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Deterministic Global Attitude Estimation

Taeyoung Lee*T, Amit Sanyal, Melvin Leok*, and N. Harris McClamroch’

Abstract— A deterministic attitude estimation problem for
a rigid body in an attitude dependent potential field with
bounded measurement errors is studied. An attitude estimation
scheme that does not use generalized coordinate representations
of the attitude is presented here. Assuming that the initial
attitude, angular velocity and measurement noise lie within
given ellipsoidal bounds, an uncertainty ellipsoid that bounds
the attitude and the angular velocity of the rigid body is
obtained. The center of the uncertainty ellipsoid provides point
estimates, and its size gives the accuracy of the estimates. The
point estimates and the uncertainty ellipsoids are propagated
using a Lie group variational integrator and its linearization,
respectively. The estimation scheme is optimal in the sense that
the attitude estimation error and the size of the uncertainty
ellipsoid is minimized at each measurement instant, and it is
global since the attitude is represented by a rotation matrix.

I. INTRODUCTION

Attitude estimation is often a prerequisite for controlling
aerospace and underwater vehicles, mobile robots, and other
mechanical systems moving in space. The attitude determi-
nation problem for a rigid body from vector measurements
was first posed in [1]. A sample of the literature in attitude
estimation can be found in [2], [3], [4].

Most existing attitude estimation schemes use generalized
coordinates to represent the attitude. As is well known,
minimal coordinate representations of the rotation group, like
Euler angles, Rodrigues parameters, and modified Rodrigues
parameters, lead to geometric or kinematic singularities.
Non-minimal coordinate representations, like quaternions
used in the quaternion estimation (QUEST) algorithm and
its several variants ([3], [5]), have their own associated
problems. Besides the extra unit norm constraint one needs
to impose on the quaternion, the quaternion representation,
which is diffeomorphic to SU(2), double covers SO(3). As
such, it has an inevitable ambiguity in expressing the attitude.

A stochastic state estimator requires probabilistic models
for the state uncertainty and the noise. However, statistical
properties of the uncertainty and the noise are often not
available. We usually make statistical assumptions on dis-
turbance and noise in order to make the estimation problem
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mathematically tractable. In many practical situations such
idealized assumptions are not appropriate, and this may cause
poor estimation performance [6].

An alternative deterministic approach is to specify bounds
on the uncertainty and the measurement noise without an
assumption on their distribution. Noise bounds are available
in many cases, and deterministic estimation is robust to the
noise distribution. An efficient but flexible way to describe
the bounds is using ellipsoidal sets, referred to as uncertainty
ellipsoids. The idea of the deterministic estimation process
is based on set theory results developed in [7]; optimal
deterministic estimation problems are studied in [8] and [9]
using uncertainty ellipsoids.

In this paper, we study attitude estimation problems for
the uncontrolled dynamics of a rigid body in an attitude-
dependent potential field using uncertainty ellipsoids. The
estimation scheme we present has the following important
features: (1) the attitude is globally represented by a rotation
matrix without using coordinates, (2) the deterministic esti-
mator is distinguished from a Kalman or extended Kalman
filter, (3) the measurement errors are assumed to be bounded
but there is no restriction on their distribution, and (4) the
estimates are optimal in the sense that the size of uncertainty
is minimized at each estimation step.

This paper is organized as follows. The attitude deter-
mination problem from vector observations is introduced in
Section II. The attitude estimation problem is formulated in
Section III, and the attitude estimation scheme with angular
velocity measurements is developed in Section IV. Numerical
examples are presented in Section V.

II. ATTITUDE DETERMINATION FROM VECTOR
OBSERVATIONS

Attitude of a rigid body is defined as the orientation of
a body fixed frame with respect to a reference frame. It is
represented by a rotation matrix that is a 3 x 3 orthogonal
matrix with determinant 1. Rotation matrices have a group
structure denoted by SO(3). The group action of SO(3) on
R3 transforms a vector represented in the body frame into
the reference frame. In the attitude estimation problem, we
measure directions in the body frame to fixed points with
known directions in the reference frame. The directions in
the body frame are transformed into the known reference
directions by pre-multiplying by the rotation matrix defining
the attitude of the rigid body. The rotation matrix can be
estimated by minimizing an error between the transformed
measured directions and the known reference directions.

We denote the ith known direction vector in the reference
frame as e’ € S?, and the corresponding vector represented
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in the body frame as b* € S2. These direction vectors are
normalized to have unit lengths. The ¢’ and b° vectors are
related by a rotation matrix R € SO(3) that defines the atti-
tude of the rigid body; ¢! = Rb, for all i € {1,2,--- ,m},
where m is the number of measurements.

We assume that b’ is measured by sensors in the body
frame. Let the measured direction vector be b € S2, which
contains sensor errors, and denote the estimated rotation
matrix_by R € SO(3). The estimation error is given by
e — sz The attitude determination problem consists of
finding R € SO(3) such that the weighted 2 norm of those
errors is minimized.

mlnj = Zw, et — RbHT (e — RbY), (1)
i=1

subject to R € SO(3),

where B = [e!,-- ,e™] € R¥*™,
R3*™ and W = diag [w Lo 7”]
ing factor for each measurement

This problem is known as Wahba’s problem [1]. The
original solution of Wahba’s problem is given in [10], and
a solution expressed in terms of quaternions (QUEST) is
presented in [11]. We use the solution expressed in terms of
a rotation matrix without using generalized coordinates [12].
A necessary and sufficient condition for optimality of (1) is
given by

B = [81 B’"} S
€R

R™*™ is a weight-

R=SLeSO®3), S=5">0 2)

where L = EWB”T € R3*3 is non-singular. The unique
solution of (2) is obtained by QR factorization of L = Q,Q);

= (%M(@QZ)-@?) L 3)

where Q, € SO(3), @, € R3*3 is an upper triangular
matrix, and the symmetric positive definite (principal) square
root is used. Equation (3) is the unique solution of Wahba’s
problem [12].

III. ATTITUDE ESTIMATION PROBLEM FORMULATION
A. State bounding estimation

We use deterministic state bounding estimation using el-
lipsoidal sets, referred to as uncertainty ellipsoids, to describe
state uncertainty and measurement noise. This deterministic
estimation procedure has steps similar to those in the Kalman
filter, and is illustrated in Fig. 1. The left figure shows time
evolution of an uncertainty ellipsoid, and the right figure
shows a cross section at a fixed measurement instant. At
the kth time step, the state is bounded by an uncertainty
ellipsoid centered at Zj. This initial ellipsoid is propagated
through time. Suppose that the state is measured next at the
(k+1)th time step, when the predicted uncertainty ellipsoid is
centered at i"£ ;- At this instant, the measurement uncertainty
ellipsoid is centered at 2", ;. The actual state then lies in the
intersection of the two ellipsoids. In the estimation process,
we find a new ellipsoid that contains this intersection, as
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(a) Propagation of uncertainty ellipsoid

(b) Filtering procedure

Fig. 1. Uncertainty ellipsoids

shown in the right figure. The center of the new ellipsoid,
T4 gives a point estimate of the state at time step k+1, and
the magnitude of the new uncertainty ellipsoid measures the
estimation accuracy. The deterministic estimates are optimal
in the sense that the sizes of the ellipsoids are minimized.

B. Equations of motion

We consider estimation of the attitude dynamics of a rigid
body in the presence of an attitude dependent potential,
U() SO(3) — R, R € SO(3). Systems that can
be so modeled include a free rigid body, spacecraft on a
circular orbit with gravity gradient effects [13], or a 3D
pendulum [14]. The continuous equations of motion are

JO+QxJQ=M, )
R = RS(Q), ©)

where J € R3*3 is the moment of inertia matrix of the rigid
body, 2 € R3 is the angular velocity of the body expressed
in the body fixed frame, and S(-) : R3 ~ s50(3) is a skew
mapping defined by S(z)y = z x y for all z,y € R3.
The vector M € R? is the moment due to the potential,

determined by S(M) = g—%TR RT g%, or more explicitly,
M =11 X Up, +72 X Upy + 73 X Upg, (6)

where r;,v,, € R1*3 are the ith row vectors of R and g%,

respectively.

General numerical integration methods like the popular
Runge-Kutta schemes, typically preserve neither first in-
tegrals nor the characteristics of the configuration space,
SO(3). In particular, the orthogonal structure of the rotation
matrices is not preserved numerically. It is often proposed to
parameterize (5) by Euler angles or quaternions instead of
integrating (5) directly. However, Euler angles yield only lo-
cal representations of the attitude and they have singularities.
Unit quaternions do not exhibit singularities, but they have
the manifold structure of the three sphere S3, and double
cover SO(3). Consequently, the unit quaternion representing
the attitude is inevitably ambiguous. In addition, general
numerical integration methods do not preserve the unit length
constraint. Therefore, quaternions have the same numerical
drift problem as rotation matrices.
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Lie group variational integrators preserve the group struc-
ture without the use of local charts, reprojection, or con-
straints, they are symplectic and momentum preserving, and
they exhibit good energy behavior for an exponentially long
time period. The following Lie group variational integrator
for the attitude dynamics of a rigid body is presented in [14]:

h
hS(JQu + 5 My) = Fida = JaFy | ©)
Ri1 = Ry Fy, (8)

h h
JQi1 = FL I + §F;€TMk + §Mk+17 9

where J; € R3*3 is a nonstandard moment of inertia matrix
defined by Jy = tr[J] Isx3 — J, and F}, € SO(3) is the
relative attitude over an integration step. The constant i € R
is the integration step size, and the subscript k& denotes the
kth integration step. This integrator yields a map (R, ) —
(Ri+1,+1) by solving (7) to obtain Fj, € SO(3) and
substituting it into (8) and (9) to obtain Ry41 and Q1.

It preserves the orthogonal structure of SO(3) because
the rotation matrix is updated by a product of two rotation
matrices in (8). Since this integrator is obtained from a
discrete variational principle, it is symplectic, momentum
preserving, and has good energy behavior, properties that
are characteristic of variational integrators.

C. Uncertainty Ellipsoid

An uncertainty ellipsoid in R™ is defined as

Epn (2, P) = {z cR"

(z—&)TP Yz —#) < 1} , (10)

where £ € R", and P € R™™ " is a symmetric positive
definite matrix. We call & the center of the uncertainty
ellipsoid, and P is the uncertainty matrix that determines
the size and the shape of the uncertainty ellipsoid. The size
of an uncertainty ellipsoid is measured by tr[P] which is the
sum of the squares of the semi principal axes of the ellipsoid.
The state evolves in the 6 dimensional tangent bundle,
TSO(3). We identify TSO(3) with SO(3) x so(3) by left
trivialization, and we identify so(3) with R3 by the isomor-
phism S(-). The uncertainty ellipsoid centered at (R,Q) €
TSO(3) is induced from an uncertainty ellipsoid in RS;

E(R,Q,P) = {R €950(3), N eR? ‘ {;Q} € gRG(oﬁ,P)},
(11)

where S(¢) = logm (RTR) € 50(3), 02 = @ — O € R?,

and P € R®*6 is a symmetric positive definite matrix. An

element (R, Q) € £(R, ), P) can be written as
R=PRe’9, Q=0+60,

for some z = [¢; 692] € RS satisfying 2T P~1z < 1.
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D. Uncertainty model

We define the measurement error models for the direction
vector and for the angular velocity. The measurement error
is modeled by rotation of the measured direction;

b — eS(yi)6117

~ b+ S, (12)
where ¥ € R3 is the sensor error, which represents the
Euler axis of rotation vector from b to b, and ||1/’|| is the
corresponding rotation angle in radians. The approximation
is obtained by assuming that the measurement error is small.

The angular velocity measurement errors are modeled as

Qe = Qe + vg, (13)

where Q;, € R? is the measured angular velocity, and vg €
R3 is an additive error.

We assume that the initial conditions and the sensor noise
are bounded by prescribed uncertainty ellipsoids.

(Ro,Qo) S g(Ro,Qo,Po), (14)
Vlic egR3(07SIi)7 (15)
Vi € 5R3(07Tk)7 (16)

where Py € R6*6, Si T} € R3*3 are symmetric positive
definite matrices that define the shape and the size of the
uncertainty ellipsoids.

IV. ATTITUDE ESTIMATION WITH ATTITUDE AND
ANGULAR VELOCITY MEASUREMENTS

In this section, we develop a deterministic estimator for
the attitude and the angular velocity of a rigid body assuming
that both attitude and angular velocity measurements are
available. The estimator consists of three stages; flow update,
measurement update, and filtering. The flow update predicts
the uncertainty ellipsoid in the future. The measurement
update obtains an uncertainty ellipsoid using new measure-
ments and the sensor error model. Filtering obtains a new
uncertainty ellipsoid compatible with the predicted and the
measured uncertainty ellipsoids.

The subscript k& denotes the kth discrete index, and the
superscript ¢ denotes sth directional sensor. The superscripts
f and m denote the variables related to the flow update and
the measurement update, respectively. - denotes a measured
variable, and * denotes an estimated variable.

A. Flow update

Suppose that the attitude and the angular momentum at
the kth step lie in a given uncertainty ellipsoid

(Ri, ) € E(Ry, ., Pr),

and that new measurements are taken at (k + [)th time step.
Flow update predicts the center and the uncertainty matrix
that define the uncertainty ellipsoid at the (k + [)th step
using the given uncertainty ellipsoid at the kth step. Since
the attitude dynamics is nonlinear, the admissible boundary
of the state at the (k+1)th step is not an ellipsoid in general.
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We assume that the uncertainty ellipsoid at the kth step is
sufficiently small that states in the uncertainty ellipsoid can
be approximated using the linearized equations of motion.
Center: For the given center (Rk,Qk) the center of the
uncertainty ellipsoid at step (k+1) is (Rk e Q£ ;) obtained
using the discrete equations of motion, (7), (8), and (9):

N h - N .
hS(Ju + 5 My) = FiJa — JaFY, (17)
Rk+1 = RkFlw (18)

o o h - A h -~
JQ£+1 = F} Qk+§Fk Mk+§Mk+1. (19)

This integrator yields a map (Ry, Q) — (I-A"iiﬂ, Q£+1), and
this process is rqpeateglj}l applied to find the center at the
(k + Dth step, (R],,, Q).

Uncertainty matrix: At the (k + 1)th step, the state is

represented by perturbations from the center (R,{ 11 f2£ 1)
Ry = Riﬂes(c’{“),
Qg = QL +09]

for some ¢, ,,00f,, € R® The uncertainty matrix at
the (k + 1)th step is obtained by finding a bound on
Q{ +1,5Q£ 41 € R3. Assume that the uncertainty ellipsoid

at the kth step is sufficiently small. Then, (,J: +1,6Q£ 4y are
represented by the following linear equations in [13]

x£+1 = Aka,

where x5, = [(x; 0Q%] € RS, and Af € RY%6 can be suitably
defined. Since (Rg, ) € E(Rk,Qk,Pk) xg € Ero(0, Py)
by the definition of the uncertainty ellipsoid given in (11).
Then we can show that Aﬁxk lies in

T
Ay, € Ego <0,A{Pk (4f) > .
Thus, the uncertainty matrix at the (k + 1)th step is given
by
Pl =Alp(a]) (20)

In summary, the uncertainty ellipsoid at the (k + [)th step is
computed using (17), (18), (19), and (20) as:

(Riyt, Uerr) € E(RL,, QL PL).

B. Measurement update

2L

The measurement update finds an uncertainty ellipsoid in
the state space using the measurements and sensor error
models. The measured attitude and the angular velocity
define the center of the measurement uncertainty ellipsoid,
and the sensor error models give the uncertainty matrix.

Center: The center of the uncertainty ellipsoid,
(R} H,Qk ;) is obtained from measurements. Let
the measured directions to the known points be
By = [b',-+,b™] € R®*™. Then, the attitude R},
satisfies the following necessary condition given in (2)

L N\T . o
(ka+l) Lyt — Li Ry =0, (22)
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where Z/k+l = Ek+sz+zB;?+l € R3*3_ The attitude matrix

is given by a QR factorization of Lj4; as in (3)

Rl = <Qq\/ (@Q%l@?) L1, (23)
where @, € SO(3) is an orthogonal matrix and @, € R?*?
is a upper triangular matrix satisfying Ly = Q@
The angular velocity is measured directly by
O, = Qe (24)

Uncertainty matrix: We represent the actual state at the
(k 4 )th step as perturbations from the measured center:

Ry = ]%erles(@?lz), (25
Qe = QY + 097, (26)

for ¢j" ,,6Q}",, € R3. The uncertainty matrix is obtained by
finding a bound on ¢ ;, 5O, ;.

We transform the uncertainties in measuring the body
directions to known fixed points into uncertainties in the
rotation matrix by (22). Using the error model in (12), the

actual directions corresponding to By, are given by

Byy1 = Biyi + 0By, 27

where 6By = [S(ul)l~917~-~ ,S(p™)b™ | e R3X™,
The actual directions By and the actual attitude Rj; at
the (k + [)th step also satisfy (23);

RT, Lyst — LT, Rist = 0, (28)
where Ly = Ek+ka+lBg+l € R3*3. Substitute

(25) and (27) into (28), and use S(z)A + ATS(z) =
S{t]A] I3x3 — A} z) for A € R3*3 2 € R3, to get:

{tr[(RL"Jrz)T IN/k+l:| - (RZQz)T ikJrl} Gt
— Zwl {tr[ TRk—H} Igys — b (e )TIA%Z@_H} v

We can rewrite the above equation as

m

mut
Z‘Ak-HV

i=1

Co1 = (29

where AZ:_IZ € R3*3 is defined appropriately.
The perturbation of the angular velocity 6();",; is equal to
the angular velocity measurement error vy,

S, = - (30)

Define 7", = [¢7; 007, ] € RY. Using (29) and (30),

m
m,i g
= H; E Ak+lylzc+l+H2Uk+l>

=1

m
L1

where Hy = [I3x3, O3x3]”, Hy = [O3x3, I3x3]? € RO*3.
This expresses z7",; as a linear combination of the sensor
errors v* and v. Using the measurement uncertainties (15)
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and (16), we can show that the terms in the right hand side of
the above equation are in the following uncertainty ellipsoids:

. N\NT
m,i o m,i T
ki 1Vit1 € Ero (Ole ft 1Okt 1 ( kH) Hj ) )

Hovgyy € Ego (0, HoTj Hy ) -

H,y

Thus, the uncertainty ellipsoid for x}" ; is obtained as the
vector sum of the above uncertainty ellipsoids. The mea-
surement update obtains a minimal ellipsoid that contains the
vector sum of these uncertainty ellipsoids. Using expressions
for such a minimal ellipsoid given in [8] and [9], we get:

m
PR, = {Z \/tr[P,ﬁ’l”R] + \/tr{P,:’jrl’Q} }
=1

m Pm,i

m
« Z k+1,R P o

+ )
wr[p,g;;ﬁ} wr[ml,ﬂ]

. . A\T
m,t _ m,i Qi m,i T
Peiir = HUAL Sk (‘AkJrl) Hy,

m _ T
Pl o= HoTyi Hy .

€1V

where

In summary, the measured uncertainty ellipsoid at the (k +
[)th step is defined by (23), (24), and (31);

(Riet1, ept) € E(RE, QP P,

C. Filtering procedure

(32)

The filtering procedure obtains a new uncertainty ellip-
soid compatible with both the predicted and the measured
uncertainty ellipsoids. From (21) and (32), we know that:

(RkJrl,QkJrl) € 8(R£+laQ£+lan+l) mg( A;cn+l7 A;cn+lvpl;n-l|—l)'

The intersection of two ellipsoids is not generally an ellip-
soid, and it is inefficient to describe an irregular subset in
the multidimensional space numerically. We find a minimal
uncertainty ellipsoid containing this intersection. We omit
the subscript (k + [) here for convenience.

The measurement uncertainty ellipsoid, £(R™, ™, P™),
is identified by its center (R™, ™), and the uncertainty
ellipsoid in RS:

(¢™,09™) € Ere(Ogx1, P™), (33)

where S(¢™) = logm ((Rm)TR> € s0(3), Q™ =

Q- Qi” € R3. Similarly, the flow uncertainty ellipsoid,
E(RS,Q/, PT), is identified by its center (R7,Qf), and the
uncertainty ellipsoid in RS:

(¢?,6Q7) € Eps (06x1, PY), (34)

where S(¢/) = logm ((Rf)TR) €50(3), 00/ =Q— O ¢
R3. An element (R7,Qf) € £(R?,Qf, P7) is given by
RS = RFeSWH,
of = 0f + 607,

(35)
(36)
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Define émf, 6Qmf ¢ R? such that
RS = RmeSE™), 37)
Qf =Qm + 607, (38)

Thus, (™, 6™ represent the difference between the cen-
ters of the two ellipsoids.
Substituting (37), (38) into (35), (36), we obtain

Rf = RmeSC g8
(39)
(40)

~ RmeSEIHeN),
of —am 4+ (5@’”1’ + mf) ,

where we assumed that CA mf ¢I are sufficiently small.
Thus, the uncertainty ellipsoid obtained by the flow update,
E(RS, O, PT) is identified by the measured (R, Q™) and
the following uncertainty ellipsoid in RS:

Ers (2™, PT), (41)

where 2™/ = |(mf; 5O | e RS,
We seek a minimal ellipsoid that contains the intersection:

Ero(Ogx1, P™) [\ Ero (2™, PT) C Ego (2, P),  (42)

where # = [(; 6] € RS. Using the expression for a min-
imal ellipsoid containing the intersection of two ellipsoids
presented in [8], £ and P are given by

&= L™,
P=p(g - L)P™"
where
Bla) = 1+q—@™HT(Pm™)"1La™,
L=P™"(P"+q P
The constant ¢ is chosen to minimize tr[P]. We convert &

to points in TSO(3) using the common center (R™, ™).
In summary, the uncertainty ellipsoid at (k + {)th step is

(Ritt, Qert) € E(Rieyt, Vst Py, (43)
where
Ryy1 = IA%Z"H@S(O, Qi = kaH +0Q, Peyy=P. (44)
D. Properties of the estimator

The steps outlined above are repeated to get a dynamic
filter. This attitude estimator has no singularities since the
attitude is represented by a rotation matrix. Orthogonality
of the rotation matrix is preserved as it is updated by the
structure-preserving Lie group variational integrator. This
estimator can be used for highly nonlinear large angle
maneuvers of a rigid body. It is also robust to the distribution
of the sensor noise since we only use ellipsoidal bounds
on the noise. The measurements need not be periodic, the
estimation is repeated whenever new measurements become
available. We can also extend this attitude estimator to the
case when angular velocity measurements are not available.
The filtering step is modified to find an intersection of
the non-degenerate predicted uncertainty ellipsoid and the
degenerate measurement uncertainty ellipsoid.
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V. NUMERICAL SIMULATION

Numerical simulation results are presented for estimation
of the attitude dynamics of an uncontrolled rigid spacecraft
in a circular orbit about a large central body, including
gravity gradient effects. The on orbit spacecraft model is
given in [13].

The mass, length and time dimensions are normalized by
the spacecraft mass, the maximum length of the spacecraft,
and the orbital angular velocity, respectively. The inertia
of the spacecraft is chosen as J = diag][l, 2.8, 2]. The
maneuver is an arbitrary large attitude change completed in
a quarter of the orbit. The initial conditions are chosen as

Ry = diag[-1,-1,1],

Ro = I343,

0o = [2.316, 0.446, —0.591] rad/s,
Qo = [2.116, 0.546, —0.891] rad /s.

The corresponding initial estimation errors are ||(p| =
180deg, [|6Q0] = 21.435;rad/s. Note that the actual
initial attitude is opposite to the estimated initial attitude.

The initial uncertainty matrix is given by
2 T2
Py = 2diag [w 1,1, 1], (E) 1, 1, 1]} :

so that = Py 'xg = 0.7553 < 1.

We assume that the measurements are available ten times
per quarter orbit. The measurement noise is assumed to be
normally distributed with uncertainty matrices given by

i T2 2 T2 2.2
S = (7@) Isysrad®, T = (7@) I3x3rad® /s

We consider two cases. Fig. 2 shows simulation results when
both the attitude and the angular velocity are measured. Fig.
3 shows simulation results when angular velocity measure-
ments are not available. In each figure, the left plot shows
the attitude and angular velocity estimation errors, and the
right plot shows the size of the uncertainty ellipsoid. The
estimation errors and the size of uncertainty decrease rapidly
after the first measurement. When the angular velocity mea-
surements are not available, the estimation error for the
angular velocity converges relatively slowly as seen in Fig.
3.(a). For both cases, the terminal attitude error, and the
terminal angular velocity error are less than 0.88 deg, and
0.04 rad/s, respectively.

VI. CONCLUSION

A deterministic estimator for the attitude dynamics of a
rigid body in a potential field with bounded measurement er-
rors is presented. An uncertainty ellipsoid is obtained at each
estimation step, and the dynamics is propagated using Lie
group variational integrators. The center of the uncertainty
ellipsoid is the point estimate, and its size determines the
accuracy of the estimate. The estimation scheme is optimal in
the sense that the size of the uncertainty is minimized at each
estimation step. It is also global and robust to the distribution
of measurement noise. This estimator can be extended to
include the effects of process noise and to the case when
only attitude measurements are available. These extensions
are not described in this paper.

200 70,
g 60|
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3 04t 0
g 02 10
o
= o —
0 0
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(a) Estimation error ||Cx ||, ||0€2%|| (b) Size of uncertainty ti] Py]

Fig. 2. Estimation with attitude and angular velocity measurement
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Fig. 3. Estimation with attitude measurement only
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