
 
 

 

  

Abstract—Wiener-typed nonlinear systems with hard 
input constraints are ubiquitous in industrial processes. 
However, owing to their complex structures, there are 
very few achievements on their control algorithm. Aimed 
at this problem, an improved dual-mode control 
algorithm is put forward. Firstly, the detailed procedure 
of this algorithm is proposed. Then, its feasibility, 
stability and convergence are analyzed by using the 
invariant set theory combined with LMI(linear matrix 
inequalities) technique[8]. In contrast to traditional 
algorithms, this one has the capabilities of maximizing the 
size of the closed-loop stable region and decreasing the 
online computational burden. Finally, the proposed 
algorithm is performed by simulations with promising 
results. 
Key words —Dual-Mode control algorithm, Wiener-typed 
nonlinear systems, Zeroin algorithm, invariant set, LMI 

I. INTRODUCTION 
uring a lot of real industrial processes such as 
distillation[9], pH neutralization control [2,5], 

heat-exchanger[16], chemical reaction[14], and biological visual 
process[16,17], there widely exists a type of nonlinear systems 
which can be described by Wiener mode. The background of 
this model can be even extended to the areas of 
communication[11], signal processing[11], psychology[17] and 
sociology[17]. It consists of a linear dynamic element followed 
by a memoryless nonlinear element while Hammerstein 
model contains the same elements in the reverse order[9]. 
Wiener-typed systems correspond to processes with linear 
dynamics associated with general nonlinear operators. In 
recent years, the control of Wiener-typed systems has become 
one of the most urgent and difficult tasks in nonlinear control 
field[2,5,9,11,16,17]. 

Due to the particular structure of Wiener model, the 
identification and control algorithms of this system are much 
more complicated than the counterparts of 
Hammerstein-typed system. Suny and Lee[18] worked over the 
method approaching nonlinear element with polynomials 
based on the suggestion that the output of linear block be 
feasible. However, in practical industrial control, this 
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assumption can not be always satisfied. In 1997[9], Kalafatis 
and Wang proposed a method identifying the two parts of 
Wiener model at the same time, but an assumption must be 
satisfied that the inverse of the nonlinear element can be 
approximated by P order polynomials with satisfactory 
precision, which greatly limited its applications. In the same 
year[14], Yamanaka et al developed a new kind of dynamic 
neural network which is composed by a Laguerre function 
filter and a memoryless nonlinear block. Based on this model 
they presented a model reference adaptive control scheme for 
Wiener-typed nonlinear systems. Stability analysis was also 
given, but these conditions were too rigid and the initial 
weights were difficult to optimize. In 2001[7], Duwaish et al 
developed an approach to control Wiener models using MPC 
combined with genetic algorithm, but the computational 
burden was so heavy that its real-time performances were not 
satisfactory.  

It can be concluded that most of the existing control 
algorithms for Wiener-typed systems have somewhat 
limitations. Moreover, there are very few achievements on 
dealing with hard input constraints so far. However, this type 
of constraints exists universally in industrial processes 
because it is the physical restriction of the executers, which 
can not be violated1,2, 5, 7 ,9, 5,14-18]. Therefore, it is a fairly 
valuable work to find an effective solution for this problem. 
In 2000[12], Yang et al proposed an approach based on 
dual-mode technique to control Hammerstein-typed systems 
with hard input constraints, and gained excellent 
performances. Nevertheless, owing to the complexity of 
Wiener-typed systems, they have not taken into consideration 
of  the hard input constraints. 

In this paper, based on dual-mode technique[8], we 
propose an output feedback control method. The main two 
contributions of this paper can be summarized as follows,  
1) For system with hard input constraints, Dual-Mode control 
technique[8] is imported to enlarge the stable region. In detail, 
this algorithm has two modes, Mode 1) when the initial state 
is outside the initial invariant set, the system state is extend by 
an auxiliary vector which can drive the state into the initial 
stable invariant set in finite steps; Mode 2) Once the state 
enters this stable set, the auxiliary vector decreased to zero 
automatically, and the standard stable output feedback 
control law is applied to drive the system state to the origin 
asymptotically.  
2)The closed-loop stability is proven based on invariant set 
theory [6]combined with LMI (linear matrix inequalities) 
method. 

This paper is organized as follows. In section II, the 
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problem description is given. The control algorithms are 
presented in sections III and IV. Also in these two sections, 
the stability and convergence analyses are also presented. In 
section V, simulations are performed with promising results. 
Finally, conclusion remarks are given in section VI. 

II. PROBLEM DESCRIPTION  

A. Problem description in Z-domain 
A Wiener-typed system consists of a linear dynamic 

element followed by a memoryless nonlinear element. The 
structure of this model in Z-domain is shown in figure 1. 
The difference equation of this system is described as  
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d is system’s time delay, )(⋅f is a memoryless nonlinear 

function, )(ku , )(ky and )(kη are the input, output and 
output of dynamic linear element respectively. 

 
Fig.1 Structure of Wiener-typed system 

B. Problem description in state space 
Assume the linear element of our Wiener-typed plant can be 
described by 

( ) ( ) ( )kBukAxkx +=+1                            (2)                                

( ) ( )kCxk =η                                       (3) 
There are two kinds of control problems  
P1(Regulator Problem) to make the origin asymptotically 
stable, then one can design ( ) ( )u k Kx k= ,  then  

                                ( ) ( )1x k x k+ = Ψ                               (4) 

 with                           A BKΨ = + . 
P2(Tracking Problem) to track a set point ( )r k , then one 

can design  

( ) ( ) ( )u k Kx k r k θ= +                            (5) 

with                   ( )( )1

1
1/ lim

z
C zI Bθ −

→
= −Ψ  .                       (6) 

Reference [3] has proven that, if each eigenvalue of Ψ  is 
inside the unit circle of complex plane in Z-Domain, then the 
control law (5) can drive system output to the set point ( )r k , 

and make system globally uniformly asymptotically stable.  
Remark 1: These two control problems are equivalent, the 
reason is given as follows.  If ( )I − Ψ is nonsingular, then 

 one can make the coordinate transformation 

( ) ( )x k x k α= − , with ( ) 1I Brα θ−= − Ψ , and  still 

obtain (4).Else, i.e. ( )Ψ−I is singular, one can still find 
suitableα to obtain (4). Thus, the two control problems are 
equivalent. Therefore, without loss of generality, we will only 
discuss the problem P1) in the following text.                           █ 

Then, the problems this paper addresses are motivated 
naturally: 
1) If the prior knowledge of the Wiener-typed system’s 
memoryless nonlinear block, is partially known at least, how 
to guarantee the closed-loop stability of the Wiener-typed 
system subjected to hard input constraints 

maxmin uuu ≤≤ ?  
2) Furthermore, how to maximize the size of above- 
mentioned closed-loop stable region? 
 

III. OUTPUT FEEDBACK CONTROL ALGORITHM FOR SYSTEMS 
WITHOUT HARD INPUT CONSTRIANTS 

A. Conditions of invariant sets 
Firstly, assume the state observer be given by 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1x k Ax k Bu k L k Cx kη+ = + + −     (7) 

where ( )x̂ k is the estimation state, and ( ) ( )( )kyfk Zeroin
1~ −=η ,  

in which 1−
Zeroinf refers to the inverse of f calculated by 

Zeroin algorithm[4].  
The estimation state error is defined as 

( ) ( ) ( )ˆe k x k x k−                                 (8) 

Then, one can define the invariant ellipsoid sets of estimation 
state and estimation state errors as follows 

{ }ˆ ˆ ˆ| 1TS x x Px ≤                                 (9) 

{ }2| T
e eS e e P e e≤ , 10 2 ≤≤ e                   (10) 

where eP and P are positive definite symmetric matrices. 

When ( ) ( ) eSkeSkx ∈∈ ,ˆ , in order to make these ellipsoid 
sets invariant, it is required that  

( ) ( ) 11ˆ1ˆ ≤++ kxPkxT                           (11) 

( ) ( ) 21 1T
ee k P e k e+ + ≤                       (12) 

Provided the control law ( ) ( )ˆu k Kx k= , then (7) can be 

rewritten as  
         ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1x k x k L k Cx kη+ = Ψ + −             (13) 

Assume that      ( ) ( ) ( )[ ] ( )kCekkk ηδηη =−~                (14) 
then substituting (14) to (13) yields  

     ( ) ( ) ( )( ) ( )ˆ ˆ1 1x k x k k LCe kδ η+ = Ψ + + ⎡ ⎤⎣ ⎦       (15) 

and substituting (15) to (11) yields  



 
 

 

( ) ( )( ) ( )( )ˆ 1
T

x k LC k e k Pδ ηΨ + + ⋅⎡ ⎤⎣ ⎦  

( ) ( )( ) ( )( )ˆ 1 1x k LC k e kδ ηΨ + + ≤⎡ ⎤⎣ ⎦          (16)                 

Lemma 1[11]: For ( ) ( )1 , 1 1/ 1Rµ µ τ µ∀ > ∈ = + − , and 

ba, are matrices with the same size, then  

      ( ) ( ) PbbPaabaPba TTT τµ +≤++                      (17) 
                                                                                              █ 

Theorem 1: The linear time-invariant block of the 
Wiener-typed nonlinear system (1) is shown as (2), (3), and 
the state space description of the observer is given as (7), 
where the feedback gain K  and the observer gain L  are 
stable. Then, if the following three assumptions A1) and A2) 
are fulfilled, it can be conclude that S  and eS  are invariant 

sets of ( )kx and ( )ke  in the sense of (9) and (10), 
respectively. 
A1) (14) is satisfied, in addition, there exists  0σ >  

( )Rσ ∈ such that        ( )[ ] σηδ ≤k                                (18) 

A2) there exist ( )1 11, 1, , Rµ µ µ µ> > ∈  such that                                                      

( )PePT 2
1 1−≤ΨΨµ                           (19) 

( )2
1 1 T T

eC L PLC Pτ σ+ ≤                        (20)                                   
2T T T

e e eP C L P LC Pµ τσΨ Ψ + ≤                (21)                                    

 with      ( )1 1/ 1τ µ= + − ,   ( )1 11 1/ 1τ µ= + − .           (22) 

Proof: 

For convenience, we use ( )δ ⋅ to donete ( )kδ η⎡ ⎤⎣ ⎦ .  

From (8), we can get  

( ) ( ) ( )ˆ1 1 1e k x k x k+ = + − +                  (23) 

Then substituting (4) and (13) to the above equation yields  

( ) ( )( ) ( )1 1e k LC e kδ⎡ ⎤+ = Ψ − + ⋅⎣ ⎦           (24) 

From Lemma1, and take into consideration of  (9), (18), (19) 
and (20), we have that for ( )1 1 11, 1 1/ 1µ τ µ∀ > = + −  

( ) ( )ˆ ˆ1 1Tx k Px k+ + =  

( ) ( )( ) ( ) ( ) ( )( ) ( )ˆ ˆ1 1
T

x k LC e k P x k LC e kδ δ⎡ ⎤ ⎡ ⎤Ψ + + ⋅ Ψ + + ⋅ ≤⎣ ⎦ ⎣ ⎦    

( ) ( ) ( ) ( ) ( )2
1 1ˆ ˆ 1T T T T Tx k P x k e k C L PLCe kµ τ δΨ Ψ + + ⋅ ≤⎡ ⎤⎣ ⎦

( ) ( ) ( ) ( )22
1ˆ ˆ1 1T T T Te x Px e k C L PLCe kτ σ− + + ≤

2 21 1e e− + =                                                                       (25) 
By using Lemma1 combined with (24), we have for 

1,µ∀ >  ( )1 1/ 1τ µ= + −  

( )( ) ( ) ( )( ) ( )
T

eLC e k P LC e kδ δ⎡ ⎤ ⎡ ⎤Ψ − ⋅ Ψ − ⋅⎣ ⎦ ⎣ ⎦   

( ) ( ) ( ) ( ) ( )2 TT T T T
e ee k P e k e k C L P LCe kµ τδ≤ Ψ Ψ + ⋅

( ) ( )2T T T T
e ee k P C L P LC e kµ τσ⎡ ⎤≤ Ψ Ψ +⎣ ⎦                (26) 

Therefore, substituting (21) to (26) yields 
( ) ( ) 211 ekePke e

T ≤++                      (27) 

so eS is an ellipsoid invariant set of ( )e k .                            █   

Remark 2: assumption A1) is reasonable, because the linear 
element’s output estimation error can be rewritten as the sum 
of two parts, i.e. error part I and error part II as follows 

( ) ( )( ) ( )( )1 1ˆ ˆ[ ] [ ]
error part I error part

Zeroin Zeroin

II

Ce k Cx f f f f Cxη η η η− −= − = − + −   (28) 

Hence,  it is reasonable to assume that error part I be 
proportional to ( )kCe  in the k th sample time, and the 

proposition ( )δ ⋅  is determined by ( )kη . Moreover, it is 

also reasonable to assume that ( )δ ⋅ is bounded, since if 

enough prior knowledge about the memoryless nonlinear 
block is available, Zeroin algorithm can guarantee the 

accuracy of ( )⋅−1
Zeroinf  [4]. Then the error ( )kCe is mainly 

caused by the state estimator L .                                         █                       

IV. OUTPUT FEEDBACK CONTROL ALGORITHM FOR SYSTEMS 
WITH HARD INPUT CONSTRIANTS 

A. Dual Mode technique and conditions of invariant sets 

For a Wiener-typed system subjected to maxmin uuu ≤≤ , 

we extend ( )x̂ k by auxillary vector 

( ) ( ) ( )[ ]Tn kdkdkD
d

,,1= . Thus, the extended  state vector 

is ( ) ( ) ( )ˆˆ ,
TT Tz k x k D k⎡ ⎤= ⎣ ⎦ .  Then one can design the stable 

output feedback control law as 
( ) ( ) ( )kEDkxKku += ˆ                                (29) 

with [ ]1
1, 0, , 0

dn
E

×
= , ( ) ( ) ( )[ ]Tn kdkdkD

d
,,1= , 

then substituting (14) and (29) to (7) yields                          

( ) ( ) ( ) ( ) ( )ˆ ˆ1 1x k x k BED k LC e kδ+ = Ψ + + + ⋅⎡ ⎤⎣ ⎦      (30)   

where ( )D k is gained by solving the following QP question  

                            

( )
( ) ( )

( ) ( )
( )min max

min

ˆ ˆ 1
. .

T

D k

T

J D k D k

z k Pz k
s t

u u k u

=

⎧ <⎪  ⎨
≤ ≤⎪⎩

                   (31) 

Take the extended state ( )ẑ k  into consideration, we obtain 



 
 

 

( ) ( ) ( ) ( )
1

ˆ ˆ1
0

LC
z k z k e k

δ⎡ ⎤+ ⋅⎡ ⎤⎣ ⎦+ = Ξ + ⎢ ⎥
⎢ ⎥⎣ ⎦

      (32)                                          

with             ⎥
⎦

⎤
⎢
⎣

⎡ +
=Ξ

M
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0
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dd nn
T

I
M

×
⎥
⎦

⎤
⎢
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⎡
=

ϑ
ϑ
0
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[ ]( )1 1
0, ,0

d

T

n
ϑ

− ×
= , 

1

(1, ,1)
dn

I diag
−

=  

Define ellipsoid invariant set of the estimation extended state 

{ }ˆ ˆ ˆ| 1TS z z Pz ≤                               (33) 

where the P  is a positive define symmetric matrix.  
Theorem 2: The linear block of the Wiener-typed system (1) 
is shown as (2) and (3), and the state space expression of the 
observer is given by (7), where the feedback vector gain K  
and the observer gain L  are stable. In addition, the 
assumption A1) is satisfied for the Wiener-typed system (1) 
subjected to the hard input constraints maxmin uuu ≤≤ . 

Then, if the following assumption A3) is satisfied, S  and 

eS  are invariant sets in the sense of (33) and (10), 
respectively. 
A3) There exist ( )1, 1, , Rµ µ µ µ> > ∈  such that 

( )PePT 21~ −≤ΞΞµ                                (34)   

( )21 T T T
x x eC L E PE LC Pτ σ+ ≤                      (35)                                        

                 2T T T
e e eP C L P LC Pµ τσΨ Ψ + ≤                     (36)     

with ( ) ( )1 1/ 1 1 1/ 1τ µ τ µ= + − = + −, , xE  is a transform 

factor such that zEx T
x ˆˆ = . 

Proof: For ( ) Skz ∈∀ˆ , we conclude from (33) and (35) that 

( ) ( ) ( ) ( ) ( ) 22 1ˆˆ1ˆˆ~ ekzPkzekzPkz TT −≤−≤ΞΞµ    (37)                             

For ( ) ee k S∀ ∈ , from (11), (18) and (34), we have  

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 2

2

1 1T T T T T
x x

T T T T
x x e

e k C L E PE LCe k e k

C L E PE LCe k e k Pe k e

τ δ τ σ+ ⋅ ≤ + ⋅⎡ ⎤⎣ ⎦
≤ ≤

 (38) 

Moreover, applying lemma 1, we have 
( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )2

ˆ ˆ ˆ1 1

ˆ1

T T T

T T T T
x x

z k Pz k z k P z k

e k C L E PE LCe k z k S

µ

τ δ

+ + ≤ Ξ Ξ +

+ ⋅ ∀ ∈
    (39) 

Substituting (37) and (38) to (39) yields 

( ) ( )ˆ ˆ1 1 1Tz k Pz k+ + ≤  

Hence, S  is an invariant set of extended state ( )ẑ k  . On 

the other hand, like the proof of theorem 1, we can gain from 
(27) and (36) that eS  is an invariant set.                               █                              
Remark 3[11]: If the input constraints are symmetric, i.e. 

( ) uku ≤ , then  

( ) ( ) ( ) ( ) ( )1/2 1/2ˆ ˆ ˆu k Kx k ED k Kz k KP P z k−= + = = ≤  

( )1/ 2 1/ 2 ˆKP P z k u− ⋅ ≤                                                    (40) 

with [ ]EKK ,=  

From (33), we have           ( )1/ 2 ˆ 1P z k ≤                       (41) 

Then, substituting (41) to (40) yields 

               1/ 2
2

0
TP K

K P u
K u

− ⎡ ⎤
⋅ ≤ ⇔ ≥⎢ ⎥

⎣ ⎦
                  (42)                      

thus, these constraints can be solved offline, which reduces 
the computational load remarkably. Otherwise, i.e. 

( )min max min maxu u u u u≤ ≤ ≠ − , it is required to solve 

these constraints online.                                                                      █ 

 

B. Stability analysis 
Theorem 3: If the following three assumptions are fulfilled 
A4) in initial time, there exist P  and eP  such that (33) and 
(12) are fulfilled respectively;  
A5) each eigenvalue of ( )[ ]⋅+−=Φ δ1LCA  is inside the 
unit circle of the complex plane in Z-domain, where 

( ) ( )0>∃<⋅ σσδ when maxmin uuu ≤≤  

A6) each eigenvalue of Ψ  is inside the unit circle. 
Then our algorithm is always feasible and the system is 
closed-loop asymptotically stable. Moreover, the control law 
(29) will converge to the standard stable output feedback 
control law ( ) ( )kxKku ˆ= . 
Proof: 

From A4)-A6), if in the k th sample time, state 

( ) Skz ∈ .  The definition of S , i.e. (33), implies that there 

must exist ( )1+kD  such that ( ) Skz ∈+1 . From (31), 

one can  obtain ( ) ( )kMDkD =+1 , and the i th  element of 

( )1+kD  equals to the ( )1i + th  element of ( )kD , 

moreover, the dn th element of ( )kMD  is 0. Hence, in the 

k th sample time, if there exists a feasible ( )kD , then in the 

( )1+k th sample time  there must exist a feasible ( )1+kD  

such that ( ) ( ) ( ) ( )kJkDkDkJ T ≤++=+ 111 , where 

( ) ( )kJkJ =+1  only if ( ) [ ]T
nd

kD 100 ×=  . In the 

( )1+k th sample time, it is evident that ( )1+kD  is not 
always the optimized solution, and the optimized solution 

( )1* +kD  gained form ( )1+kJ  will make    

( ) ( ) ( )kJkJkJ ≤+≤+ 11 . 



 
 

 

In this way, the performance index ( )kJ  decreases 

monotonously, and ( )kD will converge to 0 with the 
increase of sample time. In other words, the constrained 
control law EDxKu += ˆ will converge to unconstrained 
stable control law xKu ˆ= . Consider the assumptions A5) 
and A5) combined with Separation Principle[3], we can 
conclude that the closed-loop asymptotical stability of this 
system is guaranteed.                                                                  

█ 

V. CASE STUDY  

Plant:                   ( ) ( ) ( )kBukAxkx +=+1                      (43)                 

                              ( ) ( )kCxk =η                                     (44) 

( ) ( ) ( )[ ] ( )kkkky 54 sin ηηη −=                    (45) 

                               s.t. ( ) 35.1 ≤≤− ku                            (46) 

with ⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
2.13.2

A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

B , [ ]01=C .     

 
Fig.2 Control performance tracking step signals 

Apply the DLQR function of Matlab to design the state 
feedback controller: [ ]1495.14179.2−=K ; meanwhile, 
apply the DLQE function of Matlab6 to design the state 

observer: [ ]TL 3704.00556.1= . Figure 2 shows the 
control performance of tracking {40, -40} double-step 
signals. 

 
Fig.3 Tracks and ellipsoid invariant sets of the state and estimation state 

Parameter settings: 5=dn , 4.0=e , ( ) [ ]Tx 5.20.20 =  

5.1~1.1 ＝，＝ µµ , 1.0=σ . In figure 2, the upper 
subfigure denotes r (dashed-dot line: set points), y (solid 
line: output), and η (dashed line: linear block’s output), 
respectively; the middle subfigure denote u (control 
variable); and the lower subfigures denote ( )1D (the first 

element of D ). These results validate the feasibility of our 
proposed dual-mode control algorithm. However, because the 
constraints are too strict, initially the overshootings are 
something big. But they can be alleviated by enlarging the 
size of the input space or selecting more suitable parameters. 

Figure 3 shows that the tracks and ellipsoid invariant sets 
of x and x̂ , where the solid ellipsoid refers to S with 

5=dn , the dashed ellipsoid is S with 0=dn , the dashed 

lines and circular points are the track of x̂ , and the solid lines 
and starlike points denote the track of x . For convenience, 
only the first 20 states and estimation states are drawn. The 
tracks of x and x̂  begin inside the dashed ellipsoid, then 
enter the solid one only after 6 epochs, and 2 epochs 
respectively. From then on, the standard output control law 
can drive the state to the origin. In this way, the superiority of 
our algorithm is verified. 

 
Fig.4 Tracks and ellipsoid invariant sets of the estimation state error 

 
Fig.5. Ellipsoid invariant sets of the state for different dn    



 
 

 

Figure 4 shows the track and ellipsoid invariant set of the 
estimation error e , where the purple ellipsoid denotes the 

eS (see (10)). The solid lines and starlike points denote the 
track of e . Like figure 3, only the first 20 estimation errors 

are shown. Although the track of ( )e k  starts outside eS , 

only after 3 epochs, this track moves into eS  and then 
asymptotically converges to the origin, which also shows the 
high convergent speed of the algorithm. Therefore, 
Theorems 1 -3 can also be validated by Figures 3 and 4. 

Still worth mentioning is that, as is shown in figure 5, 
S will grow larger along with the increase of dn .However, 
in order to gain satisfactory real-time performances, one can 
not select too big dn . If a tradeoff  dn  between the 
computational load and the size of closed-loop region is 
selected, the control performance of this algorithm will be 
further improved.  
Remark 4: In order to show the superiority of this proposed 
algorithm clearly, state x  and estimation state x̂  in figures 3 
and 5 have been transformed by ( ) ( ) α−= kxkx , and 

( ) ( ) α−= kxkx ˆˆ .This coordinate transform is shown in 
Remark 1.                                                                             █ 

VI. CONCLUSION 
For time-invariant Wiener-typed nonlinear systems 

subjected to hard input constraints, a control algorithm based 
on dual-mode technique is proposed in this paper. Firstly, 
Zeroin algorithm is applied to solve the nonlinear equation. 
Then, the system state is extended and then invariant set 
theorem combined with LMI is used to deal with the hard 
input constraints. To support this algorithm, theoretical 
analyses of the closed-loop stability are given systematically.  

This algorithm has the following three advantages: 1) high 
precision, 2) low online computational load, 3) maximized 
closed-loop stable region. Simulation results on a 
time-invariant Wiener-typed system with hard input 
constraints are performed, which validate the feasibility and 
superiority of this algorithm. 

Also, this algorithm has somewhat limitations. A 
precondition is that some priori knowledge is available about 
the nonlinear block. Otherwise, Zeroin algorithm can not be 
applied. Consequently, in order to eliminate the limitation, 
our future research will focus on a more effective control 
algorithm to eliminate this requirement. 
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