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Equivalence between local tracking procedures and monotonic
algorithms in quantum control

Gabriel Turinicigabriel .turinici@nria.fr

Abstract— The computer simulations of quantum control use The outline of the paper is the following: for the case
several approaches including local tracking procedures that of the density matrix we present the definition of tracking
prescribe the controlling field through the requirement that procedures in section 1I-A and one example of monotonic
a certain functional be decreasing and monotonic algorithms . . . . .
that solve the Euler-Lagrange equations for a predefined cost algorithm in section II-B. '!'hen, vye explain the relation
functional. While different in implementation, recent works [1] ~ between the two classes in sections 1I-C and II-D. The
hinted that these two classes share some common characteris- corresponding analysis for the wavefunction formulation is

tics. We propose in this contribution a rigorous ground for such  given in section Ill. Concluding discussions and remarks are
conclusions and discuss the precise formulation that allows to the object of section IV

construct this equivalence.
II. DENSITY MATRIX FORMULATION

Consider a quantum system with internal dynamics de-
Manipulation of quantum phenomena was already demoseribed by the Hamiltonianf,. Its interaction with an
strated both in closed-loop laboratory experiments [2], [3lexternal (e.g., laser) field is modeled by introducing the

[4], [5], [6] and in theoretical studies on the controllability dipole moment operatge and the field intensity(¢). If the

of quantum systems [7], [8], [9], [10]. system is represented in the density matrix formulation with
Accompanying these advances, the computer simulatiofsitial state p, its dynamics will obey the time dependent

have the advantage to overcome experimental restrictions afidhidinger equation:

have access to the whole dynamics allowing further insight

I. INTRODUCTION

and also providing hints in devising future experiments. .0 _ig 1
Many algorithms have been proposed to solve the ensuing i5p(,t) = [Ho — e(t)p, pla, 1)) @
optimization problem among which two distinct classes plx,t =0) = po(x).

can be identified. The first one contains the local tracking|ere we used the conventidn 1

methods [11], [12], [13], [14], [15], [1] that propose explicit : L . i
formulae of the driving field in an open-loop dependence We introduce the Liouville space representation, by defin-

— T i
on the evolving state. The formulae are obtained from th'é'g”;he sca?r&%al,nb)i . dTrf(Cf[hw anrir:]h(?[ atlsrsougtevd
requirement to decrease a certain functional defined at ea&% de|f|ii1 ”e»th_e N gésg% aﬁ de/?/l tﬁat a?:t(z)(:w derl:s? Orzaatlrigese,
time instant and related to the “distance” to the target or b P ty

demanding strict adherence to a predefined observable tlgé,- Hp = [Ho, pl, Mp = [p, p]. Equation (1) becomes

jectory. The second class are the monotonic algorithms [16], 0 (1 _ 5
[17], [18] that solve the Euler-Lagrange equations associated Zc‘)t'o(x’t) (H = e@M) plz.1) 2)
to the optimization of a cost functional defined at a final time p(z,t =0) = po().

T. The two clgsses cgn glso be com.bined as in [1]. ) The control goal can be expressed through the intro-
Although different in implementation, these algorithmsy tion of an observable operatof by the requirement
are shown below to be related in the sense that moNfsa the quantity(A(t)) — Re((4,p)) be maximized Ge
tonic scheme_s are tracking procedures for some Spedﬂ%noting the real part of a complex number). This formu-
performance indexes. In the context of the density matrition can be further refined as in [15] where an index

formulation, this index is defined as the value of the cog}(t) — y({AL (1)), ..., (A (1)) aggregating several observ-
functional (at the final timeT’) evaluated for the “best ,pias is considered or even further by defining) =

candidate” field at time < 7. This candidate field is made y(ft ¢(s)ds, (A1 (1)), ... (Ax (£))) where we introduce ex-
from the current field up to time that is prolonged with a v . i
given, reference field from to 7' obtained at the previous
iteration. Thisforward cost functional is decreased at each
time instant. For the case of the wavefunction, due to th®. Tracking algorithm

nonlinear nature of the target formulation, an upper bound Consider the simple situatiay(t) = y( 562(5)5157 (A(t)))
is used to define the forward cost functional. where only one observable is considered .= 1 above.

o _ _ We obtain
G. Turinici is with Inria Rocquencourt, Domaine de Voluceau, Rocquen-
court B.P. 105, 78153 Le Chesnay Cedex, France and CERMICS-ENPCHy(t) A (
Champs sur Marne, 77455 Marne la \éadl Cedex, France dr Dyy - e(t) + Day - Re((A,

plicitly the dependence on the laser fluence. For notational
convenience we will denoté(t) = [ €2(s)ds.

H — (M) p(z,t)

1
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where D; is the partial derivative with respect to theth  The critical point equations are thus obtained:
variable. This can be further expressed as

i) = (H— M) p(a)  (8)
YO _ ).+ coF@) @) plast =0) = (o)
p —
It is seen that, except for the points wherganishes (which 2ac(t) + 2Re{x, T»(t) =0 ®)

will be called singularities and will be treated separately) iaﬁx(gg’t) = (H —e(t)M) x(z, 1) (10)

for any desired trajectory with y(0) = y(0), the condition t
y(t) = y(t) uniquely determines the field¢) by the formula x(z,T) = A.
d(t) Building on these relations, the monotonic algorithms pre-
(t) = o — [(F(t),p) (4) Scribe a particular order to iterate in these coupled equations
g(F(t),p) ’ by constructing, at the iteration stdp — k + 1, a field
ex+1(t) with the important property
From dF/dt = €(t) one obtains that (4) is in fact a ODE
on F of the form J(et1) < J(ex), a1
hence the name afionotonic algorithm. A simple example
dF/dt = Y(F,p) (5)  of such algorithm is (see [22], [23] for additional details):
that is to be solved jointly with (2) in order to ensure i%pk+1(x,t) = (H — exg+1(O)M) pr1(z,t) (12)

adherence to the prescribed trajectgry

. ) ) . pr+1(z,t = 0) = po(z)
Same considerations apply if only weaker properties are

required, typically the increase/decreasey(f) which can ert1(t) = —éRe«Xm Mpz.kﬂ N (t) (13)
be enforced through the conditiaty/dt > 0 (< 0). P

The difficulty in this approach is to find a suitable refer- i Xkt1(2,) = (H = €1 (M) X1 (2, 1) (14)
ence tracking trajectory that does not give rise to singular Yei1(z, T) = A.

points of the system (3), (5) i.e., whergF,p) = 0.

In general singular points cannot be avoided a priori andhis algorithm is proved [23] to have the convenient property
techniques were designed to treat such situations: see [18]Ean. (11). It is to be noted that this property is very
for designs that locally alter the trajectory to circumvent th&urprising in this highly nonlinear setting, especially when
singular points and [19], [1] for a study on the stoppingconsidering that no second order information is directly

points and procedures to improve their optimality. involved in the computations. _
Note that (12) and (13) are to be solved simultaneously

because of the inter-dependence of the figld, (¢) and the
statepi+1(t). An alternative procedure is to insert relation
(13) into equation (12) which will become a non-linear
gchbdinger equation to be propagated forward in time.
Remark 1. Embedded into the writing of the scheme,

B. Monotonic algorithms for optimal control

In an approach different from tracking, monotonically
convergent algorithms pioneered in [20], [21] and extende
in [18] in the wavefunction representation, are used in the . . " ;
context of the density matrix operator as in [22], [23]. Suctt th? convergence, the satisfaction of the crltlgal p‘?‘”t
procedures are included in the framework of the optima?quat'ons is ensured. See also [24] for further conS|der§1t|ons
control that introduces a cost functional (defined at a findf" the convergence. Note that this desirable property is not

time T') to be optimized. One such example of functional is"’ll\’\’a‘yS guaranteed for tracking.
C. Forward cost functional

T
J(e) = / ae? (t)dt — 2Re((A, p(T))). (6) Note that the cost functional of equation (6) has exactly
0 the same minima and critical points as

where « is a positive (constant or time varying) weight. T 5 9
Then, the critical points off (¢) are sought after under the Jaist (€) = /0 ac”(t)dt + [ A = p(T)ly",  (15)
constraint of satisfying (2). Because of the constraint, a

Lagrange multiplier, denoteg(x, t) is introduced in the cost \t';:h'ih mfasure?QTeTﬂ!stancel of'the_ fltnal ddenp ,Ety’ta) to
functional that now reads e target operatad. This conclusion is true due to the norm

conservation properties of the Soldinger equation which
T allows to write Jy;s; = J + [|Ally +[[p(T)lly = J +[[Ally +
Jo(e) = / a€®(t)dt — 2Re((A, p(T))) llpolly and thus to conclude that and Ju;. only differ by
o a constant.
+9Re {/ {(x, 9p _ (H— e(t)M)p>>dt} @ The opt_imal conFroI stratggy o_f section II-B operates on a
0 ot [ cost functional defined at final tim€. As such, during the



evolution at timet < 7T, this value is not yet accessible D. Monatonic algorithms as local tracking procedures
for immediate feedback into the optimization procedure.

However, with a field computed up to< T a reasonable
alternative is to use a candidatg.; on [t,T] to compute
the performance index at final tinie. An appealing choice

The result above gives, at any intermediary time: T’
the value that the cost functiond}.,q(e, t; €, r) Will take at
time T if the optimization is stopped at the instarnt 7" (and

for €. is the field obtained at a previous iteration. We ardhe field is put to be,.; on [¢,7]). Note that the value of

thus lead to introduce for a contrelknown on[0,¢] and a
reference fielc,.; defined on0, 7" the field

€(s) = 6(8)
*) {6re,f(5)

This field is the best available candidate at time T Its
performance index/ ;. (€) is

for0<s<t

16
fort<s<T. (16)

t
Jaet® = [ g (t)d+ A= pe(D])%, @7
0
where pe(T) is the state at tim&" of the system

# e, 1) = (H ~EOM) pela 1)

pe(x,t = 0) = po(x),

(18)

A property with important practical implications on the

efficient computation of/;;(€) is given in the following
Proposition 1: Define theforward cost functional for the
control e and reference field,..; as

t
Jrwd (€, t; e,.ef)z/ ae’(t)dt (29)
0

T 2 2
" / e (Dt + [pres(®) — p(B)]ly%. (20)

where p evolves on0,t] as in (2) andp,.; is the inverse

propagation fromA with field e, s:

0
iapref(mvt) = (H - Eref(t)M) Pref(xvt) (21)

pref(z,t=T) = A.

Then Jrwa(e, t; €rer) = Jaist (€).

Jrwd(€, t; €rep) is readily computed at any timeas soon as
the inverse propagation (21) is computed once. Armed with
this tool, optimization need not wait till the final tinié but
can instead already operate at the current #msing local
tracking procedures to optimize the valug,q(e, t; €rcr).
We are now in position to claim the following

Theorem 1: The monotonic algorithm (12)-(14) is a lo-
cal tracking procedure for the forward cost functional
Jrwd(€rt1,t€rey = €;) at any timet in the sense that
Jrwa(€r+1,t; €x) is a monotonically decreasing function of
t on the intervall0, 7.
Proof Note thate, = €.c¢ iMply xi(t) = pref(t). Let us
compute the time derivative of t,q(€x+1,; €x):

d
— Jrwa(€rt, i ex) = aepy (1) — aei(t)

dt J
—2£R6<<Xk(l‘)7 Pr+1(t))
= a6 (t) — aeg(t)

2R (1), i1 (1)) — 2Re((xu 1), i (1)
= O‘GiJrl(t) - aei(t)
72R€<< (H - Ek(th) Xk(t)

s Pe+1(1)))
(H - 6k+1(f?M) Pr+1(t)

= ey (1) — aeg(t) + 2Re(

T2Re (i (1), Lt DM ()

= acj () — ae(t) + 2ex (e 41 (1)
—2ep 1 (taeria(t) = —afena () — ex(t)]”

—2Re <<Xk‘ (t)a

)

wOMxrl®) o)

(22)

Thus Jfwa(er+1,t; €x) is @ decreasing function af
Remark 3: The monotonicity follows as a corollary
of the previous property ofJs,q, since Jusi(ex) =

Proof The first two terms inJy,q(e,t; €,.5) are preciselly  Jypq(ert1,0;€x) > Jrwal€nt1, T €r) = Jaist(€rt1)-

the first term of Jy;.:(€). To compute the second term in

Jaist(€), p is to be evolved fromp, with the field € on
[0,T] to obtain p(T"). But, sincep,.; and p evolve with

the same field on the intervad, T, their distance will be

constant throughout evolution and th||4$17p(T)H)>2 =

The result above may also suggest the following inter-
pretation: for any candidate solutios, two trajectories
can be computedp,(t) that starts from the correct initial
condition p, but whose final state(7") may not yet be
satisfactory close to the target, and the adjoint sigt€)
that propagates backward from the targetbut may not

prer(T) = p(T)lly* = llpres(t) = p(t)]y*. Thus we con-
clude thatJy;s(€) = Jrwale, t; €rer). reach the correct initial statgy; the idea is to make the
Remark 2: As the adjoint is available during the iterationstrajectories coincide by computing.,; such thatp,(t)
of the monotonic algorithms, the above property can be usegproaches monotonically. (t). In the approximation where
to monitor the evolution of the cost functional between twdhe fluence penaltnyT ae?(t) is negligible before the con-
successive iterations. For instance this can help revealit®l part || x.(t) — pr+1(2)||y the distance between the two
which part of the evolution contributes more to the optimizatrajectories will decrease until its final value at tirfie The
tion and relate thus to local in time mechanisms of controkituation is schematically depicted in Fig. 1.



time

Fig. 1. Schematic illustration of the convergence of the monotonic algorithms for negligilvlesiliehe evolving state 5 ; is approaching monotonically
the reference trajectoryy,. At the next iterationy 1 will remain at a constant distance from..; because both use the same figld;. This shrinking
distance between the two trajectories ensure the progression of the cost functiomell dptimal values. This observation is currently used in the context
of efficient parallelization of the numerical resolution of quantum control problems [25]. In theajerese, the decreasing character of the distance
between the curves is weighted by the field fuence and the optimal couple of traatdtibe a tube whose nonzero width is related to the driving
laser field fuence.

I1l. WAVEFUNCTION FORMULATION We introduce as before the adjoint state (Lagrange multiplier)
x(z,t) and give one example of monotonic algorithm [18]:

Similar considerations as introduced above apply to the iawkﬁ(x,t) = (Hop — €x+1(t)p) Yp11(z, t) (25)
wavefunction formulation. Note however that, even if the Vo1 (3,1 = 0) = o (x)
density matrix is more general than wavefunction, the asso- AHIVE =) =0

ciated observables are linear. For the wavefunction however, exr1(t) = 7lRe<Xk, %ﬂt) (26)
the observables enter into the cost functional as quadratic P @ v
terms, which will induce some adaptations in the formalism. iamﬂ(m, t) = (Ho — epp1(t)p) xpr1(z, t) (27)

Let us consider the driving evolution equation:
g q Xk+1 (2, T) = A1 (T).

We note that the nonlinearity in the observable induces a

i%z/}(t,x) = (Ho — e(t)pu) ¥(t, ) (23) dependence of the adjoint state on the final state; (T').
¥ (to, x) = (). B. Forward cost functional and equivalence

We introduce, for a reference field.; on [0,T] and a
field e(s) defined up to an intermediary time < T the

For a given observabld, its averaged measured value is‘candidate” solutiore as in (16). It is possible to consider
(Y| Aly). With this definition the tracking formulation can

T
be written as above and the same considerations apply. J(e) = / a2 (t)dt — (Ye(T)| Aloe(T)) (28)
0
with 1z evolving from1, with field €. However, due to the
nonlinear nature of the observable, no efficient procedure is

A. Monotonic algorithms available to compute/*(€) at timet (other than explicitly
computing ¢z or working with the backward propagation
Let us define the cost functional of the observabled with the field ¢,.¢). For this reason,

monotonic algorithms use the following inequality for a
positive definite observabld > 0

T
J(e) =/O ae’(t)dt — (U(T)|Al(T)),  (24) —(a|Ala) < —(b|AJb) — 2Re(a — bA]D),  (29)



(the difference of two quantities being(a — b|Ala — b) < Proof. As above, we evaluate the time derivative of
0). In particular, if we denote by)., . the state evolving J}“wd(ekﬂ,t;ek).
from 1), with field ¢,.¢, one has

d
T alerin tier) = ac () - ach(t)

dt
d
e T +2— Re(tp 1 (1), xk(t)) = e, | (t) — aer(t)
7@ < [ af Ot = (i, (DA, (D) dg TR AT e B
+2Re (i, (T) — $=(T)| Al (T)) (30) +2Re(Yy1(t), %Xk(t» + 236<%¢k+1(t)7 Xk (1))
= a6y, (t) — acg(t)
(Ho — ex(t)p) x (1)
It is therefore possible to define tif@avefunction ) forward +2Re (e (1), kz‘ =)
cost functional 2Re( (Ho — 6k+1(?)u) Vi1 (t) (®)

7

— a},, (t) — acl(t) + 2Re(Wr i1 (1), M>

J}l;;d(@ ti€ref) = /0 ae’ (t)dt — </(/)5ref (T)|A|1/Jemf (1)) F2Rel 6k+1(t),t:1/1k+1(t) (D)

2Re(pe,.,(T) — Ye(T)| A, ., (T 31 , ,
+2Re(Ye,. (T) — Ye(T)| Altbe,., (T)) 31) 0l (t) — al(t) + 2ex(t)acni (1)
+2e 41 (t)aer i1 (t) = —afersa(t) — ex(t)]” . (35)

Thus J}”,wd(ekﬂ,t; €x) is a decreasing function af
Remark 4: Note that the inequality J*(e) <
. Jfwal€ tierep) becomes equality in the limit where
JEale tieres) = T (€rey) +/ a{g(t) — ErefQ(t)}dt approachezr.ef whic_h will happen at the convergence of
0 the monotonic algorithms as..1 — e — 0.

which can also be written

+2Re(Ye,.,(T) — Ye(T)|Altpe,., (1)) (32) Remark 5: As above, the monotonicity of the procedure
is a simple consequence of the decreaséggjti(ek+1, t;€ex):
Jer) = Jfalent1,05e0) = T (61, Tier) =
To evaluate/,, it is convenient to note that I (€rt1)-

IV. CONCLUSIONS

t Through the introduction of a “forward cost functional”
JFwal€ i €rep) = I (€rey) +/ a{e(t) —ees’(t)} dt  this paper demonstrates that the monotonic algorithms are
+2Re(tbe(t) — e, (1), Xero, ( )0>. (33) tcrl1osely relate.d. to the class of tracking procedures. As such,
e monotonicity property of the former algorithms appears
as a natural consequence of the increasing/decreasing proper-
) o ) ) ties of the tracking index. The monotonic schemes are shown
wherex.,, () is the adjoint state at timegiven by to construct at all intermediary times the cost functional value
of a current “ best field” candidate and use this information
in the open loop to optimize the field further. For the specific
0 case of the density matrix, this can also be interpreted usin
Vot Xeres (2,8) = (Ho = €res (D1t) Xe,os (1) (34) two trajectories thzt start/end at the correct stateg and whosge
Xepe (2, T) = Athe,,(T). distance is continuously reduced (depending also on the laser
fluence) during the optimization process.

This formula allows an efficient computation of V. ACKNOWLEDGMENTS
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