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Equivalence between local tracking procedures and monotonic
algorithms in quantum control

Gabriel Turinicigabriel.turinici@inria.fr

Abstract— The computer simulations of quantum control use
several approaches including local tracking procedures that
prescribe the controlling field through the requirement that
a certain functional be decreasing and monotonic algorithms
that solve the Euler-Lagrange equations for a predefined cost
functional. While different in implementation, recent works [1]
hinted that these two classes share some common characteris-
tics. We propose in this contribution a rigorous ground for such
conclusions and discuss the precise formulation that allows to
construct this equivalence.

I. I NTRODUCTION

Manipulation of quantum phenomena was already demon-
strated both in closed-loop laboratory experiments [2], [3],
[4], [5], [6] and in theoretical studies on the controllability
of quantum systems [7], [8], [9], [10].

Accompanying these advances, the computer simulations
have the advantage to overcome experimental restrictions and
have access to the whole dynamics allowing further insight
and also providing hints in devising future experiments.
Many algorithms have been proposed to solve the ensuing
optimization problem among which two distinct classes
can be identified. The first one contains the local tracking
methods [11], [12], [13], [14], [15], [1] that propose explicit
formulae of the driving field in an open-loop dependence
on the evolving state. The formulae are obtained from the
requirement to decrease a certain functional defined at each
time instant and related to the “distance” to the target or by
demanding strict adherence to a predefined observable tra-
jectory. The second class are the monotonic algorithms [16],
[17], [18] that solve the Euler-Lagrange equations associated
to the optimization of a cost functional defined at a final time
T . The two classes can also be combined as in [1].

Although different in implementation, these algorithms
are shown below to be related in the sense that mono-
tonic schemes are tracking procedures for some specific
performance indexes. In the context of the density matrix
formulation, this index is defined as the value of the cost
functional (at the final timeT ) evaluated for the “best
candidate” field at timet ≤ T . This candidate field is made
from the current field up to timet that is prolonged with a
given, reference field fromt to T obtained at the previous
iteration. Thisforward cost functional is decreased at each
time instant. For the case of the wavefunction, due to the
nonlinear nature of the target formulation, an upper bound
is used to define the forward cost functional.
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The outline of the paper is the following: for the case
of the density matrix we present the definition of tracking
procedures in section II-A and one example of monotonic
algorithm in section II-B. Then, we explain the relation
between the two classes in sections II-C and II-D. The
corresponding analysis for the wavefunction formulation is
given in section III. Concluding discussions and remarks are
the object of section IV.

II. D ENSITY MATRIX FORMULATION

Consider a quantum system with internal dynamics de-
scribed by the HamiltonianH0. Its interaction with an
external (e.g., laser) field is modeled by introducing the
dipole moment operatorµ and the field intensityǫ(t). If the
system is represented in the density matrix formulation with
initial state ρ0 its dynamics will obey the time dependent
Schr̈odinger equation:

i
∂

∂t
ρ(x, t) = [H0 − ǫ(t)µ, ρ(x, t)] (1)

ρ(x, t = 0) = ρ0(x).

Here we used the convention~ = 1.
We introduce the Liouville space representation, by defin-

ing the scalar product〈〈a, b〉〉 = Tr(a†b) and the associated
norm ‖a‖〉〉 =

√
〈〈a, a〉〉. Instead of the commutators above,

we define the operatorsH andM that act on density matrices
by Hρ = [H0, ρ], Mρ = [µ, ρ]. Equation (1) becomes

i
∂

∂t
ρ(x, t) = (H− ǫ(t)M) ρ(x, t) (2)

ρ(x, t = 0) = ρ0(x).

The control goal can be expressed through the intro-
duction of an observable operatorA by the requirement
that the quantity〈A(t)〉 = Re〈〈A, ρ〉〉 be maximized (Re
denoting the real part of a complex number). This formu-
lation can be further refined as in [15] where an index
y(t) = y(〈A1(t)〉, ..., 〈AK(t)〉) aggregating several observ-
ables is considered or even further by definingy(t) =
y(

∫ t

0
ǫ2(s)ds, 〈A1(t)〉, ..., 〈AK(t)〉) where we introduce ex-

plicitly the dependence on the laser fluence. For notational
convenience we will denoteF (t) =

∫ t

0
ǫ2(s)ds.

A. Tracking algorithm

Consider the simple situationy(t) = y(
∫ t

0
ǫ2(s)ds, 〈A(t)〉)

where only one observable is considered i.e.,K = 1 above.
We obtain
dy(t)

dt
= D1y · ǫ(t) +D2y ·Re〈〈A,

(H− ǫ(t)M) ρ(x, t)

i
〉〉



whereDj is the partial derivative with respect to thej-th
variable. This can be further expressed as

dy(t)

dt
= f(F (t), ρ) + ǫ(t)g(F (t), ρ) (3)

It is seen that, except for the points whereg vanishes (which
will be called singularities and will be treated separately)
for any desired trajectorỹy with ỹ(0) = y(0), the condition
y(t) ≡ ỹ(t) uniquely determines the fieldǫ(t) by the formula

ǫ(t) =
dey(t)

dt
− f(F (t), ρ)

g(F (t), ρ)
. (4)

From dF/dt = ǫ2(t) one obtains that (4) is in fact a ODE
on F of the form

dF/dt = Y(F, ρ) (5)

that is to be solved jointly with (2) in order to ensure
adherence to the prescribed trajectoryỹ.

Same considerations apply if only weaker properties are
required, typically the increase/decrease ofy(t) which can
be enforced through the conditiondy/dt ≥ 0 (≤ 0).

The difficulty in this approach is to find a suitable refer-
ence tracking trajectorỹy that does not give rise to singular
points of the system (3), (5) i.e., whereg(F, ρ) = 0.
In general singular points cannot be avoided a priori and
techniques were designed to treat such situations: see [14]
for designs that locally alter the trajectory to circumvent the
singular points and [19], [1] for a study on the stopping
points and procedures to improve their optimality.

B. Monotonic algorithms for optimal control

In an approach different from tracking, monotonically
convergent algorithms pioneered in [20], [21] and extended
in [18] in the wavefunction representation, are used in the
context of the density matrix operator as in [22], [23]. Such
procedures are included in the framework of the optimal
control that introduces a cost functional (defined at a final
time T ) to be optimized. One such example of functional is

J(ǫ) =

∫ T

0

αǫ2(t)dt− 2Re〈〈A, ρ(T )〉〉. (6)

where α is a positive (constant or time varying) weight.
Then, the critical points ofJ(ǫ) are sought after under the
constraint of satisfying (2). Because of the constraint, a
Lagrange multiplier, denotedχ(x, t) is introduced in the cost
functional that now reads

J2(ǫ) =

∫ T

0

αǫ2(t)dt− 2Re〈〈A, ρ(T )〉〉

+2Re

{∫ T

0

〈〈χ,
∂ρ

∂t
−

(H− ǫ(t)M)ρ

i
〉〉dt

}
(7)

The critical point equations are thus obtained:

i
∂

∂t
ρ(x, t) = (H− ǫ(t)M) ρ(x, t) (8)

ρ(x, t = 0) = ρ0(x)

2αǫ(t) + 2Re〈〈χ,
Mρ

i
〉〉(t) = 0 (9)

i
∂

∂t
χ(x, t) = (H− ǫ(t)M)χ(x, t) (10)

χ(x, T ) = A.

Building on these relations, the monotonic algorithms pre-
scribe a particular order to iterate in these coupled equations
by constructing, at the iteration stepk → k + 1, a field
ǫk+1(t) with the important property

J(ǫk+1) ≤ J(ǫk), (11)

hence the name ofmonotonic algorithm. A simple example
of such algorithm is (see [22], [23] for additional details):

i
∂

∂t
ρk+1(x, t) = (H− ǫk+1(t)M) ρk+1(x, t) (12)

ρk+1(x, t = 0) = ρ0(x)

ǫk+1(t) = −
1

α
Re〈〈χk,

Mρk+1

i
〉〉(t) (13)

i
∂

∂t
χk+1(x, t) = (H− ǫk+1(t)M)χk+1(x, t)(14)

χk+1(x, T ) = A.

This algorithm is proved [23] to have the convenient property
in Eqn. (11). It is to be noted that this property is very
surprising in this highly nonlinear setting, especially when
considering that no second order information is directly
involved in the computations.

Note that (12) and (13) are to be solved simultaneously
because of the inter-dependence of the fieldǫk+1(t) and the
stateρk+1(t). An alternative procedure is to insert relation
(13) into equation (12) which will become a non-linear
Schr̈odinger equation to be propagated forward in time.

Remark 1: Embedded into the writing of the scheme,
at the convergence, the satisfaction of the critical point
equations is ensured. See also [24] for further considerations
on the convergence. Note that this desirable property is not
always guaranteed for tracking.

C. Forward cost functional

Note that the cost functional of equation (6) has exactly
the same minima and critical points as

Jdist(ǫ) =

∫ T

0

αǫ2(t)dt+ ‖A− ρ(T )‖〉〉
2
, (15)

which measures the distance of the final densityρ(x, T ) to
the target operatorA. This conclusion is true due to the norm
conservation properties of the Schrödinger equation which
allows to writeJdist = J +‖A‖〉〉 +‖ρ(T )‖〉〉 = J +‖A‖〉〉 +
‖ρ0‖〉〉 and thus to conclude thatJ andJdist only differ by
a constant.

The optimal control strategy of section II-B operates on a
cost functional defined at final timeT . As such, during the



evolution at timet < T , this value is not yet accessible
for immediate feedback into the optimization procedure.
However, with a field computed up tot < T a reasonable
alternative is to use a candidateǫref on [t, T ] to compute
the performance index at final timeT . An appealing choice
for ǫref is the field obtained at a previous iteration. We are
thus lead to introduce for a controlǫ known on [0, t] and a
reference fieldǫref defined on[0, T ] the field

ǫ(s) =

{
ǫ(s) for 0 ≤ s ≤ t

ǫref (s) for t ≤ s ≤ T.
(16)

This field is the best available candidate at timet < T . Its
performance indexJdist(ǫ) is

Jdist(ǫ) =

∫ t

0

αǫ2(t)dt+ ‖A− ρǫ(T )‖〉〉
2
, (17)

whereρǫ(T ) is the state at timeT of the system

i
∂

∂t
ρǫ(x, t) = (H− ǫ(t)M) ρǫ(x, t) (18)

ρǫ(x, t = 0) = ρ0(x),

A property with important practical implications on the
efficient computation ofJdist(ǫ) is given in the following

Proposition 1: Define theforward cost functional for the
control ǫ and reference fieldǫref as

Jfwd(ǫ, t; ǫref ) =

∫ t

0

αǫ2(t)dt (19)

+

∫ T

t

αǫref
2(t)dt+ ‖ρref (t) − ρ(t)‖〉〉

2
. (20)

whereρ evolves on[0, t] as in (2) andρref is the inverse
propagation fromA with field ǫref :

i
∂

∂t
ρref (x, t) = (H− ǫref (t)M) ρref (x, t) (21)

ρref (x, t = T ) = A.

ThenJfwd(ǫ, t; ǫref ) = Jdist(ǫ).
Proof The first two terms inJfwd(ǫ, t; ǫref ) are preciselly
the first term ofJdist(ǫ). To compute the second term in
Jdist(ǫ), ρ is to be evolved fromρ0 with the field ǫ on
[0, T ] to obtain ρ(T ). But, sinceρref and ρ evolve with
the same field on the interval[t, T ], their distance will be
constant throughout evolution and thus‖A− ρ(T )‖〉〉

2
=

‖ρref (T ) − ρ(T )‖〉〉
2

= ‖ρref (t) − ρ(t)‖〉〉
2. Thus we con-

clude thatJdist(ǫ) = Jfwd(ǫ, t; ǫref ).
Remark 2: As the adjoint is available during the iterations

of the monotonic algorithms, the above property can be used
to monitor the evolution of the cost functional between two
successive iterations. For instance this can help revealing
which part of the evolution contributes more to the optimiza-
tion and relate thus to local in time mechanisms of control.

D. Monotonic algorithms as local tracking procedures

The result above gives, at any intermediary timet < T
the value that the cost functionalJfwd(ǫ, t; ǫref ) will take at
timeT if the optimization is stopped at the instantt ≤ T (and
the field is put to beǫref on [t, T ]). Note that the value of
Jfwd(ǫ, t; ǫref ) is readily computed at any timet as soon as
the inverse propagation (21) is computed once. Armed with
this tool, optimization need not wait till the final timeT but
can instead already operate at the current timet using local
tracking procedures to optimize the valueJfwd(ǫ, t; ǫref ).
We are now in position to claim the following

Theorem 1: The monotonic algorithm (12)-(14) is a lo-
cal tracking procedure for the forward cost functional
Jfwd(ǫk+1, t; ǫref = ǫk) at any time t in the sense that
Jfwd(ǫk+1, t; ǫk) is a monotonically decreasing function of
t on the interval[0, T ].
Proof Note thatǫk = ǫref imply χk(t) = ρref (t). Let us
compute the time derivative ofJfwd(ǫk+1, t; ǫk):

d

dt
Jfwd(ǫk+1, t; ǫk) = αǫ2k+1(t) − αǫ2k(t)

−2
d

dt
Re〈〈χk(t), ρk+1(t)〉〉

= αǫ2k+1(t) − αǫ2k(t)

−2Re〈〈
d

dt
χk(t), ρk+1(t)〉〉 − 2Re〈〈χk(t),

d

dt
ρk+1(t)〉〉

= αǫ2k+1(t) − αǫ2k(t)

−2Re〈〈
(H− ǫk(t)M)χk(t)

i
, ρk+1(t)〉〉

−2Re〈〈χk(t),
(H− ǫk+1(t)M) ρk+1(t)

i
〉〉

= αǫ2k+1(t) − αǫ2k(t) + 2Re〈〈
ǫk(t)Mχk(t)

i
, ρk+1(t)〉〉

+2Re〈〈χk(t),
ǫk+1(t)Mρk+1(t)

i
〉〉

= αǫ2k+1(t) − αǫ2k(t) + 2ǫk(t)αǫk+1(t)

−2ǫk+1(t)αǫk+1(t) = −α [ǫk+1(t) − ǫk(t)]
2
. (22)

ThusJfwd(ǫk+1, t; ǫk) is a decreasing function oft.
Remark 3: The monotonicity follows as a corollary

of the previous property ofJfwd, since Jdist(ǫk) =
Jfwd(ǫk+1, 0; ǫk) ≥ Jfwd(ǫk+1, T ; ǫk) = Jdist(ǫk+1).

The result above may also suggest the following inter-
pretation: for any candidate solutionǫk two trajectories
can be computed:ρk(t) that starts from the correct initial
condition ρ0 but whose final stateρk(T ) may not yet be
satisfactory close to the target, and the adjoint stateχk(t)
that propagates backward from the targetA but may not
reach the correct initial stateρ0; the idea is to make the
trajectories coincide by computingǫk+1 such thatρk+1(t)
approaches monotonicallyχk(t). In the approximation where
the fluence penalty

∫ T

0
αǫ2(t) is negligible before the con-

trol part ‖χk(t) − ρk+1(t)‖〉〉 the distance between the two
trajectories will decrease until its final value at timeT . The
situation is schematically depicted in Fig. 1.
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Fig. 1. Schematic illustration of the convergence of the monotonic algorithms for negligible fluence. The evolving stateρ k+1 is approaching monotonically
the reference trajectoryχk. At the next iterationχk+1 will remain at a constant distance fromρk+1 because both use the same fi eldǫk+1. This shrinking
distance between the two trajectories ensure the progression of the cost functional toward optimal values. This observation is currently used in the context
of effi cient parallelization of the numerical resolution of quantum control problems [25]. In the general case, the decreasing character of the distance
between the curves is weighted by the fi eld fluence and the optimal couple of trajectories will be a tube whose nonzero width is related to the driving
laser fi eld fluence.

III. WAVEFUNCTION FORMULATION

Similar considerations as introduced above apply to the
wavefunction formulation. Note however that, even if the
density matrix is more general than wavefunction, the asso-
ciated observables are linear. For the wavefunction however,
the observables enter into the cost functional as quadratic
terms, which will induce some adaptations in the formalism.
Let us consider the driving evolution equation:

i
∂

∂t
ψ(t, x) = (H0 − ǫ(t)µ)ψ(t, x) (23)

ψ(t0, x) = ψ0(x).

For a given observableA, its averaged measured value is
〈ψ|A|ψ〉. With this definition the tracking formulation can
be written as above and the same considerations apply.

A. Monotonic algorithms

Let us define the cost functional

Jw(ǫ) =

∫ T

0

αǫ2(t)dt− 〈ψ(T )|A|ψ(T )〉, (24)

We introduce as before the adjoint state (Lagrange multiplier)
χ(x, t) and give one example of monotonic algorithm [18]:

i
∂

∂t
ψk+1(x, t) = (H0 − ǫk+1(t)µ)ψk+1(x, t) (25)

ψk+1(x, t = 0) = ψ0(x)

ǫk+1(t) = −
1

α
Re〈χk,

µψk+1

i
〉(t) (26)

i
∂

∂t
χk+1(x, t) = (H0 − ǫk+1(t)µ)χk+1(x, t) (27)

χk+1(x, T ) = Aψk+1(T ).

We note that the nonlinearity in the observable induces a
dependence of the adjoint state on the final stateψk+1(T ).

B. Forward cost functional and equivalence

We introduce, for a reference fieldǫref on [0, T ] and a
field ǫ(s) defined up to an intermediary timet < T the
“candidate” solutionǫ as in (16). It is possible to consider

Jw(ǫ) =

∫ T

0

αǫ2(t)dt− 〈ψǫ(T )|A|ψǫ(T )〉 (28)

with ψǫ evolving fromψ0 with field ǫ. However, due to the
nonlinear nature of the observable, no efficient procedure is
available to computeJw(ǫ) at time t (other than explicitly
computingψǫ or working with the backward propagation
of the observableA with the field ǫref ). For this reason,
monotonic algorithms use the following inequality for a
positive definite observableA ≥ 0

−〈a|A|a〉 ≤ −〈b|A|b〉 − 2Re〈a− b|A|b〉, (29)



(the difference of two quantities being−〈a− b|A|a− b〉 ≤
0). In particular, if we denote byψǫref

the state evolving
from ψ0 with field ǫref , one has

Jw(ǫ) ≤

∫ T

0

αǫ2(t)dt− 〈ψǫref
(T )|A|ψǫref

(T )〉

+2Re〈ψǫref
(T ) − ψǫ(T )|A|ψǫref

(T )〉 (30)

It is therefore possible to define the(wavefunction ) forward
cost functional

Jw
fwd(ǫ, t; ǫref ) =

∫ T

0

αǫ2(t)dt− 〈ψǫref
(T )|A|ψǫref

(T )〉

+2Re〈ψǫref
(T ) − ψǫ(T )|A|ψǫref

(T )〉 (31)

which can also be written

Jw
fwd(ǫ, t; ǫref ) = Jw(ǫref ) +

∫ t

0

α
{
ǫ2(t) − ǫref

2(t)
}
dt

+2Re〈ψǫref
(T ) − ψǫ(T )|A|ψǫref

(T )〉. (32)

To evaluateJw
fwd it is convenient to note that

Jw
fwd(ǫ, t; ǫref ) = Jw(ǫref ) +

∫ t

0

α
{
ǫ2(t) − ǫref

2(t)
}
dt

+2Re〈ψǫ(t) − ψǫref
(t), χǫref

(t)〉. (33)

whereχǫref
(t) is the adjoint state at timet given by

i
∂

∂t
χǫref

(x, t) = (H0 − ǫref (t)µ)χǫref
(x, t) (34)

χǫref
(x, T ) = Aψǫref

(T ).

This formula allows an efficient computation of
Jw

fwd(ǫ, t; ǫref ). To summarize, the cost functionalJw(ǫ)
that cannot be computed explicitly is exploited through its
upper boundJw

fwd(ǫ, t; ǫref ). The precise property ofJw
fwd

is given in the following

Theorem 2: The monotonic algorithm (25)-(27) is a lo-
cal tracking procedure for the forward cost functional
Jw

fwd(ǫk+1, t; ǫref = ǫk) at any time t in the sense that
Jw

fwd(ǫk+1, t; ǫk) is a monotonically decreasing function of
t on the interval[0, T ].

Proof. As above, we evaluate the time derivative of
Jw

fwd(ǫk+1, t; ǫk).

d

dt
Jw

fwd(ǫk+1, t; ǫk) = αǫ2k+1(t) − αǫ2k(t)

+2
d

dt
Re〈ψk+1(t), χk(t)〉 = αǫ2k+1(t) − αǫ2k(t)

+2Re〈ψk+1(t),
d

dt
χk(t)〉 + 2Re〈

d

dt
ψk+1(t), χk(t)〉

= αǫ2k+1(t) − αǫ2k(t)

+2Re〈ψk+1(t),
(H0 − ǫk(t)µ)χk(t)

i
〉

+2Re〈
(H0 − ǫk+1(t)µ)ψk+1(t)

i
, χk(t)〉

= αǫ2k+1(t) − αǫ2k(t) + 2Re〈ψk+1(t),
ǫk(t)µχk(t)

i
〉

+2Re〈
ǫk+1(t)µψk+1(t)

i
, χk(t)〉

= αǫ2k+1(t) − αǫ2k(t) + 2ǫk(t)αǫk+1(t)

+2ǫk+1(t)αǫk+1(t) = −α [ǫk+1(t) − ǫk(t)]
2
. (35)

ThusJw
fwd(ǫk+1, t; ǫk) is a decreasing function oft.

Remark 4: Note that the inequality Jw(ǫ) ≤
Jw

fwd(ǫ, t; ǫref ) becomes equality in the limit whereǫ
approachesǫref which will happen at the convergence of
the monotonic algorithms asǫk+1 − ǫk → 0.

Remark 5: As above, the monotonicity of the procedure
is a simple consequence of the decrease ofJw

fwd(ǫk+1, t; ǫk):
Jw(ǫk) = Jw

fwd(ǫk+1, 0; ǫk) ≥ Jw
fwd(ǫk+1, T ; ǫk) ≥

Jw(ǫk+1).

IV. CONCLUSIONS

Through the introduction of a “forward cost functional”
this paper demonstrates that the monotonic algorithms are
closely related to the class of tracking procedures. As such,
the monotonicity property of the former algorithms appears
as a natural consequence of the increasing/decreasing proper-
ties of the tracking index. The monotonic schemes are shown
to construct at all intermediary times the cost functional value
of a current “ best field” candidate and use this information
in the open loop to optimize the field further. For the specific
case of the density matrix, this can also be interpreted using
two trajectories that start/end at the correct states and whose
distance is continuously reduced (depending also on the laser
fluence) during the optimization process.
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