C̃ ∈ R
(p+no)×n and D̃ ∈ R

(p+no)×m

Procedure 3.3: Design procedure for eigenstructure as-
signment. Eigenstructure assignment by output feedback

relative to System (15) can be performed as follows :

1) Choose nc ≤ min(n, p + no) desired closed-loop

eigenvalues λi and the corresponding matrices ei ∈
R

m, ei �= 0, Ei ∈ R
m×n and Fi ∈ R

m×m.

2) Compute (vi, wi), i = 1, . . . , nc satisfying:[
vi

wi

]
=

[
A − λi I B

Ei Fi

]−1 [
0
ei

]
(16)

3) Let us denote

V = [v1 . . . vnc
], W = [w1 . . . wnc

],
Λ = diag[λ1 . . . λnc

]

Compute K satisfying:

K[C̃ V + D̃ W ] = W (17)

Usually, ei, Ei and Fi are chosen in order to satisfy some

decoupling properties ([4]). It is sometimes interesting to

consider Ei = 0 and Fi = I , in this case wi = ei and (16)

becomes

vi = (A − λi I)−1Bwi (18)

In this case, the vectors wi can be chosen from values

assigned by an alternative design technique (for example

LQ or H∞). It remains to discuss the choice of nc that

is the number of assigned poles. Generally, pole assignment

techniques must assign a number nc of poles equal to the

number of dominant modes. For computing K, especially

in the LFT case, we shall assume that no is chosen so that

nc = p + no in order to have a square matrix that can be

inverted. In that way

K = W (D̃ V + C̃W )−1 (19)
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For Q-parameterization (§IV-A), the intersection between the

row span of U and C must not reduce to zero. In this case,

it will be assumed that Algorithm 3.1 is applied in two steps

in order to add rows to the matrix U .

C. Problems specific to LFT-scheduled gains

As mentioned in the introduction of this section, for

designing a scheduled feedback gain in LFT form, it suffices

to replace the matrices A, B, C, D by A(∆m), B(∆m),
C(∆m), D(∆m). The complete procedure consists of ap-

plying Algorithm 3.1 to A(∆m), B(∆m), C(∆m), D(∆m)
with no (observer order) such that p + no is equal to the

number of dominant poles nc. Then, connect the observer

as shown in Figure 2 and apply Algorithm 3.3 to the

corresponding system of Equation (14). By the way, the

matrices V , W , U and T become also LFTs respectively

denoted V (∆m), W (∆m), U(∆m) and T (∆m). Note that

λi and πi might also be in LFT from.

However, there are two problems that do not appear in the

matrix case:

•the size of the ∆-matrix of the LFT gain might become

very large. See [3], § 7.1.2 for a description of several tricks

to be used for avoiding too large ∆-matrices.

• a well-posedness condition must be satisfied (see (6)),

this issue is addressed in §III-D. Note that in the matrix

case, the inversions appearing in Algorithms 3.1 and 3.3 are

generically feasible ([13]). In the LFT case we don’t accept

any degeneracy in the unit ball, even in an algebraic subspace

of zero measure. Checking nondegeneracy in the unit ball is

a problem of wellposeness.

D. Well-posedness

The next result gives an a priori well-posedness guarantee

in the state-feedback / single-input case.

Lemma 3.4: If the single-input pair (A(∆m), B(∆m)) is

uniformly controllable in the unit ball, all LFT-scheduled

state feedback gains assigning distinct poles have an equiv-

alent form that is well-posed in the unit ball.

Proof. Note that well-posedness depends on the ways the

gain is computed, this is why “an equivalent form” is

mentioned in the formulation of the lemma. There exists

a simple direct proof of this statement however the proof of

Proposition 3.7 can also be invoked because, assuming that

the system is controllable in the unit ball, the well-posedness

radius in (25) is known to be larger than one (from classical

pole assignment theory)).

Corollary 3.5: If the single-input pair (A(∆m), B(∆m))
is uniformly controllable in the unit ball and if the single-

output pair (A(∆m), C(∆m)) is uniformly observable in the

unit ball, all LFT-scheduled observer-based feedback laws

with Kalman filter structure assigning distinct poles admit

an equivalent form that is well-posed in the unit ball.

In the proposed design algorithm 3.3, there are two kinds

of operations that might reduce the well-posedness radius

of the gain. The first group of operations is the inversion

in (16)-(18). Lemma 3.7 below shows that we can ignore

this problem. The second kind of operations is the inversion

appearing in (21), for this second problem we have just a

partial understanding, see Lemma 3.4 and Corollary 3.5.
Lemma 3.6: The feedback K(∆m) gain of Equation (19)

K(∆m) = W (∆m)

„»
C(∆m) D(∆m)
U(∆m) 0

– »
V (∆m)
W (∆m)

–«−1

(20)
can also be computed as follows: K(∆m) = −

[0 Im]

2
4

2
4 C(∆m) D(∆m)

U(∆m) 0
0 Im

3
5 »

V (∆m)
W (∆m)

– 0
0

Im

3
5−1 »

Ip̃
0

–
(21)

Proposition 3.7: Using formula (21) rather than (20),

the invertibility condition for computing vi,∆m
and wi,∆m

arising in Equations (16) (or (18)) can be ignored.

Proof. We shall compute the feedback gain in two

ways. First, the natural way for which V (∆m) and the

W (∆m) are considered individually as in Equation (20)

and then the improved way based on Equation (21). Let[
C̃(∆m)V (∆m) D̃(∆m)W (∆m)

0 W (∆m)

]
=

Fu

0
@

2
4 M11 M12

M21V M22V

M21W M22W

3
5 , ∆m

1
A (22)

• Natural way. From the upper part of (22)

eC(∆m)V (∆m) + fD(∆m)W (∆m) = Fu

„»
M11 M12

M21V M22V

–
, ∆m

«

and from the lower part

W (∆m) = Fu

„»
M11 M12

M21W M22W

–
, ∆m

«

Then from (20), using the LFT inversion and the multi-

plication formulas ([3]) we obtain K(∆m) = having the

following LFT structure:

2
4 M11 −M12M−1

22V M21 M12M−1
22V

0 M11 − M12M−1
22V M21V M12M−1

22V

M21W −M22W M−1
22V M21V M22W M−1

22V

3
5 (23)

So, the well-posedness of this form of the gain is limited by

the values of ∆m such that

det

„
I −

»
M11 −M12M−1

22V M21

0 M11 − M12M−1
22V M21V

– »
∆m 0
0 ∆m

–«
= 0

We recognize here two conditions: det(I − M11∆m) �= 0
and det(I − M11 + M12M

−1
22V M21V ∆m) �= 0. So the well-

posedness radius satisfy Rwp(K(∆m)) =

min
„
Rwp

»
V (∆m)
W (∆m)

–
, Rns

“ eC(∆m)V (∆m) + fD(∆m)W (∆m)
”«

(24)

• Using Equation (21). From (22)2
4 » eC(∆m) eD(∆m)

0 Im

– »
V (∆m)
W (∆m)

– 0
0

Im

3
5 =

Fu

0
@

2
4 M11 M12 0

M21V M22V 0
M21W M22W I

3
5 , ∆m

1
A
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after inversion the following LFT form is obtained:2
4 M11 − M12M

−1
22V M21V M12M

−1
22V 0

M21V M−1
22V M−1

22V 0
M21W − M22W M−1

22V M21V −M22W M−1
22V I

3
5

so:

Rwp(K(∆m)) = Rns

“ eC(∆m)V (∆m) + eD(∆m)W (∆m)
”
(25)

to be compared to (24) .

In the observer case the matrices [U(∆m) T (∆m)] must

be well-posed, this point is discussed in ([3], § 8.2.2).

Conclusion on well-posedness. From Proposition 3.7 and

from the above remark, the inversions involved in the compu-

tation of the vectors vi(∆m), wi(∆m), ui(∆m) and ti(∆m)
are not troublesome. Concerning the inversion problem of

C̃(∆m)V (∆m) + D̃(∆m)W (∆m) we have the result of

Corollary 3.5 but the validity of this result is restricted to

the SISO case. However, it is always possible to check well-

posedness a posteriori using (6).

Note that the fundamental difference between the SISO

and MIMO cases is that in the SISO case, Corollary 3.5

extends exact properties of standard systems. A similar result

in the MIMO case would extend generic properties (see, e.g.
[13]). In other words, this problem would consist of checking

the exclusion of an algebraic subspace of zero measure

(genericity) from the unit ball (with non-zero measure).

Up to our knowledge, the best technique available for that

purpose is µ-analysis (so, we are back to the a posteriori
test of Equation (6)).

IV. ROBUSTNESS

It is assumed that an observer-based LFT-scheduled gain

has been designed as detailed in the previous section. This

controller depends on ∆m and it has been computed fixing

the uncertain parameters of ∆u to their nominal values. The

controller being in LFT form, the closed-loop system is itself

an LFT model so, can be analyzed by µ-analysis (more

precisely by skew-µ-analysis, see §IV-B).

In order to preserve at least the stability of the sched-

uled gain for all admissible variations of ∆m and ∆u

nominal, we shall use Q-parameterization. Here again, Q-

parameterization involves matrix operations that can be

applied to LFT objects, therefore, the scheduled nature of the

feedback gain is considered without additional difficulties.

The parameter Q will be designed as a multimodel feedback

gain.

The overall robustness improvement technique can be

sketched as follows. First, the system with its LFT-scheduled

gain is adapted to Q-parameterization (§IV-A). Then, for

designing Q, we shall alternate worst cases identification

(by skew-µ-analysis) and multimodel design relative to the

worst cases, the objective being to flatten the skew-µ curve

(§IV-B).

A. Q-parameterization for Luenberger observers

Q-parameterization consists of adding a stable feedback

gain Q between two points of a regulation scheme with

stability preservation. In order to obtain this effect, it suffices

to identify an input point (denoted uQ) and an output point

(denoted yQ) so that the transfer function matrix from uQ

to yQ is equal to zero. Then,

uQ = Q yQ

defines a new design parameter (Q) that preserves nominal

stability. This property is easily checked, for example, con-

sider an input signal uP (or u) and an output signal yP (or

y) we have[
yP

yQ

]
=

[
TuP →yP

TuQ→yP

TuP →yQ
TuQ→yQ

] [
uP

uQ

]
with uQ = Q yQ and TuQ→yQ

= 0 we have

yP = (TuP →yP
+ TuQ→yP

Q TuP →yQ
)uP

in which all transfers are stable.

Q-parameterization for the observers of §III-A (note that

standard observers are a special case of Luenberger observers

with Qz = 0 and U ∈ R
n×n). In all observer-based control

system, the transfer function matrix between the plant input

and the observation error is equal to zero. In the Luenberger-

like observer of Figure 3, the observed signal is z = Ux and

its estimate is the vector ẑ. Therefore, the transfer from the

plant input u to Ux − ẑ is equal to zero.

Unfortunately, the signal Ux − ẑ is not available from

measurements, so, we must find in the vector y some

components of Ux. For that purpose, let us define two

matrices Qy et Qz of maximal rank so that[
Qy Qz

] [
C
U

]
= 0 (26)

(assuming that there exist non-zero matrices Qy and Qz).

Let us check that the signal Qz(ẑ − Ux) is available from

measurements. Qz(ẑ−Ux) = Qz ẑ+QzCx because QyC+
QzU = 0. As Cx = y−Du: Qz(ẑ−Ux) = Qz ẑ+Qz(y−
Du) with Qu = −QyD, Qz(ẑ−Ux) = Qz ẑ+Qyy+Quu.

Finally, Qz(ẑ−Ux) is a component of the estimation error

that is available from measurements because it depends on

y, u, and ẑ. This remark justifies Figure 3 in which

yQ = Qyy + Quu + Qz ẑ; uQ = u (27)

Q-parameterization for LFT-scheduled observer-based
feedback. The computation required for Q-parameterization

reduces to solving (26). Equation (26) can be written in an

equivalent way that only involves classical operations that

are compatible with LFTs:

[
Qy(∆m) Qz(∆m)

]
= [0 I]

[
C(∆m) E
U(∆m) F

]−1

(28)

The choice of E and F must optimize the well-posedness

radius of [Qy(∆m) Qz(∆m)]. It can be done by choosing

E and F as the orthogonal complement at ∆m = 0.

In the next section, the feedback Q will be designed in

order to improve the robustness with respect to the uncertain

variations of ∆u.

7975



�

�

� �

� �

�

��
�

�

�

� �

���

� �

� �

��

�
�

�
� �

�
�

uP yP

u y

I/s

−T

Q

Qy

Π

y

ẑ
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Fig. 3. Illustration of the Q-parameterization for Luenberger observers

B. Algorithm for robustness improvement

For robustness improvement of the LFT-scheduled con-

trol law, it is suggested to use a technique similar to the

one proposed in [10]. This technique consists of using in

alternation:

• µ-analysis for identifying worst cases and worst poles.

The worst cases can be identified from the lower

bound of µ at the peak values of the µ-curve. The

corresponding worst poles are on the imaginary axis

at the frequencies corresponding to the peaks.

• synthesis of the feedback gain Q by a multimodel

approach. The models treated together are the worst

cases identified using µ-analysis. Reducing the peak

values of the µ-curve consists of shifting to the left

the worst poles of the worst cases.

More details are given below as a series of comments.

It is worth noting that the proposed algorithm is feasible

because the scheduled gain is in LFT form, therefore the

closed-loop system remains in LFT form, and then, µ-

analysis can be applied. The main difference with respect

to the technique of [10] is that here, there are two kinds

of parameters: ∆m and ∆u. As the feedback is scheduled

with respect to ∆m, robustness analysis is only relevant

for variations of ∆u while ∆m remains in the unit ball.

Therefore, what we called µ-analysis is in fact skew-µ-

analysis. The toolbox [14] makes available the required tools

for skew-µ-analysis. This toolbox emphasises in particular

µ-analysis with respect to real uncertain parameters.

The observer designed using Procedure 3.1 is used first

for LFT-scheduled gain design (see (21)) and then for Q-

parameterization (see (26)). In the first case U must be a row

complement of C but in the second case, some redundancy

is required. In fact, Procedure 3.1 can be used only once with

redundancy in view of solving (26), but when Procedure 3.3

in considered, only a selection of rows of U is taken into

account.

Several multimodel design techniques are proposed in

[4]. Note that Procedure 3.3 can be used for designing Q
(the system (16) must be replaced by the transfer function

matrix from uQ to yQ of Figure 3). This design procedure

is compatible with multimodel design because it consists of

linear constraints (Equation (17)) applied to the gain being

computed, keeping in mind that for each assignment the

matrices “A, B, C, D” might be relative to different models.

Both steps of the proposed robustness improvement tech-

nique (skew-µ-analysis and multimodel design of Q) can

be organized in an automatic algorithm. Unfortunately, the

lower bound computation of µ is not very reliable, therefore

it is better to iterate manually and check the validity of worst

cases at each step. Usually two or three iterations suffice for

reducing significantly the peak values of the skew-µ curve.
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