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Abstract

We consider a synthesis problem for a remotely controlled linear system where the communi-
cation is constrained because of the shared and unreliable nature of the channel. Modeling the
constraints by a periodic transmission scheme and random message losses, we present an H∞

design framework and study the limitations in the communication required for stabilization.

1 Introduction

We consider a remote control system in which the plant has multiple sensors and actuators con-

nected to a controller over network channels. In particular, we follow the approach of [12] and

model two constraints due to the shared and unreliable nature of the channels. One is a periodic

transmission scheme under which the sensor/actuator nodes take turns to transmit messages in

a periodic manner. The other constraint is that each transmission is subject to random loss or

delay due to congestion or error in the communication. Here, it is assumed that if a message is

delayed, then it is considered lost. The losses are modeled as Bernoulli processes where the loss

probabilities are a priori known. Further, the controller uses the information regarding the losses

of the messages that it receives as well as those that it sends; the latter is realized by the use of

acknowledgement messages with a one-step delay.

Under this setup, in [12], a synthesis method for stochastic stabilization of linear time-invariant

plants and for optimization under an H∞-type norm criterion has been proposed. It is based on

a necessary and sufficient condition expressed in the form of linear matrix inequalities. Hence,

we can employ efficient algorithms to investigate the effects of the communication constraints on

control performance. Another advantage of this approach is that because of the norm criterion

used in the paper, the design can be viewed as a natural extension of deterministic robust control

methods. We also note that the synthesis method has been found useful in developing subband

coding techniques for networked control [15].
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The focus in this paper is on the limitations in stabilization due to the message losses and

in particular on upper bounds for the loss probabilities above which stabilization cannot be ac-

complished. It turns out that such bounds can analytically be obtained. We emphasize that the

bounds are expressed in terms of the unstable poles of the plant together with parameters in the

communication scheme.

There are two characteristics of the approach in this paper. One is that, by following [20], we

view the remote control system as a special case of Markovian jump systems (see, e.g., [2,16]). This

is a natural approach especially when acknowledgements are available on the controller side. The

other is that we employ the periodic transmission scheme which has been considered in [9, 14,18].

In this paper, we show critical bounds on losses which are generalizations of the results for the

simpler case of SISO plant with single-rate communication.

Similar bounds on critical loss probabilities have appeared in the recent literature. In the con-

text of remote control, early studies on such probabilities include [8,21]. In [3], a synthesis problem

for stochastic stabilization has been considered, and a necessary and sufficient bound for the state

feedback case is found. The result is extended in [4] to various remote control configurations.

One difference from the approach in this paper is that the controllers are limited to deterministic

time-invariant systems. In [10], it is shown in an LQ type problem that the availability of acknowl-

edgement messages has a crucial impact on controller designs and also on the loss probabilities.

This issue is further studied in [7, 22], where LQG problems over lossy channels are investigated.

Also, an estimation scheme with filters on the sensor side has been proposed in [23]. For the case

of nonlinear systems, the treatment of random losses in the channel is studied in [19].

This paper is organized as follows: In Section 2, we introduce a class of stochastic systems and

some definitions. In Section 3, we review the remote control problem considered in [12]. Then, the

stabilization problem of this paper and the main results are presented in Section 4. To illustrate

the results, we provide a numerical example in Section 5. Finally, concluding remarks are given in

Section 6. We note that this paper is an extended version of [11].

2 Periodic systems with random switchings

In this section, we introduce a class of systems called periodic systems with random switchings and

provide some definitions and a preliminary result [12].

Consider the following periodic system G0 with random switchings:

xk+1 = Ak,θ(k)xk +Bk,θ(k)wk,

zk = Ck,θ(k)xk +Dk,θ(k)wk,
(1)

where xk ∈ R
n is the state, wk ∈ R

m is the input, zk ∈ R
p is the output, and θk ∈ IM is the

mode of the system with the index set IM := {0, 1, . . . ,M − 1}. The mode θk is assumed to be an

independent and identically distributed (i.i.d.) stochastic process determined by the probabilities

αi = Prob{θk = i}, i ∈ IM . The system matrices are N -periodic, that is, e.g., Ak+N,i = Ak,i for

each i ∈ IM and k ∈ Z+.
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Let Fk be the sigma-field generated by θ[0,k]. We assume that the input wk is Fk−1-measurable

for each k. Moreover, w is assumed to be in l2 in the sense that E[
∑∞

k=0|wk|2] < ∞, where

the expectation E[ · ] is taken over the statistics of θ. Let the norm of such signals be ‖w‖ :=

E[
∑∞

k=0|wk|2]1/2. We denote by W the space of such signals.

For the system G0 in (1), we employ the following notion of stability. The system (1) with

wk ≡ 0 is said to be stochastically stable if for any initial condition x0,

E
[

∞∑

k=0

|xk|2
∣
∣ x0

]
< ∞.

We next introduce the l2-induced norm of the system G0. Suppose that G0 is stochastically

stable and the initial state is x0 = 0. Then, we define the l2-induced norm of the system as follows:

‖G0‖ := sup
w∈W ,w 6=0

‖z‖
‖w‖ .

In [12], characterizations of the stability and the norm of the system G0 have been obtained.

They are stated in terms of linear matrix inequalities (LMIs). We present the stability result in

the following.

Lemma 2.1 The system G0 in (1) is stochastically stable if and only if there exists an N -periodic

matrix Pk ∈ R
n×n such that Pk = P T

k > 0 and

∑

i∈IM

αiA
T
k,iPk+1Ak,i − Pk < 0 for k ∈ IN , (2)

where IN := {0, . . . , N − 1}.

3 Remote control system and its stabilization

In this section, we first present the remote control system setup that has been studied in [12]. There,

an optimal controller design method under an H∞ norm criterion is proposed. In this paper, we

consider the analytic bounds on the loss probabilities to achieve stabilization of this system.

Consider the remote control system depicted in Fig. 1. The generalized plant G is a discrete-time

system and has a state-space equation of the following form:

xk+1 = Axk +B1wk +B2uk,

zk = C1xk +D11wk +D12uk,

yk = C2xk +D21wk,

(3)

where xk ∈ R
n is the state, wk ∈ R

m1 is the exogenous input, uk ∈ R
m2 is the control input,

zk ∈ R
p1 is the controlled output, and yk ∈ R

p2 is the measurement output. We assume that

(A,B2) is controllable and (A,C2) is observable.

Using a shared communication channel, a remote controller is connected to multiple sensors and

actuators. Due to the bandwidth limitation in the channel, we assume that at each discrete-time
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Figure 1: Remote control over a shared channel

instant, only one of the sensors or actuators can transmit a message over the channel. For efficient

communication under this constraint, the transmission of the messages is periodic and is a priori

fixed. We now describe this scheme.

Let the period be N ≥ p2 + m2. We index the sensors from 1 to p2 and fix the order of

transmissions within the period N as follows: Let the index set be Ip2+1 := {0, 1, . . . , p2}. Then,

introduce the vector s1 ∈ IN
p2+1 called the switching pattern for the sensor side. This specifies that

at time k = lN + r with r = 0, 1, . . . , N − 1, the sensor indexed as s1(r + 1) is allowed to send

a message; if s1(r + 1) is zero, no communication takes place. For example, let N = 5, p2 = 2,

and s1 = [1, 1, 2, 0, 0]. In this case, sensor 1 transmits at k = 0, 1, 5, 6, . . . while sensor 2 transmits

at k = 2, 7, . . ., and there is no communication at k = 3, 4, 8, 9, . . .. Similarly, we introduce the

switching pattern s2 ∈ IN
m2+1 for the m2 actuators; this one determines the periodic transmission

from the controller to the actuators.

We give some notation for the periodic switchings. First, let ep,i ∈ R
p, i = 1, . . . , p, be the

unit vectors given by ep,i := [0 · · · 0 1 0 · · · 0], where the ith element equals 1 and the rest are

zero. Now, the switch boxes S1 and S2 in Fig. 1 are N -periodic matrices defined for k = lN + r,

r = 0, 1, . . . , N − 1, as

S1,k := eTp2,i, if s1(r + 1) = i,

S2,k := em2,j, if s2(r + 1) = j.

The channel is further constrained by being unreliable due to congestion or delay, and hence

transmitted messages randomly are lost. Denote by θ1,k, θ2,k ∈ {0, 1} the stochastic processes for

the message losses, respectively, from the sensors to the controller and from the controller to the

actuators. If θi,k = 0, then the message at time k is lost, and otherwise, it arrives. They are

assumed to be i.i.d. Bernoulli processes determined by

α1 := Prob{θ1,k = 0} and α2 := Prob{θ2,k = 0}

for k ∈ Z+. Letting Fi,k be the sigma-field generated by θi,[0,k], i = 1, 2, we assume that the

disturbance wk is F1,k−1- and F2,k−1-measurable. Further, the disturbance is assumed to be in the

space W as defined in Section 2.

The overall plant G̃ including the switches S1 and S2 and the message loss processes θ1 and θ2

is periodically time varying with period N and with random switchings. The state-space equation
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of G̃ can be expressed as

xk+1 = Axk +B1wk + θ2,kB2S2,kûk,

zk = C1xk +D11wk + θ2,kD12S2,kûk,

ŷk = θ1,kS1,k(C2xk +D21wk).

(4)

In Fig. 1, K is the controller to be designed. We allow it to also be N -periodic. Further, we

assume that the control uk is F1,k- and F2,k−1-measurable. That is, at time k, θ1,k and θ2,k−1

are known to the controller. This is realized by the use of acknowledgements from the actuators

regarding the arrival of the control input uk with a one-step delay.

The controller takes a state-space form as follows:

ξk = Âk−1,θ1(k−1),θ2(k−1)ξk−1 + B̂k−1,θ2(k−1)ŷk−1,

ûk = Ĉk,θ1(k)ξk + D̂kŷk,
(5)

where ξk ∈ R
n is the state whose dimension is the same as that of the plant. The system matrices

are N -periodic in k: For example, Âk+N,i,j = Âk,i,j for k ∈ Z+ and i, j ∈ {0, 1}. Notice that

the state equation is expressed for the recursion at time k. At this point, θ2,k−1 is available at

the controller through an acknowledgement. Thus, while the A- and B-matrices make use of this

information, the C- and D-matrices can not. On the other hand, the B- and D-matrices do not

use θ1,k because θ1,k = 0 means no input, ŷk = 0.

Let the overall closed-loop system in Fig. 1 be Fl(G̃,K). This system is N -periodic and has

random switchings with 4 modes: (θ1,k, θ2,k) = (0, 0), (0, 1), (1, 0), (1, 1). It thus falls in the class of

systems considered in Section 2.

In [12], we have provided an optimal synthesis method under an H∞ criterion. More specifically,

the method solves the following problem: For the system in Fig. 1, given a scalar γ > 0 and switching

patterns s1 and s2, design a controller K of the form (5) such that the closed-loop system Fl(G̃,K)

is stochastically stable and satisfies ‖Fl(G̃,K)‖ < γ. A necessary and sufficient condition for this

problem has been derived in the form of LMIs. Thus, using this method, we can numerically check

whether loss probabilities α1 and α2 are small enough to accomplish stabilization.

4 Limitations in loss probabilities for stabilization

In this section, we present several upper bounds for the loss probabilities in the channel which must

be met to achieve stabilization. Hence, the bounds represent the maximum allowable probabilities.

We show that for some specific setups, the bounds become necessary and sufficient.

For the problem of stabilization, we assume no disturbance, i.e., wk ≡ 0, throughout this section.

Hence, we consider the system setup in Fig. 2. We denote by G22 the (2, 2)-block of the generalized

plant G. To simplify the notation, replace the triple (A,B2, C2) with (A,B,C). Therefore, the

realization of G22 is given by

xk+1 = Axk +Buk,

yk = Cxk,
(6)

5



G22

y

❄
S1

❄
θ1

✲ŷ K
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Figure 2: Stabilization with periodic transmission

where xk ∈ R
n, uk ∈ R

m2 , and yk ∈ R
p2 . We assume that A is an unstable matrix, that is, it has

at least one eigenvalue whose absolute value is larger than 1. Denote by λi, i = 0, 1, . . . , n− 1, the

eigenvalues of A.

Here, due to the channel on the sensor side, the measurement ŷ that the controller receives is

ŷk = θ1,kS1,kyk,

where the behavior of the switch box S1 is determined by the switching pattern s1. The control

signal û transmitted by the controller and the received signal u at the actuator side are related by

uk = θ2,kS2,kûk. (7)

Similarly, the periodic switch box S2 is specified by the switching pattern s2.

In the following, we study three different configurations and derive upper bounds for the loss

probabilities.

4.1 State feedback under single rate transmission

The first is the state feedback case with a single-rate channel on the actuator side.

In the system in Fig. 2, assume C = I in (6) and α1 = 0 (that is, θ1,k ≡ 1). The transmissions

are assumed to be single rate in that Si,k ≡ I for i = 1, 2; we thus take N = 1. Furthermore, we

assume that the plant is single input (m2 = 1). Hence, the control input in (7) becomes

uk = θ2,kFxk, (8)

where F ∈ R
1×n is the state feedback gain matrix. Recall that θ2,k ∈ {0, 1} is the loss process

determined by α2 = Prob{θ2,k = 0} for k ∈ Z+.

The following proposition provides an upper bound for the loss probability α2. This result has

been given in [3].

Proposition 4.1 For the system G22 in (6), there exists a state feedback gain F in (8) such that

the closed-loop system is stochastically stable if and only if the loss probability α2 is sufficiently

small that

α2 <
1

∏

|λi|>1|λi|2
. (9)
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The proof of this proposition is given in the Appendix. The approach in this paper is based on

jump systems results using Lemma 2.1. We have clarified the critical loss probabilities in terms of

the inequality arising in stochastic stability of such systems (see Lemma A.1 (ii)).

The result indicates that the unstable poles of the plant have a direct influence on the allowable

loss rates in the channel for stochastic stability. The bound above has been found in [3], where the

relation between state feedback stabilization over an unreliable channel and an optimal quantizer

design problem has been discussed.

4.2 Remote control with periodic transmission

In this subsection, we consider the remote control case with the periodic transmission scheme

introduced in Section 3.

Consider the system in Fig. 2. Here, the controller K is limited to the observer-based one as

follows:

ξk = Aξk−1 +Buk−1 + Lk−1,θ2(k−1) (θ1,k−1S1,k−1Cξk−1 − ŷk−1) , (10)

ûk = Fk,θ1(k)ξk,

where ξk ∈ R
n, and Fk,θ1(k) and Lk,θ2(k−1) are the feedback and observer gains, respectively. These

gains are N -periodic as, e.g., Fk+N,i = Fk,i for all k and i.

We first consider the case when G22 is SISO. Note that in this case, the switch boxes S1 and S2

take values of either 0 or 1 and hence function as discrete-time periodic samplers. Their periodic

behaviors are specified by the switching patterns si ∈ {0, 1}N , i = 1, 2. We denote by Ni the

number of 1 in the pattern si for i = 1, 2. As a special class of switching patterns, we introduce

those called periodic vectors which take the following form:

si = [

N/Ni

︷ ︸︸ ︷

1 0 · · · 0 · · ·
N/Ni

︷ ︸︸ ︷

1 0 · · · 0] ∈ R
N . (11)

Some simple examples are si = [1 0 · · · 0] when Ni = 1, and si = [1 · · · 1] when Ni = N .

We are now ready to state the result on the loss probabilities for this setup.

Proposition 4.2 Suppose the switching patterns s1 and s2 ∈ {0, 1}N are in the periodic vector

form in (11), and have, respectively, N1 and N2 entries of 1. Then, for the system G22 in (6), there

exists a controller K of the form (10) such that the closed-loop system is stochastically stable if

and only if the loss probabilities α1 and α2 satisfy

α1 <
1

∏

|λi|>1|λi|2N/N1

, (12)

α2 <
1

∏

|λi|>1|λi|2N/N2

. (13)

Proof : Let the estimation error be ek := xk − ξk. The closed-loop dynamics can be expressed as

xk+1 = (A+ θ2,kBS2,kFk,θ1(k))xk − θ2,kBS2,kFk,θ1(k)ek, (14)

ek+1 = (A+ θ1,kLk,θ2(k)S1,kC)ek. (15)

7



The error system (15) is decoupled from the state xk and in particular from the loss process θ2,k.

Using this fact and the structure in the switching pattern s1, we can show by Lemma 2.1 that

to guarantee stochastic stability of this system, it is necessary and sufficient that there exists an

observer gain that is independent of k and θ2,k. The resulting system ek+1 = (A + θ1,kLS1,kC)ek

is periodic with period Ñ1 := N/N1.

We now look at its dual system zk+1 = (AT + θ1,kC
TS1,kL

T )zk with zk ∈ R
n and express it in

the so-called lifted form as follows: Let z̃k = zkÑ1
. Then, the lifted system is

z̃k+1 =
[

(AT )Ñ1 + θ1,kÑ1
(AT )Ñ1−1CTLT

]

z̃k.

Thus, by Proposition 4.1, there exists a stabilizing gain LT if and only if

Prob{θ1,kÑ1
= 0} <

1
∏

|λ̃i|>1|λ̃i|2
,

where λ̃i, i = 0, 1, . . . , n − 1, are the eigenvalues of AÑ1 . However, since the loss process θ1,k is

i.i.d., the inequality above is equivalent to (13).

Similarly, we can show that the autonomous system xk+1 = (A + θ2,kBS2,kFk,θ1(k))xk of (14)

can be stabilized if and only if (12) holds. This implies that a necessary and sufficient condition to

stabilize the closed-loop system via output feedback is that the inequalities (12) and (13) hold. �

This proposition is a generalization of Proposition 4.1 in two directions. First, it extends the

result for the periodic transmission scheme. In particular, it shows that the loss probabilities are

constrained by both the unstable dynamics of the plant as well as the parameters N , N1, and N2

in the communication scheme. The implication is the tradeoff between control performance and

transmission rate. This tradeoff will also be clarified through a numerical example in Section 5.

Second, the proposition is for the remote control setup with two communication channels.

An interesting aspect of the result is that the probabilities α1 and α2 for the two channels can be

chosen independently and further have the same type of maximum for stabilization. It can be shown

that these characteristics are consequences of the use of acknowledgement messages; without such

messages, the controller design is no longer convex and the analysis becomes much more involved

(see, e.g., [13]).

For the single-rate case, similar problems have been considered in the literature. In [4], the

controller is assumed to be time invariant, and the approach involves the simultaneous design of a

controller and a decoder on the actuator side; the issue of decoder design is considered in the next

subsection. Another work is [22], where an LQG problem is studied for remote control.

We next consider the case where the plant G22 is an MIMO system. The following result is

based on Proposition 4.2 and a result in [12].

Proposition 4.3 Suppose the switching patterns s1 ∈ IN
p2+1 and s2 ∈ IN

m2+1 have, respectively,

N1 and N2 nonzero entries. Then, for the system G22 in (6), there exists a controller K of the form

(10) such that the closed-loop system is stochastically stable only if the loss probabilities α1 and

8



α2 satisfy

α1 <
1

max|λi|>1|λi|2N/N1

, (16)

α2 <
1

max|λi|>1|λi|2N/N2

. (17)

The bound on α1 above is also sufficient if C is invertible, and the bound on α2 is sufficient if B is

invertible.

Proof : As in the proof of Proposition 4.2, the output feedback problem can be separated to the

state feedback and state estimation problems. Hence, we prove only for the state feedback problem.

For this case, we assume s1 = [1 · · · 1] and θ1,k ≡ 1. It then follows that the control input is

uk = θ2,kS2,kFk,1xk. (18)

Further, without loss of generality, we assume that s2 has the form s2 = [1 · · · 1 0 · · · 0], where

the first N2 entries are 1 and the rest are 0.

We express the system using the lifting technique. Let x̃k := xkN , and let ũ denote the lifted

signal of u:

ũk :=








ukN
ukN+1

...
ukN+N−1







, k ∈ Z+.

Then, the lifted state equation of the plant can be written as

x̃k+1 = Ãx̃k + B̃ũk,

where Ã := AN and B̃ :=
[
AN−1B AN−2B · · · B

]
. Observe that, by the assumption on s2 and

by (18), we can write ũk as

ũk = F̃θ2(kN),··· ,θ2(kN+N2−1)x̃k, (19)

where

F̃θ2(kN),··· ,θ2(kN+N2−1) :=















θ2,kNF0,1
...

θ2,kN+N2−1FN2−1,1

(
A+ θ2,kN+N2−2BFN2−2,1

)

· · ·
(
A+ θ2,kNBF0,1

)

0
...
0















.

Here, we used the facts that Fk,i is N -periodic in k and θ1,k ≡ 1. Notice that in the lifted form,

the closed-loop system is no longer periodic. In this form, on the other hand, the loss process is

(θ2,kN , · · · , θ2,kN+N2−1), for which there are 2N2 modes for each k.

9



It is clear that the stochastic stability of the original system implies that of the lifted system.

Furthermore, it follows that there exists a gain F̃1,...,1 such that stability is achieved by the following

control:

ũk =

{

0 if θ2,kN+i = 0, ∀i ∈ {0, . . . , N2 − 1},
F̃1,...,1x̃k otherwise

for k ∈ Z+. Under this control, the system has only 2 modes, and the loss probability is

Prob {θ2,kN+i = 0, ∀i ∈ {0, . . . , N2 − 1}} = αN2

2

for k ∈ Z+. Hence, applying Lemma 2.1 to this system (with N = 1 in the lemma), we have that

there exist a positive-definite matrix P ∈ R
n×n and a gain F̃1,...,1 ∈ R

m2×n such that

αN2

2 ÃTPÃ+ (1− αN2

2 )(Ã+ B̃F̃1,...,1)
TP (Ã+ B̃F̃1,...,1)− P < 0.

Thus, it follows that

αN2

2 <
1

max|λ̃i|>1|λ̃i|2
,

where λ̃i, i = 0, . . . , n− 1, are the eigenvalues of Ã. Therefore, we arrive at (17).

To show sufficiency for the case when B is invertible, we can take the feedback gain as Fk,1 =

−B−1A. Then, the closed-loop system with the lifted state x̃k = xkN is described as

x̃k+1 = (1− θ2,kN) · · · (1− θ2,kN+N2−1)A
N x̃k

It easily follows from Lemma 2.1 that this system is stochastically stable if and only if there exists

a matrix P > 0 satisfying αN2(AN )TPAN − P < 0. This is a Lyapunov inequality, and hence this

condition is equivalent to (17). �

We emphasize that in this proposition, the switching patterns are not limited to those in the

periodic vector form as in Proposition 4.2. The bounds however are stated in a very similar form.

On the other hand, in general, the result is a necessary condition and thus may be conservative.

It is also remarked that this proposition is a generalization of the single-rate version (that is, with

N = 1) that has appeared in [10,12,17,21,22]; see also [23].

4.3 Remote control with a decoder

So far, we have assumed that on the actuator side, when a message is lost, only zero control is

applied. It indeed appears that there might be some room to improve. In this subsection, we

employ a decoder which is a system located at the actuator side to compensate the losses as well

as the periodic transmission. It however turns out that for the purpose of stabilization, the use of

such a decoder does not provide advantage.

Consider the system configuration in Fig. 3. Again, assume that the plant G22 is an SISO

system. Further, we take the switching patterns of both channels in the periodic vector form as in

(11). Recall that in Proposition 4.2, the bounds on the loss probabilities are tight for such cases.
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Figure 3: Decoder on the actuator side

At the actuator side, a decoder D is used. This is a dynamic, N -periodic system that depends

on the losses θ2,k and outputs the control input uk. Specifically, it has a state-space form as follows:

ηk+1 = AD,kηk +BD,kuk,

ζk = CD,kηk,

uk = θ2,kS2,kûk + (1− θ2,kS2,k)ζk,

(20)

where ηk ∈ R
nD is the state and ζk ∈ R is the control candidate produced in the decoder. The

system matrices are N -periodic. We assume that this system is internally stable in the sense that

if θ2,k ≡ 0, then ηk → 0 as k → ∞. This guarantees stability in the local feedback of the decoder.

Notice that the control candidate ζk is used when a message is lost or when there is no trans-

mission. A simple example of a decoder is the one-step delay case, where the decoder functions as

a zero-order hold: If a message is not received, then the previous control value is used.

The following result provides a necessary condition for the case with a decoder.

Proposition 4.4 Suppose that for given switching patterns s1 and s2 in periodic vector forms in

(11), the closed-loop system in Fig. 3 with the controller K in (10) and the decoder D in (20) is

stochastically stable. Then, the loss probabilities α1 and α2 satisfy the inequalities in (12)–(13).

Proof : As in the proof of Proposition 4.2, the proof can be separated to the state feedback part

and the estimation part. The estimation part is the same as in the proposition, and thus the upper

bound (12) on α1 follows. We hence show the state feedback part assuming θ1,k ≡ 1.

Letting x̄k := [xTk ηTk ]
T , we can describe the dynamics of the closed-loop system under the state

feedback ûk = Fk,θ1(k)xk as follows:

x̄k+1 =
(
Āk + θ2,kB̄kS2,kF̄k

)
x̄k,

where

Āk :=

[
A BCD,k

0 AD,k +BD,kCD,k

]

, B̄k :=

[
B

BD,k

]

, F̄k :=
[
Fk,1 −CD,k

]
.

Let Ñ2 := N/N2. Then, noting that S2,k = 0 if k 6= lÑ2, l ∈ Z+, we can lift this system with the

lifted state variable x̃k := x̄kÑ2
as

x̃k+1 =
(

Ã+ θ2,kÑ2
B̃F̃

)

x̃k,

11



where Ã := ĀÑ2
· · · Ā0, B̃ := ĀÑ2

· · · Ā1B̄0, and F̃ := F̄0. Hence, applying Proposition 4.1 to the

lifted plant (Ã, B̃), we have that the closed-loop system is stochastically stable only if

α2 <
1

∏

|λ̃i|>1|λ̃i|2
, (21)

where λ̃i, i = 0, 1, . . . , n + nR0
, are the eigenvalues of Ã. However, the matrix Ã is upper block

diagonal where the diagonal blocks are AÑ2 and (AD,Ñ2−1+BD,Ñ2−1CD,Ñ2−1) · · · (AD,0+BD,0CD,0).

By the assumption on the decoder, the latter matrix is stable. Thus, (21) is equivalent to (13). �

We have several remarks regarding this proposition. The decoder is an N -periodic system and

can be viewed as a generalized hold device. It interpolates the control input when messages are

lost or when no transmission is made. Clearly, this result and Proposition 4.2 imply that, from the

perspective of stabilization, such decoders are not of help. In fact, it is sufficient to use zero control

when no message is received by the actuator.

It is however still not clear whether the use of a decoder can improve the performance of the

overall system. In the numerical example in the next section, we make comparisons using an H∞

design method. It is also noted that, in general, the design of the decoder D together with the

controller K is a difficult problem.

5 Numerical example

We present a numerical example to illustrate the results of the paper. We consider the system

setup in Fig. 1 and apply the H∞ design method introduced in Section 3.

As the generalized plant G in Fig. 1, we employ the second-order system as follows:

xk+1 =

[
2 0
0.7 1.1

]

xk +

[
1
1

]

wk +

[
1
2

]

uk,

zk =
[
0.5 −1

]
xk + uk,

yk =
[
1 −2

]
xk + wk.

(22)

The system is clearly unstable with eigenvalues λi = 1.1, 2, i = 1, 2. We note that the subsystem

G22 is SISO.

In the first part of this example, we assumed perfect transmission on the actuator side and

looked at the effect of the switching pattern s1 with N = 3. Three cases were considered: s1 =

[1 0 0], [1 1 0], [1 1 1]. According to Proposition 4.2, the maximum loss probabilities for α1 can be

derived for the following two cases: For s1 = [1 0 0], the bound is 1/(λ1 · λ2)
6 = 0.00882, and for

s1 = [1 1 1], it is 1/(λ1 · λ2)
2 = 0.207. The pattern s1 = [1 1 0] is not in the periodic vector form

(11), and hence the proposition is not applicable. We however calculated the probability value

similarly to the one given in the proposition: 1/(λ1 · λ2)
3 = 0.0939.

A plot showing the minimum H∞ norm versus α1 is given in Fig. 4. It is interesting to note

that, for all three cases including s1 = [1 1 0], the closed-loop norms explode exactly at the bounds.

This plot exhibits a clear tradeoff between the achievable control performance and the transmission

rate: More transmissions at lower loss rate imply better control.

12



0 0.05 0.1 0.15 0.2

10
2

10
3

10
4

γ

α1

Figure 4: The minimum norm versus α1 for s1 = [1 0 0] (dash-dot), s1 = [1 1 0] (dashed), and
s1 = [1 1 1] (solid)

In the second part of simulations, we assumed a channel only on the actuator side with the

switching pattern s2 = [1 0] and perfect communication on the sensor side. We designed dynamic

controllers of the form (5) for three cases: State feedback, output feedback, and output feedback

with the zero-order hold type decoder (i.e., it functions as a one-step delay). In these cases, the

upper bound on α2 is 1/(λ1 ·λ2)
4 = 0.0427 by the results in Section 4. We note that the dimension

of the controller is different for the one with the decoder since it was designed for the generalized

plant including the decoder.

For each α2, the minimum H∞ norm for the closed-loop system was calculated. The results are

plotted in Fig. 5. The norms indeed explode as α2 approach the upper bound. It is interesting to

note that, for this example, the performance of the system with the decoder is worse especially for

large α2. This may be explained as follows: As α2 becomes larger, so does the feedback gain, and

hence the chance to apply a wrong control is higher.

6 Conclusion

In this paper, we have considered the problem of stabilization of a linear system over shared and

unreliable channels. We have shown that there are critical probability values for the losses above

which stability cannot be achieved. The implication is the tradeoff between control performance

and transmission rate for the communication. The approach is based on the H∞ design method

proposed in [12].
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A Appendix

We provide the proof of Proposition 4.1. This proof consists of two steps. The next lemma is the

key to relate the state feedback problem to another problem arising in H∞ control.

Lemma A.1 The following are equivalent:

(i) The closed-loop system of (6) and (8) is stochastically stable.

(ii) There exists a positive-definite matrix P ∈ R
n×n and a gain F ∈ R

1×n such that

α2A
TPA+ (1− α2)(A +BF )TP (A+BF )− P < 0. (23)

(iii) There exists a positive-definite matrix P ∈ R
n×n such that

ATPA− P −ATPB

(
1

1− α2
+BTPB

)−1

BTPA < 0,

1

α2
−BTPB > 0.

(24)

(iv) There exists a state feedback gain F such that

∥
∥F (zI −A−BF )−1B

∥
∥ <

1√
α2

,

where ‖·‖ is the H∞ norm of a transfer function.
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Furthermore, if the condition (iii) holds for some P , then the inequality (23) in (ii) holds with the

same P and the gain F given by

F = −
(
BTPB

)−1
BTPA.

Proof : The equivalence between (i) and (ii) is a direct consequence of Lemma 2.1. We next show

that (ii) holds if and only if (iii) does. The inequality (23) in (ii) is equivalent to the following one:

ATPA− P + (1− α2)
(
F + (BTPB)−1BTPA

)T
BTPB

(
F + (BTPB)−1BTPA

)

− (1− α2)A
TPB(BTPB)−1BTPA < 0. (25)

This is shown by expanding (23) and then completing the square for F . Hence, (ii) is equivalent

to the existence of P > 0 such that

ATPA− P − (1− α2)A
TPB(BTPB)−1BTPA < 0. (26)

Now, suppose that (ii) holds, that is, the inequality (26) above holds. This inequality can be

expressed as

ATPA− P −ATPB

(
α2

1− α2
BTPB +BTPB

)−1

BTPA < 0.

We also note that the inequality (23) holds for any scaling µP of P with positive real µ. Thus,

there exists µ such that µ < (α2B
TPB)−1, but sufficiently close to (α2B

TPB)−1 that satisfies

ATµPA− µP −ATµPB

(
1

1− α2
+BTµPB

)−1

BTµPA < 0.

Therefore, for µP , the inequalities (24) in (iii) hold.

To show the converse, observe that the second inequality in (24) implies

(1− α2)
(
BTPB

)−1
>

(
1

1− α2
+BTPB

)−1

.

Hence, for P satisfying (24) in (iii), the inequality (26) also holds. This implies (ii). More-

over, the last statement of the lemma holds true since, in view of (25), P and the gain F =

−(BTPB)−1BTPA satisfy the inequality (23).

The equivalence between (iii) and (iv) can be shown using the standard H∞ control theory;

see, e.g., [1]. �

The H∞ control problem in (iii) in the lemma has appeared in the context of quantized control

with logarithmic quantizers [5, 6]. The following result is from [6, Lemma 2.4], which provides an

analytic bound for the problem.

Lemma A.2

inf
F

∥
∥F (zI −A−BF )−1B

∥
∥ =

∏

|λi|>1

|λi|,

where the infimum is taken over F such that A+BF is stable.

The proof of Proposition 4.1 now follows immediately from Lemmas A.1 and A.2. We note that

Lemma A.1 provides a method to design the feedback gain F for each α2 satisfying the bound (9).
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