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A Leader-based Containment Control Strategy for Multiple Unicycles

Dimos V. Dimarogonas, Magnus Egerstedt and Kostas J. Kyriakopoulos

Abstract—In this paper, a leader based containment control
strategy for multiple unicycle agents is introduced. Similar
results for the single integrator case examined in [7] are derived
based on the theory of Partial Difference Equations on graphs
established in [1]. The leaders converge to a desired formation
based on a control law that is independent of the followers’
states. Once the leaders have reached the desired formation,
the followers converge to the convex hull of the leaders final
positions. When the desired leader formation is infeasible, then
(as was shown in [5]) the leaders converge to a configuration
where they share the same velocities and orientations. We show
in this paper that in such a situation, the followers converge
to the same velocities and orientations as the leaders, with
the same control law that was used for the followers in the
initial containment control problem. The theoretical results are
verified through computer simulations.

I. INTRODUCTION

Cooperative control of multiple autonomous agents is a
field that has gained increased attention in the past few
years in both the robotics and control communities, due to
the need for autonomous control of multiple mobile robotic
agents sharing the same workspace. Applications include
UAV formation control ([21]), micro-robotic systems([11])
and transportation systems ([24]).

Among the various specifications that the control design
aims to impose on the multi-agent team, convergence of
the multi-agent system to a desired formation is a design
objective that has been extensively pursued during the last
few years. The main feature of formation control is the co-
operative nature of the equilibria of the system. Agents must
converge to a desired configuration encoded by the relative
inter-agent positions. Many feedback control schemes that
achieve formation stabilization to a desired formation in a
distributed manner have been proposed in literature. See for
example [16],[14],[9] for some recent results.

The so-called agreement or rendezvous problem, in which
agents must converge to the same point in the state space
([181,[4]1,[12], [17],[15]), is also an issue of particular inter-
est. There have been many approaches to the state agreement
problem addressing the control design issue for several vehi-
cle models. In most cases, single integrator models of motion
are taken into account, while the information exchange
topology has been considered both static and dynamic, as
well as bidirectional or unidirectional. A recent review of
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the various approaches of the state agreement problem for
linear models of motion is given in [20].

In this paper, a leader-based containment control problem
for multiple unicycles is investigated. The problem statement
can be interpreted as a combination of the formation and
the agreement control problems. Specifically, the leaders
of the team have two performance objectives. The first is
convergence to a desired formation configuration encoded by
the final desired relative inter-leader positions. The second
objective is containment of the followers in the convex hull
of the leaders’ final positions. A similar problem was treated
in [7] for multiple agents with single integrator kinematics.
Unlike the strategy proposed in [7], the followers do not have
to stay in the convex hull of the leaders’ positions at each
time instant. However, once the leaders reach the desired
formation, we provide sufficient conditions for convergence
of the followers to the convex hull of the leaders’ final
positions. This result was also established in [7] for the single
integrator kinematics case. In that paper, recent results on
Partial Difference Equations ([6],[1]) on graphs were used
to show that, in the case of multiple stationary leaders,
the followers converge to the convex hull of the leaders
positions. This was achieved under an agreement control de-
sign together with some additional connectivity assumptions.
Furthermore, the leaders converge to the desired formation
with a control strategy that is shown to be independent of
the states (positions,orientations) of the followers.

When the desired leader formation is infeasible, then (as
was shown in [5]) the leaders converge to a configuration
where they share the same velocities and orientations. We
show in this paper that in such a situation, the followers
converge to the same velocities and orientations as the
leaders, with the same control law that was used for the
followers in the initial containment control problem.

The nonholonomic control strategy we use in this paper
for the formation control of the leaders has been used in [5],
and is based on the discontinuous time-invariant control law
proposed in [23]. We also use a similar control design for
the followers. Time invariant controllers for nonholonomic
systems have in general better convergence properties than
time-varying ones. An experimental comparison between
these two types of nonholonomic controllers that supports
our preference to time-invariant strategies has appeared in
[13]. In that reference, it was deduced that time varying
controllers were too slow and oscillatory for most practi-
cal situations. On the other hand, time-invariant controllers
achieved a significantly better performance.

The rest of the paper is organized as follows: Section
IT describes the system and states the problem treated in
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this paper. Elements from nonsmooth analysis used in the
stability analysis of the proposed framework are included
in Section III. Section IV presents the control design used
for the followers to converge to the convex hull of the
leaders, while in Section V, the formation control strategy for
the leaders is described. Computer simulations that support
the theoretical results are contained in Section VI, while
Section VII summarizes the results of this work and indicates
possible extensions.

II. SYSTEM AND PROBLEM DEFINITION

Consider a system of N nonholonomic point agents oper-
ating in the same workspace W C R2. Let ¢; = [z;,v:]T €
R? denote the position of agent i. The configuration space
is spanned by ¢ = [q1,...,qn]7. Each agent has a specific
orientation 6; with respect to the global coordinate frame.
The orientation vector of the agents is denoted by 6 =
[01...0N]. The configuration of each agent is denoted by
pi= [ @’ 6 ]T € R? x (—m, 7. The agent motion is
described by the following nonholonomic kinematics:

T; = u; cosb;
U; = u; sin 6;
07: = Wj,

GeEN=[L,...,N] (1)

where u;, w; denote the translational and rotational velocities
of agent i, respectively. These are considered as the control
inputs of the multi-agent system. We moreover assume that
the agents belong to either the subset of leaders IV;, or to the
subset of followers Ny, i.e. N[Ny =0 and N;|JNy = N.

The first objective of each leader is to converge to a desired
formation configuration with respect to the rest of the leaders.
We assume that each leader is assigned to a specific subset
Nil C N; of the rest of the leaders, called leader ¢’s leader
communication set with which it can communicate in order
to achieve the desired formation. The objective of each leader
1 is to be stabilized in a desired relative position ¢;; with
respect to each member j of N!. It is moreover assumed that
the communication topology is bidirectional in the sense that
j €N/ & ieN.,Vi,je Ni+# jand that the formation

is feasible in the sense that ¢;; = —cj;,Vi,j € Ni, @ # j.
Denote ¢;; = — > ¢;; and ¢ = [011,...,CNN]T. In the
JEN]

sequel, we will use the decoupling of the stack vector ¢ =
[z,y]" and the vector ¢; = [c,, ¢,])7 into the coefficients that
correspond to the x,y directions of the agents respectively.
Moreover, the leaders should be able to “drag” the fol-
lowers along so that the latter are ‘“contained” within the
convex hull of the leader positions in the final formation
configuration. This is a sub-case of the containment control
problem in multi-agent systems. This problem has also been
encountered in [7]. The reader is referred to that reference
for a discussion on specific applications of this problem.
Both the leaders and the followers are assigned to a
specific subset N; C AN of the rest of the team called
agent i’s leader-follower communication set with which it
can communicate in order to achieve the desired objective
(containment of the followers in the convex hull of the
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desired leader formation). We assume that for each leader
i € Ny, the sets N;, N} are disjoint, i.e. N; N N} = 0,Vi €
N;. Hence, for the second objective, the leader follower
communication set of each leader contains only followers.

These two objectives are encoded by two different commu-

nication graphs, that are defined with respect to the limited
communication of the agents as follows:

1) The Leader communication graph G' = {V!, E', C} is
an undirected graph that consists of (i) a set of vertices
V! = N; indexed by the leaders of the multi-agent
team, (i) a set of edges, B! = {(i,5) € VI x V!|i €
NJZ} containing pairs of nodes that represent inter-
leader formation specifications and (ii) a set of labels
C = {c;;}, where (i, j) € E', that specify the desired
inter-agent relative positions in the leader formation
configuration.

2) The Leader-follower communication graph G =
{V, E'} is an undirected graph that consists of a set of
vertices V = {1, ..., N} indexed by the team members
and (ii) a set of edges, £ = {(i,j) € V x V]i € N,}
containing pairs of nodes that represent inter-agent
communication specifications.

As an example, suppose that for a seven-agent team
whose members are indexed by 1,...,7, we have N; =
{1,2,3}, Ny = {4,5,6,7} and the communication sets
are defined as N} = {2}, N} = {1,3}, N} = {2} and
Ny = {4,5}, N2 = {5}, N3 = {6,7},Ny = {1},N; =
{1,2,6}, N¢ = {3,5,7}, N7 = {3,6}. The Leader com-
munication graph and the Leader-follower communication
graph corresponding to these communication sets are shown
in Figure 1.

_/
4 5 6

Leader-Follower
Communication Graph

Leader
Communication Graph

Fig. 1. Leader communication graph and Leader-follower Communication
graph of a seven agent team with N; = {1,2,3}, Ny = {4,5,6,7}
and communication sets N} = {2}, N} = {1,3}, N} = {2}.N; =
{4’5}7N2 = {5}7N3 = {677}7N4 = {1}7N5 = {1a276}7N6 =
{3a 577}7N7 = {376}

III. TooLS FROM NONSMOOTH ANALYSIS

In this subsection, we review some elements of nonsmooth
analysis and Lyapunov theory for nonsmooth systems that we
will use in the stability analysis in the next section.

For a differential equation with discontinuous right-hand
side we have the following definition:

Definition 1: [8] In the case when the state-space is finite
dimensional, the vector function x(.) is called a Filippov
solution of & = f(x) if it is absolutely continuous and & €
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K[f](x) almost everywhere where

K|f)(x) = @{ im f(z;)|; ¢ N}
where N is a set of measure zero.

Lyapunov stability theorems have been extended for nons-
mooth systems in [22],[2]. The following chain rule provides
a calculus for the time derivative of the energy function in
the nonsmooth case:

Theorem 1: [22] Let x be a Filippov solution to & = f(x)
on an interval containing ¢ and V : R™ — R be a Lipschitz
and regular function. Then V' (z(t)) is absolutely continuous,
(d/dt)V (x(t)) exists almost everywhere and

d <
V@) e V)= () €KIfa()
£V (x(1))
where “a.e.” stands for “almost everywhere”.

In this theorem, OV is Clarke’s generalized gradient. The
definition of the generalized gradient and of the regularity of
a function can be found in [3]. In the case we encounter in
this paper, the candidate Lyapunov function V' we will use is
smooth and hence regular, while its generalized gradient is
a singleton which is equal to its usual gradient everywhere
in the state space: OV (z) = {VV(z)}Vx.

We shall use the following nonsmooth version of LaSalle’s
invariance principle to prove the convergence of the pre-
scribed system:

Theorem 2: [22] Let Q) be a compact set such that
every Filippov solution to the autonomous system & =
f(x),2(0) = z(to) starting in ) is unique and remains in
for all £ > ¢o. Let V : Q — R be a time independent regular
function such that v < 0 Vv € vV aif V is the empty set then

this is trivially satisfied). Define S = {z € Q[0 € V'}. Then
every trajectory in {2 converges to the largest invariant set
M in the closure of S.

IV. MULTIPLE LEADERS
A. Multiple Stationary Leaders

In this section, we consider the case of stationary leaders.
We propose a control strategy for the followers based on their
information imposed by the leader-follower communication
graph that guarantees convergence of the followers to the
convex hull of the leaders.

The control design for each follower will be of the form

u; = u;i (pi, pj)
w; = wj (pi, pj)
copying in this way with the limited communication capa-
bilities of each follower. In the sequel, the notation (a);
for a vector a, denotes its ¢-th element. Let also L denote
the Laplacian matrix of the leader-follower communication
graph ([10]). The following theorem guarantees convergence
of the followers to the convex hull of the stationary leaders:
Theorem 3: Assume that the Leader-follower communi-
cation graph is connected and that the subset of leaders is
nonempty. Then the discontinuous time-invariant feedback
control strategy:

,J € Nyt € Ny 2)

u; = —sgn (Ygi cos O; + vy sin ;) - (v2; + ’yzi)lﬂ (3)
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w; = — (91' - enhi) , 4

where v, = (Lx),,7vy = (Ly),, and the “nonholonomic
angle” 6,5, = arctan 2 (7y,;,Vzi). drives the followers to the
convex hull of the leaders positions.

Proof: Define v; = 3 Z lgi — ¢;|I°,i € N. Then it is

easily seen that Z V% =2 (L ® I,)q, where ® denotes

the standard Kronecker product between two matrices.
We shall use the smooth positive definite function V' =
>~ ~; as a candidate Lyapunov function. Since the proposed

1EN
control law is discontinuous we use Theorem 1 for the time
derivative of the candidate Lyapunov function. Since V is

smooth we have 0V = {VV} = { > V%} , so that
iEN
u1 cos 01
) u sin 64
verausv={z @} x|
iEN iEN
u N Cos 0y
u N sin O
K [uq] cos 0y
K [uq]sin 64
T(L®l) C
K [un]cosfOn
K [un]sinfy
K [uq] cos 6,

K [uq] sin 6,
2 (Lx)" : +2(Ly)"
K [un]cosOn K [un]sinfn
C > {2K [w]((Lx); cos0; + (Ly),sinb;)},
i€ENy

where the summation is held over the set of followers since
the leaders are assumed stationary. We also used Theorem 1.3
in [19] to calculate the inclusions of the Filippov set in the
previous analysis. Since K [sgn(z)] z = {]z|}([19],Theorem
1 7) the choice of control laws (3),(4) results in

:72 Z { 7T1+7y1

i€Ny

/2 .
. "Y:cl COS 92 + Yyi Sln9i|} S 0

so that the generalized derivative of V' reduces to a singleton.

Since the candidate Lyapunov function is quadratic in the
agents’ relative positions, its level sets are compact and in-
variant for the trajectories of the closed loop system. Specif-
ically, we have V < ¢ = | ¢ — ¢;|| < V2¢, V(i,j) € E.
Connectivity of the Leader-follower communication graph
ensures that the maximum length of a path connecting two
vertices of the graph is at most N — 1. Hence ||¢; — ¢;| <
V2c¢(N —1), Vi,j € N.

Now, using the nonsmooth version of LaSalle’s invariance
principle (Theorem 2), we conclude that the followers con-
verge to the largest invariant subset of the set

S = (Yzi = Yyi = 0) V (v cos b; + Vyi Sin0; = 0),
B Vi € Ny

However, for each i € Ny, we have lwi| = g whenever
Yzi €08 0; + yyisinf; = 0, due to the definition of 6,,.
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Hence the largest invariant set contained in S’ is
S D S() = {’Y:m‘ = VYyi = O,Vi S Nf}

In this set, the orientations of all followers converge to zero,
since 6,5, = 0 for each follower ¢ in Sy. Hence, the system
converges to a configuration that is an equilibrium of the
partial difference equation

(Lz), = (Ly), = 0,Yi € Ny
¢ = 4" (0)

where ¢! is the stack vector of the leaders’ configuration.
The solutions of (5) have been studied in [7]. In particular,
Theorem 2 in [7] states that for a connected Leader-follower
communication graph and a nonempty set of leaders, the
position of each follower, as given by the solution of (5),
lies in the convex hull of the leaders’ positions. Hence the
proof is complete.

(&)

B. Multiple Moving Leaders

Theorem 3 assumes that the leaders are stationary, namely
that ¢; = 0,Vi € N;. In this section, we examine the
case when the leaders move with the same velocities and
orientations. Hence the leaders’ motion is described by

i = Ug, Ui = Uy, 0; = 0, Vi € N, (6)

The following theorem guarantees that the followers con-
verge to a configuration where they have the same velocities
and orientations as the leaders:

Theorem 4: Assume that the Leader-follower communi-
cation graph is connected and that the subset of leaders is
nonempty. Assume also that the followers evolve under the
control law (3),(4) while the leaders move according to (6).
Then the followers converge to a configuration where they
have the same velocities and orientations as the leaders.
Proof: Equation (4) implies that 6; is aligned with 6,5, as
t — oo. Hence, in steady state, the followers’motion in the
x, y-coefficients under the control laws (3),(4) is given by

&; = u; €08 Opp, = —Sg0 {Vai €08 Onp, + Yoys SIN Opp, } Vi
Ui = u; Sin O, = —sg0 {Vzi €08 Onp, + Yy SN Onp, | Yy

But, by definition of 0,5,, we have -~y cosb,n, +
VYyi sin 0,5, > 0. Then, at steady state, we have:

; €N 7
Yi = —Vyi 7 ™

Using W = % (:‘ETLi’erTLy) as a candidate Lyapunov
function for the system (7) and differentiating with respect
to time we get:

iGNf
since &; = ¢; = 0,Vi € N;. We also have +,; =
(L&);, Yyi = (Ly),; so that

W= 3 (a)}+(Li)}) <o

=
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Following similar arguments as in the proof of the previous
Theorem, it is easily shown that the level sets of W are
compact and invariant with respect to the agents’ relative
velocity components. Using Lasalle’s invariance principle,
we deduce that the agents converge to a configuration that
is an equilibrium of the partial difference equation

(L&), = (Lj), = 0,Vi € Ny

i:i:ux,yi:uy,ViENl (8)

Similarly to the proof of Theorem 3, we deduce that the
velocity of each follower, as given by the solution of (8),
lies in the convex hull of the leaders’ velocities. Since the
convex hull of the leaders velocities reduces to the singleton
{uy} in the z-direction and to the singleton {u,} in the
y-direction, it is straightforward that at steady state,

T; :uw,yl = Uy, Vi € Nf
Furthermore, since for all ¢ € Ny, we have

Ty = Uy = —Vai, ¥i = Uy = —Vyis
ei - thi = arctan 2 (_'Yyh _’712)

and the common orientation of the leaders is also given by
arctan 2 (uy;, Ug;) = arctan 2 (—yyi, —Vzi)

we deduce that all agent converge to a common orientation.
Hence the proof is complete.

V. LEADER FORMATION CONTROL DESIGN
A. Convergence to a feasible formation

From the proof of the previous section, it is straightforward
to see that the leader formation control strategy can be
designed in a totally independent manner with respect to
the followers. Once the leaders converge to the desired
formation, Theorem 3 guarantees that the followers move
to the convex hull of the leader formation, under the control
strategy (3),(4). In essence, the control law of each leader
is able to contain information based solely on the Leader
communication graph.

Let L' denote the Laplacian matrix of the Leader for-
mation graph and ', 3’ denote the decoupling of the stack
vector of the leaders ¢' = [Il, yl]T into the coefficients that
correspond to the z,y directions of the leaders respectively.
The following theorem guarantees convergence of the leaders
to the desired formation:

Theorem 5: Assume that the Leader communication graph
is connected. Then the control design

1/2
u; = —sgn (75“ cosb; + Wzlﬂ- sinf;) - ((%lm)Q + (757)2)
)

w; = — (0; —64,,) (10)

where fyii = (lel + cz)i ,fy?lﬂ. = (Llyl + cy)i and Gflhi =

arctan 2 (%lﬂ,'yii), drives the leaders to the desired leader

formation.

Proof: Define the term 7! = 1 > |lgi —q; — cinQ,i €
JEN!

Nj;. Similarly to the proof of the previous theorem, we have
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SV =2((L'®L)¢d +¢). Using V=3 7l asa
iEN iEN
can(Liidate Lyapunov function and computing its gellleralized

time derivative we get

With the choice of control laws (9),(10) we have

< L'z +c ),COSQ‘-F
V=3 (el (g el
5= + (L y+ Cl/)i sin 0;
- 1)2 1y2)"?
V=-2%" { ((’Ym) + (1) ) <0
1 0. LY ain O -
iem | (0L;) cos6; + (7i;) sin 6;
Quoting again the nonsmooth version of LaSalle’s invariance
principle (Theorem 2), and using the same arguments as
in the proof of Theorem 3, we conclude that the leaders
converge to the set

So={rki =i =0,Vie N}

This guarantees that the leaders converge to the desired
formation configuration. This is easily derived from the fact
that (v}, =4k, =0)Vi = (L' ® I)g + ¢ = 0. For all
i € Ny, let ¢; denote the configuration of leader 7 in a desired
leader formation configuration with respect to the global
coordinate frame. It is then obvious that ¢;; = ¢; —c;, for all
(i,7) € E', for all possible desired final formations. Define
¢ —q; — ¢ij = ¢ — ¢; — (¢; — ¢;) = G; — G;. Then we have
that (L'®@I)q+c; = 0= (L'®L)§=0= L'z = L'§ =0
where Z,y the stack vectors of ¢ in the x,y directions.
The fact that the leader communication graph is connected
impliei> that both Z,7 are eigenvectors of L' belonging to
span{ 1 }. Therefore all §; are equal to a common vector
value c. Hence §; = cVi = ¢; — q; = ¢;;Vi,j € Ny, j € NJ.

We conclude that the leaders converge to the desired
relative configuration. {»

B. The case of formation infeasibility

Theorem 5 involves convergence of the leaders to a desired
formation, and is applied along with the result of Theorem
3 to the problem of containing the group of followers within
the convex hull of the final leader formation. Theorem 4 on
the other hand, assumes that the leaders have a common,
possibly non-zero, velocity and a common orientation. The
next result provides the means of obtaining such a behavior
on the leaders’ part. Specifically, in our previous work [5]
it was shown that formation infeasibility forces the leaders
to converge to a configuration where they share a common
velocity and orientation. Formation infeasibility is implied
by the assumption that the condition ¢;; = —c¢;;,V2,5 €
Ny, i # j is not guaranteed to hold for the desired leaders’
relative positions. The desired leader formation might be
rendered infeasible in this way, in the sense that the set
{q:¢ —q; =cij, V(i,j) € E'} may be empty.

The following result was presented in [5]:

Theorem 6: Assume that the Leader communication graph
is connected. Then the control design (9),(10) drives the
system to a configuration in which all leaders have the
same velocities and orientations even if the desired leader
formation configuration is infeasible.
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Proof: The proof of this statement can be found in [5]. It
follows the same arguments of the proof of Theorem 4.

VI. SIMULATIONS

To verify the results of the previous paragraphs, we pro-
vide two computer simulations of the proposed framework.

The first simulation involves a multi-agent team of six
agents, three leaders (red) and three followers (blue). The
leaders aim to converge to a triangular formation, while
the followers inside the convex hull. The leaders evolve
under the control laws (9),(10) while the followers under
the control law (3),(4). Screenshots I-IV in Figure 2 show
the evolution in time of the unicycle group. The leaders are
denoted by “L”, while the followers by “F”. The red leaders
converge to the desired formation, while the followers in
the convex hull of the leaders final positions (i.e. inside the
triangle). This can be witnessed in the last screenshot IV.
The communication sets of both leaders and followers are
chosen so that they fulfill the desired connectivity properties
imposed by theorems 3, 5.

u]
F
L
EL) <o ng‘
. 2
: e
g,
2| / SN
at 4 g
F . F
2
1 1
x10”
& -
E
F L . .
¢
E
L
/% ‘F
d | -

aaaaaaaaaaaaaaa

Fig. 2. Simulation A

In the next simulation, we have again three leaders(red),
denoted by “L” and three followers(blue), denoted by “F”.
The communication sets of both leaders and followers are
chosen so that they fulfill the desired connectivity properties
imposed by theorems 4, 6. The desired leader formation is
now rendered infeasible with an appropriate choice of the
inter-leader relative positions. Screenshots I-V in figure 3
show the evolution in time of the unicycle group. In the last
screenshot V, all agents’ velocities and orientations converge
to a common value, something also witnessed in the velocity
plot figure 4.

VII. CONCLUSIONS

In this paper, a leader based containment control strategy
for multiple unicycle agents has been presented. Similar
results for the single integrator case examined in [7] were
derived based on the theory of Partial Difference Equations
on graphs established in [1]. The leaders converge to a
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Simulation B

Fig. 3.

Velocities

o 5000 10000 15000
Time

Fig. 4. Agents’ velocities in Simulation B converge to a common value.

desired formation based on a control law that is independent
of the followers’ states. Once the leaders reach the desired
formation, we showed that the followers converge to the
convex hull of the leaders final positions. When the desired
leader formation is infeasible, then (as was shown in [5])
the leaders converge to a configuration where they share the
same velocities and orientations. We showed that in such
a situation, the followers converge to the same velocities
and orientations as the leaders, with the same control law
that was used for the followers in the initial containment
control problem. The theoretical results were verified through
computer simulations.

Current research aims to take into account the case of
unidirectional communication links (i.e. directed graphs),
as well as taking into account collision avoidance issues
between the team members.
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