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ABSTRACT

Supervisory control of switching control systems

Mani Mesgarpour Tousi

In this thesis, we show that the problem of designing a switching policy for an adaptive switch-
ing control system can be formulated as a problem of Supervisory Control of a Discrete-Event
System (DES). Two important problems in switching control are then addressed using the
DES formulation and the theory of supervisory control under partial observation. First we
examine whether for a given set of controllers, a switching policy satisfying a given set of
constraints (on the transitions among controllers) exists. If so, then we design a minimally
restrictive switching policy. Next, we introduce an iterative algorithm for finding a minimal
set of controllers for which a switching policy satisfying the switching constraints exists. In
our study we show that in the supervisory control problem considered in this thesis, limitation
on event observation is the factor that essentially restricts supervisory control. In other words,
once observation limitations are respected, limitation on control will be automatically satis-
fied. We use the above result to simplify our iterative algorithm for finding minimal controller

set.
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“I have looked at life for the first time through the eyes of my soul, and what I discovered
about life astounded me. You see, for many years I was in search of myself. I was capable of
avoiding myself, thus avoiding the truth about myself. Then the day came when I no longer
wanted to avoid the truth. I wanted to confront it and when I did, what I found was what I was
in search of all those restless years... my soul.” -Peter Caine
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Chapter 1

Introduction

1.1 Switching Control

Recently switching control schemes have been developed to accomplish a wide variety of tasks
for which the traditional adaptive control is not applicable, [15], [19], [16], [18], [20], [21],
[21, [4], [6], [5], [25], [1]. In fact, when variation of system parameters is large, the traditional
adaptive control is not effective, however, the switching control can be used to achieve the
adaptive control objectives. Switching control is applied to a variety of applications such as

fault recovery with finite number of failures, [12].



A switching control scheme for a family of plant models is studied by Miller and Davi-
son in [16], in which it is assumed that the plant model always belongs to a finite set of known
models called the family of plant models. A sudden change from one-plant model to another in
the set represents variation of system parameters. There, it is also assumed a high-performance
controller is designed for each member of family of plant models. Controller design is such
that each controller stabilizes only its corresponding plant model and destabilizes all the oth-
ers. Suppose initially, the current controller stabilizes the plant. If the plant model changes,
after a bounded time, instability is detected and as a result, the system switches to another
controller. If the resulting plant/controller pair is unstable, the system will switch to another

controller. This is repeated until a stabilizing controller is found.

Throughout this thesis, switching to a controller that stabilizes the system is referred to
as a “stable switching” and switching to a controller that destabilizes the system is called an

“unstable switching”.

Switching through a number of destabilizing controllers before locking onto the correct
controller makes the transient response poor which is one of the main problems in switch-
ing control methods. Having p number of plant models, it can be easily verified that in the
worst case, p — 2 unstable switchings may occur before the correct controller is found. The ‘

switching control structure introduced in [16] is referred to as a single-layer structure, since it



is composed of only one set of controllers. A multi-layer structure proposed in [11] can po-
tentially reduce the number of unstable switchings. In this setup, the first layer controllers are
the high-performance controllers similar to those in the single-layer structure. The n' layer
(1 < n < p) consists of a set of simultaneous stabilizing controllers, such as C;;,. ;, (with
i1,12,. .., being n distinct integers) that stabilizes plants P;,,P;,,...,P;, and destabilizes all
other ones. Although there are at most p layers of controllers for a family of p plant models,
it can be shown that only p — 2 layer of controllers are required in a multi-layer structure to

minimize the number of unstable switchings [11].

In [23], [24] and then in [25] and [10], a high level controller called “supervisor” for
a family of controllers is introduced to solve the reference tracking problem of a plant with
unmodeled dynamics. In this work the plant models are assumed to be Single Input Single
Output (SISO) and linear. The supervisor’s role is choosing one controller at each time instant
to stabilize the system. The controllers are compared based on a norm-squared output estima-
tion error used as performance signal [11]. This switching control method can deal with the
cases that the uncertainties are not sufficiently small for linear feedback systems to stabilize.
Potential examples include parametric uncertainties, unmodeled dynamics, and exogenous

~ disturbances.

Switching control can be used for both discrete-time and continuous-time systems. The

application of computers and sampled-data systems has grown in practical control systems.
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This is due to the fact that computers and digital circuits can be easily programmed and used
in different environments. Problems arise in the presence of unmodeled or changing dynamics.
When classical adaptive control methods fail to stabilize such discrete-time systems, discrete-
time switching control can potentially stabilize the system. In [3] a discrete-time supervisory
control is given for tracking the reference input of a family of plants. The switching method
of [25] is modified for discrete-time models in this paper. This method guarantees globally

bounded states and zero-offset tracking.

Switching control is an alternative to classical adaptive control methods with the follow-
ing pros and cons. First, it is effective for stabilizing non-minimum phase systems. Secondly,
switching control design is generally simpler than the conventional adaptive control counter-
parts because the design stage has only two steps: designing a set of candidate controllers
solving the robust servomechanism problem [5], [7] for all possible plant models, and then
applying a proper switching mechanism. Furthermore, switching control can be applied to
the systems with unknown high-frequency gain sign and also unknown relative degree [26],
[27]. More importantly, switching methods are very useful for highly uncertain systems that
are known to be difficult to control by applying traditional adaptive techniques. The overall
performance of switching controllers depends on each individual controller and the switching
mechanism. Moreover, in the presence of any error in polarity of the input or output signals

as well as any type of fault, switching control methods are proven efficient [12].



However, bad transient response is the main disadvantage of switching control in gen-
eral. This is due to the fact that the system may switch through several non-matching con-
trollers that fail to stabilize the system and cause undesirable overshoot in the output signal
before locking onto the correct, matching controller. Several methods have been proposed to

tackle this shortcoming of switching control [28], [17], [11].

The proposed algorithm in [11] for switching between the controllers of different layers
guarantees that no more than one unstable switching occurs before the correct controller in
the first layer is found. This method utilizes different layers of controllers with different
properties. That is an extension of the switching method introduced in [16], which assumes
that the set of plant models {P;:i=1,2,...,p} is given and upper-bounds on the disturbance
and reference input magnitudes are available. It is also assumed that each plant is controllable
and observable. The plant may change slowly and the changes of the plant are unknown. When
a change in the dynamics of plant or any other parameter like polarity occurs, the switching
system intelligently chooses an ordered subset of the set of all controllers, switches through
them one by one and waits for a finite time on each controller until stability or instability
is sensed. It is to be noted that the proposed multi-layer architecture can be applied to any
switching mechanism that does not switch more than once to each controller. In other words,
one can use switching control methods other than the one given in [16] as long as it has the

above mentioned property.



The issues and challenges in switching control could be summarized as follows.

i Designing a family of different controllers to stabilize a subset of the plant models.

ii Choosing the appropriate switching time according to the plant models and the con-

trollers.

iii Selecting the switching method and the order of controllers by a top level supervisor.

iv Reducing the large transient response that occurs mainly due to switching through desta-

bilizing controllers.

1.2 Thesis Motivations and Contributions

In this thesis, we examine the multi-layered switching control of [11]. In the switching control
problem, it would be desirable to impose restrictions on transitions. For instance, to maintain
the quality of the transient response, one may want to limit the total number of unstable tran-
sitions before the system locks onto the correct controller in the first layer. We refer to a
switching policy that can find the correct controller without violating the desired restrictions

on the transitions a proper switching policy.



The number of controllers in a multi-layer structure grows exponentially with the num-
ber of plants p. In practice, designing all of these controllers can be cumbersome and some-
times impossible. Furthermore, only a subset of all possible controllers may be sufficient to

achieve the objectives, i.e. to meet the design specifications for transitions.

Motivated by the above observations, in this thesis we address the following two prob-

lems:

1 Designing a top level supervisor (switching policy) to ensure that the design specifica-

tions (restrictions on transitions) can be met.

2 Finding a minimal set of controllers for which a switching policy satisfying the design

specifications exists.

The solution on the first problem solves issue (iii) and also helps with solving issue (iv)
discussed in the previous section. The solution to the second problem simplifies the task of

controller design (issue (i) in the previous section).

In this thesis, we show that the problem of designing a proper switching policy can be
formulated and solved as a problem of Supervisory Control of Discrete Event Systems (DES)

under partial observation in the Ramadge-Wonham framework [29].



The DES control is a research area applied to a wide range of application domains such
as information systems, manufacturing systems, traffic management, communication proto-
cols, and logistic (service) systems. In the Supervisory Control framework proposed by Ra-
madge and Wonham [29], the DES is modeled as a generator of a formal language, which can
be controlled by an external supervisor by the enablement or disablement of certain events
(transitions). The supervisor enables or disables events to restrict the system behavior in order
to satisfy a variety of criteria. Safety specifications like the avoidance of prohibited regions of

state space, or the observation of service priorities are among the criteria.

After translating the problem of designing switching policy to a problem of supervisory
control of a DES, the problems of designing switching policy and finding a minimal set of
controllers are solved. One of the main advantages of solving the problem in the framework
of supervisory control of DES is that this framework provides a systematic method to represent
various design specifications and to solve the corresponding problems. Note that for instance,
the switching policy provided in [11] is only applicable to the cases where we have the single
specification of having at most one unstable switching. The approach in this thesis is suitable

for dealing for various types of specifications.

In this thesis, we propose an iterative procedure to find a minimal set of controllers
for which a proper switching policy exists. In our study of supervisory control of switching

control systems we show that limitations on event observation are the factors that essentially



restrict supervisory control. In other words, once observation limitations are respected, lim-
itations on control will be automatically satisfied. We use the above result to simplify our

iterative algorithm for finding a minimal controller set.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2 the fundamentals of supervisory control of
DES are presented. In this chapter, we cover the definitions and results used throughout the
thesis. This chapter also briefly discusses the software package TTCT used in designing DES

supervisors.

In Chapter 3, switching control is reviewed. This chapter contains a brief review of

single-layer and multi-layer switching control which helps us in subsequent chapters.

In Chapter 4, we show how the problem of designing switching policies can be converted

to a problem of supervisory control of a DES.

After the conversion procedure, in Chapter 5, we provide solutions to the problems of

designing switching policies and finding a minimal controller set.



In Chapter 6, we summarize the contributions of the thesis and discuss future research.
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Chapter 2

Overview of Supervisory Control

Ramadge and Wonham (RW)[29]proposed a framework to model and construct supervisory
controllers for Discrete Event Systems (DES). The objective in this framework is to design
a supervisor (controller) for a given plant so that the plant under supervision satisfies given
design specifications. This solution treats the controller and the open-loop plant separately,

while other previous approaches only deal with the closed-loop system models.

Computational complexity for large-scale systems is the main challenge in this frame-
work. However, by using techniques such as decomposition and distributed modeling and

control, this problem can be mitigated. In this chapter, a brief review of the RW supervisory

11



theory is provided.

2.1 Languages

Let  represent an alphabet, and L C =* a language. If s = tu, where 5,7,u € X* t,u are called

a prefix and a suffix of s, respectively. Denote the prefix-closure of L with L. In other words,

L={seZ*|Fr ez (stel)}

L is called prefix-closed (or simply closed) if L = L. For two languages L, M CX*, L is

called M-closed if L =LNM [29].

Two languages, L1 and L, are nonconflicting ([29]) if

LinL,=LiNnL,

Example 2.1 Let T = {p2,c1,c2,¢12,05} be an alphabet. Then the set of finite sequences

12



Lgig,Lg1p,LEic and Lg1c ©X°

LE1a = {P2€1205€205}

Lg1p = {&, p2, P2¢12, P2€120s, P2C1205C2, P2C1205C2 05}

Lgic = {p2c1205¢205, 05}
are languages over alphabet L. p; and ¢, G, for instance, are a prefix and a suffix of p2¢1205¢2 0y,
respectively. Moreover, Ly, is the prefix-closure of L1, i.e. Lgyp = Le1qa. Because Lgy, #
LEg1a, LE1g is not a closed language. However Lgy, is Lg1.—closed, since Lg1qa = Le1aNLE1C-

In addition, Lgyp, is closed, since its prefix-closure is the same as itself. Lgi, and Lg1p are

nonconflicting, since

Le1aNLg1p = {€, P2, P2€12, P2C120s, P2€1205C2, P2C1205€20s } = LE1a N LE1S

2.2 Automata

In Ramadge-Wonham (RW) framework [29], it is assumed that the DES plant can be repre-

sented by a (deterministic) Finite State Automaton (FSA)

G = (Qaza 6aq0an)

where Q and ¥ are the finite state set and the event set, respectively. 0 represents the transition
partial function 8 : O x £ — Q. g¢ and O, C Q are the initial state and the marked state set,

13



respectively.

The closed behavior, denoted by L(G), represents all possible event sequences taking G

from the initial state to some reachable state:

L(G) := {s|s € *,6(q0,5)!}

Here 8(qo,s)! means that 6(qo,s) is defined. The marked behavior defined as

Ln(G) = {sls € L(G),(q0,5) € On}

represents the set of all possible event sequences taking G from the initial state to some marked

state.

2.2.1 Nonblocking Property

One of the main issues in the study of DES is the blocking property. A system is called
blocking if either it can reach an unmarked state from which there is no transition going out
(which is called a deadlock) or the system can reach a set of strongly connected unmarked
states and there is no transition going out of this set (which is called a livelock). Therefore a
(deterministic) DES is called nonblocking if L,(G) = L(G). In other words, G is nonblocking

if from every state reachable from g in G there is a path to a marked state.

14



Example 2.2 Let the following DES Gg2 = (0,2, 8,90, Om) be shown as in Figure 2.1. Here

Om = {6}, q0=0, = {p2,c1,¢2,¢12, Os, 0, }. The marked state 6 is identified by an outgoing

P2 G C12 O 2 g
OO O O O e Oons O
%
), ®

Figure 2.1: Ggy DES model on Example 2.2

arrow.

We have Ly, (Gg2) = {p20uc12¢205}. GEy is blocking since state 8 is a deadlock.

2.2.2 Operations on Automata

In this section, we review two operations on automata that will be used in this thesis.

Synchronous and Parallel Products We need to build models by using individual small
models of the system components. To be able to do so two DES operations, parallel product

and synchronous product are defined.

The parallel product of two DES models, G and G, denoted by meet(G1,G2), contains

15



the synchronized occurrence of the common events in the two models. Consider

G1 = (01,%1,61,90,,Om;)

G2 - (QZ»ZQ, 627Q027Qm2)

meet(Gy,G,) is the reachable subgenerator of (Q; x 02,21 N2, 8,(90,,90,)> Om; X Om,)- The

transition partial functionof § : (@1 X Q) XZ — Q1 X Qr is

§((v1,1),6) = (81(x1,0),8(x2,0)) if 81(x1,0)! and & (x2,0)!

not defined otherwise.

Thus, it can be easily verified that

L(meet(G1 , Gz)) = L(Gl) ﬂL(Gz)

Lm(meet(Gq , Gz)) = Ly(Gy) ﬂLm(Gz)

The synchronous product of two DES models G and G, denoted by sync(G1,Ga)
or G1||G is the reachable subgenerator of (Q1 X Q2,Z1 UX2,6,(q0,,90,), Om; X Om,) where

6 : (O1 % Q2) XxZ — Q) x 0 is defined according to:

)
(61(x1,0),8(x2,0)) if 81(x1,0)! and & (xz,0)!
(51()61,0'),)62) if51(x1,0')!and0'621—22
6((x1,%2),0) =
(x1,02(x2,0)) if &(x2,0)! and 0 € Tp — %4
L not defined otherwise.

16



M NOSNOENO
Figure 2.2: Gg3, in Example 2.3

O O OSLN O
Figure 2.3: Gg3p in Example 2.3

Example 2.3 Let Gg3, and Ggsp, be as shown in Figures 2.2,2.3, respectively.

The product of Ge3a and Ggsp, meet(Grsq, GE3p), is as shown in Figure 2.4 since only

the events that are enabled in both machines can occur in meet(Gg3q, Ggp)-
P3 %y

Figure 2.4: meer product of Gg3, and Gg3p, in Example 2.3

The synchronous product of Gg3, and Gy, is as displayed in Figure 2.5. Since the Gg3q
does not contain cy4 in its alphabet, occurrence of c4 is determined by the transition function

of Gg3p, only. Similarly, the occurrence of c3 is determined by GE3a.

17



Figure 2.5: sync of Gg3, and Gg3p in Example 2.3

2.3 Supervisory Control

Consider a DES G = (Q,X,8,90,0m). We assume that the event set consists of controllable
and uncontrollable events, denoted X, and X, respectively, with £. NZ,; = 0. The control-
lable events are those that can be enabled or disabled at any time by some means of control.
The events that are not controllable, are uncontrollable. Furthermore, some events are assumed

observable ¥, and the rest unobservable ¥, = X —X,.

Suppose the desired behavior (specification) of the DES can be represented in the form
of a finite state automaton Spec. Then E = L,(G) N L (Spec) represents the legal behavior of

the system and is called the legal (marked) behavior. Obviously, E C L,,(G).

Example 2.4 As an example of plant and specification in supervisory control problem, let the
DES plant ( Gg4 ) and specification ( Specgs ) be defined over = = {py,¢2,¢1, 05,0} and be
as shown in Figures 2.6 and 2.7, respectively. The observable event set is £, = {c2,¢1, O, Ou}

and the controllable event set is , = {c2,¢1 }.

18



Figure 2.7: Specg4 the DES specification on Example 2.4

To satisfy the specification some means of control is essential. Supervisor is an agent
that by enabling and disabling the controllable events prevents G from generating undesirable
event sequences. For our purpose in this thesis a supervisor denoted by S can be modeled as a

finite state automaton

S= (XaZ,T,,anXm)

where X, x, X, C X, and 1 : X x £ — X are the state set, initial state, marked state set, and
transition function, respectively. A supervisor should never disable uncontrollable events. A

supervisor that respects this control restriction is called “admissible”.

Plant Under Supervision In the RW theory [29], the supervisor and the plant are coupled.

They form a closed loop system with the following mechanism of interaction between S and G.

19



Assume that at an instance, the plant is in state g; and supervisor in state x;. In the uncontrolled
plant, a subset of events X can occur in g; that is fed into the supervisor. The supervisor issues

a control pattern in the form of the set of events that are permitted to occur in x;.

Let us denote the system under supervision by S/G. The closed behavior of §/G defined
by L(S/G) = L(G) NL(S) consists of the event sequences of uncontrolled process that survive
under supervision. The marked behavior of §/G defined by L,,(S/G) = L,(G) NL(S/G)
consists of the event sequences marked by the uncontrolled process that are generated by S/G.
Note that we assume all states of the supervisor are marked X = X,,, and as a result, §/G can
be represented as meet(S/G) (since Ly, (S/G) = L,(G) N L(S/G) = L,(G)N L(G) N L(S) =

L (G)N Lin(S))-

In this framework, the supervisor monitors the observable events generated by the plant
and disables or enables the controllable events in G to assure that the system under supervision

denoted by (S/G)

e satisfies the specification, i.e. L,(S/G) C E, and

e is nonblocking, i.e. L,,(S/G) = L(S/G)

20



If for a supervisor S, the closed-loop system S/G is nonblocking, then S is called a nonblock-

ing supervisor.

The solutions of this problem can be described in terms of L,,(G)-closed, controllable,

observable sublanguages of E [8, 14].

Definition 2.1 ([29]) A language K C ¥* is controllable with respect to G (or simply control-

lable) if K%, NL(G) C K.

A supervisor S is admissible if and only if L(S/G) is controllable.

Let P: X* — X} be the natural projection defined as follows:

P(e)=¢
o ifoceZ,

P(o)=
£ otherwise

P(sc) =P(s)P(0), forseXf,ceX

Since by assumption, the supervisor can only monitor the observable events, for any s, s’
€ ¥ with the same projection (P(s) = P(s")), the supervisor decision (i.e. the set of enabled
events) should be the same. A supervisor satisfying this property is called feasible.
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Definition 2.2 ([14]) A language K C L(G) with a projection P is called P — observable (or

simply observable) with respect to L(G) if, for all s,s' € Z*
P(s) = P(s") = consis(s,s') = true

where consis(s,s') is true if and only if

] VoeX)soeKAs €eKAs'6 €L(G)=soc €K, and

2 (VoeX)soeKAseKAsc e L(G)=soc€K

In other words, two strings satisfy consis(s,s’) if and only if, with respect to one-step
continuations in K, they are consistent. Therefore, if two strings look the same to a supervisor,

they should be consistent.

Theorem 2.1 ([14, 8]) Suppose K # ® and K C E C L,(G). There exists a nonblocking

feasible supervisory control S for G such that L, (S/G) = K if and only if

e K is controllable with respect to G,
e K is observable with respect to L(G),

o K is Ly(G)-closed.
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Since the union of observable languages is not necessarily observable, the class of
L, (G)-closed, controllable, observable sublanguages of a given language does not necessary
have a supremal element. Therefore, an optimal solution for the supervisory control problem
may not exist in general. An alternative solution to the above problem is to use the normal sub-
languages instead of observable ones, because the normality property is closed under union,

and therefore, the class of normal sublanguages of a given language has a supremal element.

Definition 2.3 ([13, 8]) A language K C M is (M, P) — normal if

K=MnP(PK)

For E C M, ¥ (E; M) denotes the (M, P)—normal sublanguages of E.

Let E C L,(G) denote the legal behavior. Consider the following classes of languages:

% (E) .= {K C E|K is controllable w.rt. G}
N(E;L(G)) := {N C E|N is (L(G),P) —normal}

RG(E) :={K CE|K is L, (G)—closed.}

That the above classes are nonempty (They all include 0). Also they are closed with
respect to the union operation of languages. Therefore, they have supremal elements denoted
by Sup¥(E), Sup NV (E;L(G)), and SupRg(E), respectively.
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As mentioned previously, the controllable, normal , and L,,(G)—closed sublanguages

defined by

€ NRG(E) =% (EYNN(E;L(G)) NRG(E)

provide solutions to the supervisory control problem.

In the special case, when all controllable events are observable, the controllable, ob-
servable languages are normal. Therefore, in such cases, the control problem has an optimal

solution given by the supremal controllable, normal, and L,,(G)—closed sublanguage of E.

Theorem 2.2 ([14]) Suppose all controllable events are observable, K # 0 and K C E C
L (G). Then there exists a feasible nonblocking supervisor S such that L, (S/G) = K if and

only if K is controllable, normal, and Ly,(G)—closed.

Therefore, Sup% .4 Rg(E) (if nonempty) characterizes the optimal (minimally restric-
tive) solution. Furthermore when the legal behavior is a regular language, then the supremal
controllable, normal L,,(G)—closed sublanguage of E will also be regular. Thus, by using a
nonblocking generator marking the supremal controllable, normal, and L,,(G)—closed sub-
language of E, the supervisor S can be realized. In this case, the product meet (G, S) represents
S/G (plant system under supervision). Note that if E is L,(G)—closed, then so is Sup® A4 (E)

and therefore, Sup% A Rg(E) = Sup®€ N (SupRg(E)).
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Example 2.5 In this example the solution to the problem introduced in Example 2.4 is ob-
tained using Theorem 2.2. The optimal supervisor to satisfy the given specification is shown

in Figure 2.8.

P2

) ©. (1) (1)

Figure 2.8: Example 2.5, Sg4 the nonblocking supervisor.

Therefore the plant under supervision will be as displayed in Figure 2.9. It can be seen

that the plant under supervision satisfies the specification and is nonblocking.
Py o, c g
— - (O—O———®

Figure 2.9: Example 2.5, S/Gg4 the plant under supervision.

24 TTCT

This software is mostly used for analysis, synthesis, and verification of supervisory controls.
Here we review the commands and procedures that are used in this thesis. More information

about TTCT functionality and procedures can be found in [30].
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Sync and Meet: The synchronous product of two automata in TTCT can be done by the
sync procedure. This command produces the synchronous product, (G3), of two DES models
Gy and Gy:

G; = sync(G1,Gr)

Parallel product of two DES models can be computed with the meet procedure. Having

the same DES models described, this command produces G5 with event set 3 = X1 N X,:

G; = meet(Gy,G»)

Nonconflicting: The nonconflicting command in TTCT can be used to verify the noncon-

flicting property for two languages.

nonconflict(Gy, G,) = true? (2.6)

A “true” answer means that every reachable state of the product automaton meet(G1,G»)

is nonblocking, i.e. L,;(G1),Ln(G2) = L(G1) NL(G3). Thus, if G and G, are non-blocking,

nonconflict can be used to see if L,,(G1) and L,,(G») are nonconflicting.

Condat The supervisor should be admissible, i.e. the closed behavior of the plant
under supervision L(S/G) should be controllable with respect to the closed behavior L(G) of
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the plant and uncontrollable events X,,.

In TTCT, condat is used to verify the admissibility of supervisor.

SDAT = condat(G, S)

This procedure gives a list of all plant events disabled at each supervisor state. If this

list only includes controllable events, the supervisor is admissible.

2.4.1 Computation of Sup% A4 (E)

A procedure for the computation of supremal controllable, normal languages has been intro-

duced in [30}. The procedure is as following.

Assume a DES plant model G is defined over the alphabet X. Bring in the following
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languages:

No i=P(Sup.¥ (E:Ln(G)) ), (2.72)
K, := Sup%,(No), (2.7b)
J:=PY(K,), (2.7¢)
K :=Ln(G)NJ. 2.7d)

Here Sup%,(.) operation in 2.7b is performed with respect to the projection of G.

Theorem 2.3 ([9]) Assume G is nonblocking and (L,,(G),J) are nonconflicting. Then we

have:

o K=Sup&N N (E);

e IfE is L,(G)—closed, then K = Sup€ N (E).

Hence the optimal supervisor can be obtained through the sequence of equations (2.7). If

at the end K is empty, then Sup@ A A (E) = 0 and (if E is L,,(G)—closed) Sup€ A (E) = 0.

The TTCT procedure to implement (2.7) is described in the following.
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Computation of Supé .4 (E) with TTCT

Based on Theorem 2.3, one can construct a supervisor by TTCT with the following procedure

[30]:

1 Given G, E, and the list NULL of unobservable events
2 N :=supnorm(E,G,NULL)

3 NO :=project(N,NULL)

4 GO := project(G,NULL)

5 KO :=supcon(GO,NO)

6 KODAT := condat(GO,KO)

7 PINVKO := selfloop(KO,NULL)

8 nonconflict(G, PINVKO) = true?

9 K :=meet(G,PINVKO)

10 K nonempty?
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If the answers of part 8, 10 are “yes”, the procedure terminates successfully, and PINVKO
solves the supervisory control problem (i.e., PINVKO is a DES representing the supervisor)

and K is the corresponding controlled behavior (i.e., Ly (S/G)).
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Chapter 3

Overview of Switching Control

The control of a partially known plant has received considerable attention in the adaptive con-
trol literature. One of the relatively new lines of research in this area is switching control
which was motivated to weaken the classical a priori information required in classical adap-
tive control and can be traced back to [22]. During the past several years, switching control
schemes have been developed to accomplish a wide variety of tasks which would not have
been possible using traditional adaptive control methods [15], [19], [16], [18], [20], [21], [2],
[4], [6], [5], [25], [1]. For instance, when traditional adaptive control methods are ineffective
due to large variations of system parameters, switching control can be applied to achieve the

desired objectives.
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3.1 Single-Layer Switching

A switching control scheme for a family of plant models was studied by Miller and Davison
in [16], where it was assumed that the LTI plant model at any time belongs to a finite set
of known models called the family of plant models. A sudden change from one of the plant
models to another one in the set represents variation of system parameters. It is assumed
a high-performance controller is designed for each plant in the family. Each controller is

designed such that it stabilizes its corresponding plant model and destabilizes all other ones.

Example 3.1 Figure 3.1 shows a system modeled by a family of 5 plant models {Py,...,Ps}.
A set of 5 controllers {C1,...,Cs} forms the switching control structure. The pair (P;,C})

represents a stable closed-loop system if and only if i = j.

Figure 3.1: Single-layer switching control structure of Example 3.1

Suppose that the plant is initially P, and is stabilized by C|. Let the plant change to Py

at some time instant. By assumption, the pair (P4,C1) is not stable. It is shown in [16] that
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the instability can be detected after a bounded time t; by comparing an error signal with a
proper “upper-bound” signal. At this point, it is known that the plant model has changed but
the new model is unknown. The supervisor switches the controller to Cy and stays there until
instability is detected again which results in switching to C3. Finally the system switches to C4

which leads to closed-loop stability. The switchings for this example are shown in Figure 3.2.

AvAyAvAWA
L) L)

Sao_o-”

Figure 3.2: Single-layer switching mechanism of Example 3.1

Throughout this thesis, switching to a controller that stabilizes the system is called a
“stable switching” and switching to a controller that destabilizes the system is called an
“unstable switching”. In Example 3.1, transitions to C; and C3 represent unstable switch-

ings and transition to C4 represents a stable switching.
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3.2 Multi-Layer Switching

One of the problems in switching control methods is the poor transient response which is
mainly due to switching through a number of destabilizing controllers before the system locks
onto the correct controller. When the plant dynamics change from one model to another, the
system may switch to some destabilizing controllers before it finds the correct controller. Let
p denote the number of plant models. It can be easily seen that a maximum of p — 2 unstable
switchings may occur before the correct controller is found. The switching control structure
introduced in [16] is referred to as a single-layer structure as it is composed of only one set of
controllers. A multi-layer structure is proposed in [11] that can potentially reduce the number
of unstable switchings. The first layer consists of a set of high-performance controllers similar
to those in the single-layer structure. The n** layer consists of a set of simultaneous stabilizers,
and it is assumed that the simultaneous stabilizer C;,;,..;,, where iy,i2,...,i, are n distinct

integers, stabilizes plants P; , P, ..., F;, and destabilizes all other ones.

An algorithm is given in [11] for switching between the controllers of different layers,
which guarantees that with at most one unstable switching the system finds the correct first
layer controller. This is illustrated in the next example. It is to be noted that there are at
most p layers of controllers for a family of p plant models. It can be shown that only the first

p—2 layers are required in a multi-layer structure in order to minimize the number of unstable
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switchings [11].

Example 3.2 Consider the family of plant models given in Example 3.1. A multi-layer switch-

ing control structure is shown in Figure 3.3.

Ci2 Ca3 Caq Css

Figure 3.3: Multi-layer structure of Example 3.2

Assume that at some points the plant changes from Py to P4 as in Example 3.1. Using
the algorithm given in [11], the control system switches in the following sequence. As soon as
instability is detected, the plant is known not to be Py and thus, the system switches to Co3a.
The reason for choosing Ca34 is as follows. After instability is detected, we conclude that the
plant model is not Py and the candidate plant models will be P, Ps, Py, and Ps. Since we intend
to limit the number of unstable switches to one, after any unstable switching, we want to be
sure about the current plant and switch to the corresponding first-layer stabilizing controller
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(in this example, Cy). Therefore, the third layer controller Cy34 is chosen in such a way that
it stabilizes all candidate plants except one (Ps). Therefore, if after switching instability is
detected, the actual plant model will be immediately known. (The same logic is used for
choosing controllers in subsequent steps.) After switching to Cy34 and once it is determined
that the resultant closed-loop system is stable, then it can be concluded that the unknown plant
must belong to the set { Py, P5,Ps}. The system then switches to Cy3 (which stabilizes Py and
P; and destabilizes all the others) and remains in C»3 until stability or instability is detected.
In this example, the resultant closed-loop system is unstable. This also shows that the plant
model cannot be either of Py or Ps; thus the system switches to C4 which is, in fact the desired
controller. The switchings are shown in Figure 3.4. Note that the sequence of transitions

contains only one unstable switching.

In the switching control problem, it would be desirable to impose restrictions on transi-
tions. For instance, to maintain the quality of the transient response, one may want to limit the
total number of unstable transitions before the system locks onto the correct controller in the
first layer. We refer to a switching policy that can find the correct controller without violating

the desired restrictions on the transitions of a proper switching policy.
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Figure 3.4: Multi-layer switching sequence of Example 3.2

The number of controllers in a multi-layer structure grows exponentially with the num-
ber of plants p. In practice, designing all of these controller can be cumbersome and some-
times impossible. Furthermore, only a subset of all possible controllers may be sufficient to

achieve the objectives, i.e. to meet the design specifications for transitions.

In this thesis, the problem of designing a proper switching policy is formulated and
solved as a problem of Supervisory Control of a Discrete-Event System (DES) under partial

observation in the Ramadge-Wonham framework [29].

37



Chapter 4

Formulating Switching Control as a DES

Supervisory Control Problem

In this chapter, we consider the multi-layer switching control scheme as introduced in [11] and
show how the plant model changes and controller switchings can be represented using DES
models and finally, how the synthesis of the switching control policy can be cast as a problem

of supervisory control of DES.
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4.1 Switching Control Formulation

Consider a given finite set of finite-dimensional, LTI plant models with bounded disturbances
N={p:i<i<p} 4.1)

and assume that at any time ¢, the real plant model, P(¢), belongs to this set, i.e. P(¢) € II.
Let p = {1,...,p}. It is assumed that for each plant P; € IT there exists a high performance
controller C;, which solves the robust servomechanism problem (RSP) for the plant P;. These
controllers build the first layer in the multi-layer structure and are represented by the following

set

P = {Ci e ﬁ} 4.2)
Similarly, the set of controllers of layer k (2 < k < p) is denoted by @, with
D = {Ci\ip..ip i1, 02, - ., ik EP} 4.3)

where i;, j = 1,...,k are distinct integers and the indices of each controller represent the plants
that are stabilized by that controller; e.g. Cy,,...;, “only” stabilizes plant models P;, B, ..., B,

and destabilizes the other plants in the set.

Suppose the plant model is P; and the current controller is Cy,;,.. ;,. In order to determine
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the stability of the closed-loop system, an upper-bound signal (introduced in [16]) is generated
and then compared with a filtered error signal. If the closed-loop system is unstable, then
within a bounded time (following the last controller or plant transition), the error signal meets
(or crosses) the upper-bound signal. This time duration can be determined by considering the
worst-case scenario associated with the initial conditions, reference inputs and disturbance
signals. It may also be obtained experimentally. This time duration is referred to as the
maximum time for stability and denoted by #,. If the error signal does not meet the upper-

bound signal in ¢; seconds, then the closed-loop system is stable.

Remark 4.1 It is to be noted that for the proposed switching method to stabilize the sys-
tem, it is assumed that the time interval between two consecutive switchings is greater than
tq [3]. Thus, after every controller switching, we wait till the stability or instability of the

plant/controller pair to be determined, before we perform another controller switching.
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4.2 Constructing a DES Model for the Switching Control

Problem

We start by examining some assumptions that are usually made in the study of switching

control.

4.2.1 Assumptions in Switching Control

As discussed in Chapter 3, the switching control system (single-layered or multi-layered) can
switch to the correct first-layer stabilizing controller in a bounded time. Therefore, in the
analysis of switching control system, typically it is assumed that initially, the plant and the
controller match. Since as long as the plant does not change the the first layer stabilizing
controller is the best matching controller, there is no need to switch to another controller and
therefore, the first change in the coupled plant and controller system will be a change of plant

to another (unknown) plant. Thus the following assumption is used in our study.

Assumption 4.1 The initial plant is known and the controller is the corresponding first-layer
stabilizing controller. The plant will then change to an unknown plant in the given family of

models.
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In switching control, it is assumed that between two plant changes, there is a sufficient

time for the switching policy to find the correct controller.

Assumption 4.2 The plant model remains unchanged for a sufficiently long time.

The time in Assumption 4.2 is long enough so that after every plant model change, the

switching control system can find the appropriate first-layer stabilizing controller.

4.2.2 Event Set

Now we develop a finite-state automaton to model changes in plant model and controller

switchings. The alphabet of this DES, X, can be partitioned according to X =X NZe U,

Plant Transition Events (Zn): X1 = {p1,...,pp} Where events pi,...,p, represent
changes in plant model. Specifically, p; signifies “transition to plant model P;”. Events in Z¢

are obviously uncontrollable and by assumption, unobservable.

Controller Switching Commands (Zg): Switching between controllers is modeled
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with controllable, observable events, named based on the controller after switching. For in-
stance, the switching command to the controller C; in the first layer is called ¢; and the switch-
ing command to the controller C;,;, (i1 # i2) in the second layer is denoted by ¢;,;, . Zo is the

set of all switching commands.

Stability and Instability (Response) Events (Z,): If after a plant transition or controller
switching the closed-loop system becomes unstable, as mentioned previously the error signal
meets the upper-bound signal before ¢; time units. This is represented in our work by an
uncontrollable, observable event ¢,. When as a result of controller switching, the closed-loop
system becomes stable, then after time ¢, we will know the closed-loop system is stable. We
model the announcement of this conclusion by the monitoring system with an uncontrollable,

observable event o, . Therefore, X, = {05, 0, } is the set of response events.

4.2.3 DES Model

In order to build a DES model for switching control system, we first construct two finite-
state automata Ppgs and Cpgg to represent plant transitions and controller switchings, re-
spectively. Each state of Ppgs corresponds to a unique plant model. Similarly each state of
Cpes corresponds to a unique controller in the set Ule @,. Without lost of generality, we

assume initially the plant model is P; and hence, by Assumption 4.1, the controller is C;. Let
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PCprs = PpEs||CpEs.

Each state of PCpgs is represented by a pair of plant model and controller (P,C). For
each state (P,C), if the corresponding closed-loop system is stable (i.e. C stabilizes P), we add
a o; selfloop, otherwise we add a o, selfloop. The resulting automaton will be called PCNpgs.

We use a running example to illustrate the modeling procedure.

Example 4.1 In this simple example, we build a DES model for a multi-layer switching prob-
lem. Consider a family of two plant models and a set of three controllers as shown in Fig-

ure 4.1.

&>
&) [>

Figure 4.1: Multi-layer controller for two plants in Example 4.1

The automata Ppps and Cpgs representing plant transition and controller switchings

are shown in Figures 4.2 and 4.3, respectively.
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Figure 4.3: Cpgs, DES model for the three controllers of Example 4.1

PCNpgs is constructed by forming the synchronous product of Cpgs and Ppgs and

adding appropriate 0, and o, selfloops at each state as shown in Figure 4.4.

As mentioned before, initially, the plant and the controller match. In this case, controller
switching is not done unless the plant model changes and an instability event ¢, is generated.
By Remark 4.1, after every controller switching, we wait for the corresponding response event
(o5 or 0,) to be generated before a controller switching is ordered (if necessary). The above
behavior (and restriction) is modeled by the automaton SUpgs in Figure 4.5. Finally, the

complete plant model, represented by G, is built as

G= PCNDEs’ |SUD53.
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Figure 4.4: PCNpggs, sync product of Ppgs and Cpgs with selfloops of Example 4.1

In G, the initial state (Py,C1,0) and all states (P;,C;,2) (2 < i < p) which correspond the
cases in which the plant and controller match (and the response Oy has been generated in the

case of (P, C;,2), 2 < i < p)), are marked.
Zr
Zn’ {p1} ou
— (OO

Figure 4.5: SUpgs, DES representing plant change/controller switching and response order

Example 4.2 The automaton SUpgs modeling the order of plant transition and controller
switchings, and the corresponding responses (O, 0y) is shown in Figure 4.6. The complete

plant model G is given in Figure 4.7.
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Figure 4.6: SUpgs, DES model of representing the order of plant change, controller switching

and response in Example 4.1

Figure 4.7: G, DES plant model of Example 4.1
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Remark 4.2 It follows from the transition structure of SUpgs that always a p; event (i # 1) is
followed by o,. After this, G can only generate sequences of controller switching followed by

the corresponding response (Gs or ©,). Thus for the closed behavior of G we have

L(G) C Zn—{p1})ou(ZaZ,)"

or in other words, L(G) consists of sequences of the form pi0ucMoW . cOc® with p; + p,

) e g, and o) € >, and prefixes of all such sequences.

Remark 4.3 In G those states are marked in which the controller is the stabilizing first layer
controller for the current plant: (Py,C,0) and all (P;,C;,2) for all 2 < i < p. As a result,
Lin(G) consists of € and all sequences of the form p;o,c VoM ... cDae;op with V) € 2,

o ez, andl>0.

In summary, the final DES model will be an automaton G = (Q, %, 0,90,0Qm). Here O
is the state set. For a family of p plants and ¢ controllers, the size of Q will be (p— 1) x
¢ x2+2. X is the event set consisting of plant transition, controller switching, and response
(stability/instability) events: X = XUZe UZ,. § is the transition function. go is the initial
state which is assumed to be known. @, is the marked state set consisting of the initial
state (P;,C1,0) and states of the form (P;,C;,2) (i # 1), which represent the cases where the

appropriate first-layer controller is in the feedback loop, stabilizing the current plant.
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One of the main advantages of transforming the switching control problem to a DES
problem is the systematic procedures available for representing various design specifications
and designing supervisors (switching policies) to meet the specifications. After building the
DES plant model for the multi-layer switching problem, each specification can be represented
by an automaton and the meer product of all the specifications will give us the combined design

specification. Following this, a supervisor can be designed to satisfy the specifications.

For instance, suppose that it is desired to have at most one unstable switching before
switching to the stabilizing first-layer controller. Figure 4.8 shows this design specification
modeled as a DES. Note that the specification model counts two unstable events because the

first unstable event (0,) happens after the plant model changes and is not considered as an

unstable switching.

Z-{o,} 2-{o,} 2-{o,}

2, 2,
OasOandO

Figure 4.8: Specification for a maximum of one unstable switching.
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Chapter 5

Designing Switching Policies

In this chapter, we address two main problems in switching control. First, given a set of
controllers and specifications, we would like to determine if it is possible to design a switching
policy to satisfy the specifications and if so, find a minimally restrictive switching policy.
Secondly, assuming the answer to the first question is affirmative, we would like to find a

minimal subset of controllers enforcing the specifications.
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5.1 Minimally Restrictive Switching Policy

In the previous chapter, we showed how the problem of finding a multi-layered switching
policy can be converted to a problem of supervisory control of DES under partial observation.
The solution obtained for the supervisory control problem would be a supervisor that monitors
the observable events unfolding in the plant and enables or disables “controller switching”
commands to make sure the design specifications (restrictions on transitions) are met and
the DES system under supervision is nonblocking (i.e., the appropriate first-layer stabilizing
controller can be brought into feedback loop). Note that it may be possible that the supervisor
enables transitions to more than one controller which means that all enabled transitions are

acceptable and none of them will violate design specifications.

One of the main challenges in multi-layer switching control is to verify whether, for a

given set of controllers, a switching policy satisfying the design specifications exists.

5.1.1 Problem Solvability

Problem 1: Given the plant set I1, the controller set ®, and an initial plant P;,; and con-

troller Cyp;,and the legal behavior E, find a switching policy (supervisor) meeting the design
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specifications.

In our supervisory control problem all controllable events (X, = Zg) are observable.
Therefore, all controllable, observable languages are normal and by Theorem 2.2, the super-

visory control problem (Problem 1), is solvable if and only if
Sup€ N Rg(E) # 0. 5.1

If (5.1) holds, then the supremal controllable, normal, L,,(G)—closed sublanguage of E pro-
vides a minimally restrictive supervisor (switching policy) for the problem. Note that if the

legal behavior E is L,,(G)—closed, then (5.1) becomes

Sup€ N (E) # 0. (5.2)

The following example explores problem solvability and design of a minimally restric-

tive switching policy.

Example 5.1 Consider a set of five plant models {Py, Py, P3, Py, Ps} and the following con-

troller set {Cl, Cy, C3, Cy, Cs, Crp, Coz, C34, Cys, C123, Cr34, C345} as shown in Figure 5.1.

Let G = (0,%,08,90,0m) be the DES plant of the supervisory control problem con-
structed as described in Chapter 4, with X = {c1, ¢, c3, ¢4, Cs, €12, €23, C34, C45, C123,
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Ci2 Cog Cag Cus

Figure 5.1: Multi-layer structure of Example 5.1

€234,C345, P1, P2 , D3, P4, P5,0s, Oy}. The unobservable and the uncontrollable event sets

are L, = {p1, P2, P3, P4, P5} and Zye = {p1, P2, P3, P4, Ps,0s, Oy} respectively. Assume
that initially the plant is P| and the active controller is Cy, i.e. qo is (P1,C1,0). The design
specification is to have a maximum of one unstable switching, which is captured in the DES in

Figure 5.2.

2-{o,} Z-{oy} z-{o,}

7., 2, ¥
O OansO

Figure 5.2: Specification for maximum one unstable switching

53



1o verify whether the given controller set meets the specification, we use Theorem 2.2.
Let us call the DES in Figure 5.2 SPECU. Then the legal behavior E will be E = L,,(G)N
L(SPECU). E is Ly(G)—closed since L,(SPECU) is closed. Therefore, the supervisory
control is solvable if and only if (5.2) holds. We compute Sup€ N (E) using the procedure
in [9] and find that Sup‘fW(E) # 0. This implies that a switching policy exists to lead the

system to the correct first-layer controller with no more than one unstable switching.

It can be easily verified that in Example 5.1 (assuming initial pair of (P;,C)), after re-
moving C34 and Cs45 from the set of controllers in layer 3, condition (5.2) will no longer hold,
which implies that the design spe(;iﬁcation cannot be met using the given set of controllers.
However, if Ciy3 and Ci4s5 are removed instead, (5.2) holds and we can find a supervisor
(proper switching policy) to arrive at the correct first-layer controller with no more than one

unstable switching.

In the above example, we tested problem solvability assuming initial plant/controller

pair of (P;,C;). In general, we have to perform the procedure for all initial pairs (P;,C;)

(ieD).

Example 5.2 Consider the set of plants and controllers as shown in Figure 5.3. We would

like to deign a switching policy that can assure that, starting from the initial plant/controller
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(P1,Cy), if plant model changes, the system switches to the first layer stabilizing controller
with at most one unstable switching. The plant G in this example has 34 and 81 transitions.
Similar to the previous example, we design a minimally restrictive supervisor which has 37

states and 169 transitions.

Co3

Figure 5.3: Part of plant model G for Example 5.2

Part of the plant and supervisor models are shown in Figures 5.4 and 5.5, respectively.
Let us follow the switching procedure and see how the supervisor, by enabling and disabling
the controllable events, satisfies the specification. At first both plant and supervisor are in
their initial states 0 and 0. Then assume the plant model changes to P3. Accordingly the DES
G moves to state 2. Note that the plant changing event Py is unobservable and appears as a
selfloop in the supervisor (Figure 5.5). Therefore, the supervisor’s state remains unchanged.
At the next step, instability event G, occurs. Thus, G and S go to states 5 and 1, respectively.
At state 5 of G all switching commands cy,c3,c4,¢23 can happen. On the other hand, the

supervisor in its state 1 disables all the switching controller commands except c 3. Therefore,
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the plant G will go to state 10 and the supervisor goes to state 2 by switching the controller
to Cy3. At the next step the stability event O occurs. Hence, the supervisor goes to state 4
and G goes to 15. At this state, the supervisor only permits ¢y and c3 to happen, and it does
not make any difference which one occurs. Let us assume that the controller switches to C3,
and accordingly the DES G goes to state 18 and the supervisor to 11. Again 05 happens and
the DES G and the supervisor go to states 21 and 13. Note that state 21 is marked and the

controller C3 matches the plant model Ps.

o
EN

e ——

Figure 5.4: Part of plant model G for Example 5.2

It can be seen on Figures 5.4 and 5.5 that the DES G and the supervisor can continue
to move on cycles 10 — 15 — 18 — 21 — 10 and 10 — 12 — 11 — 13 — 10, respectively.
This happens because there is no limit on the number of stable switchings. Consequently, it
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P2:P3P4  P2P3Pq  P2P3Pg  PaP3.Ps  PoP3Py  P2P3Py

Figure 5.5: Part of supervisor controller model S for Example 5.2

is better to have an upper limit on the number of stable switchings to prevent unnecessary

switching among stabilizing controllers.

In addition to limiting the number of unstable switchings, we may wish to limit the total

number of stable and unstable switchings to prevent large transient oscillations.

Example 5.3 Consider the same set of plants and controllers as in Example 5.1. It is desired
to find a switching policy in order to lock onto the stabilizing first-layer controller with at most
one unstable switching (similar to Example 5.1) and two stable switchings (i.e. not more than
three switchings). The corresponding DES model of specifications is formed by the product of
two models shown in Figure 5.2 and Figure 5.6. In this case, condition (5.2) is not satisfied
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meaning that the design specifications cannot be satisfied using the given controller set.

-{og} 5- {og) 5-{og

Figure 5.6: Specification for maximum of two stable switching

5.2 Finding a minimal controller set

Now we would like to address the problem of finding a minimal set of controllers for which

there exists a switching policy to satisfy the design specifications.

5.2.1 Problem of Finding a Minimal Controller Set

Problem 2: Given the plant set I, the controller set ®, the initial plant and controller pair

of Pini,Cini, and the legal behavior E, find a nonempty subset of ®, say @', such that:

1 For the set of controllers ®', there exist a switching policy to satisfy the legal behavior.
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2 Forall ®" Cc @ (®" # @, @' £ 0), there is no switching policy to satisfy the legal

behavior.

Minimizing the number of controllers is equivalent to minimizing the controller switch-
ing events. To achieve this, we may remove controller switching events from the model G and
then see if the resulting supervisory control problem is solvable. Note that a minimal set ®’

must include all first-layer controllers: @y C @',

Consider the plant G = (Q,X,8,90,0m) and let A C Zg, A # 0, be a set of controller
switching events. Suppose G’ = (¢, %/, 8,90, 0},) is the reachable automaton obtained from

G after removing all transitions corresponding to the events in A. Thus,

Y=X-A
Q'=0-0a
where Q4 is the set of states that become unreachable after the removal of events in A. When

there is no command available to switch to a controller, that controller is in fact deleted from

the controller set. It is not difficult to see that the following relations exist:

L(G') = L(G) — Z*AZ*

Ln(G') = Lin(G) — Z*AS*
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Furthermore, if E and E’ denote the legal behaviors then

E' =E—Z*AT

5.2.2 First Solution to the Problem of Finding a Minimal Controller

Set

The most straightforward procedure for finding a minimal set of controllers is described in the

following algorithm.

Algorithm 5.1 e Given: DES plant G = (Q,Z,0,40,Qm) and

legal behavior E

e Start: Let G; = (Qy,%,6,90,0Om,) = G = (0,%,8,90,0m) and
E; = SupRg(E)
If Sup€ N (E,) =0, then
Problem has no solution; stop
End(If)
While 2, N (U7, Zw,) # 0

Forallc e N (Ufzz Zo;)
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Let¥, =%, — {c}.

Construct Gy = (0y,%;, 6/, 90, Oy, ) and E| = E; — *cX*

e LC: If E!isnotLy(G')—closed, then
Replace E; with SupR g (E;)
End(If)
If Sup€ N (E!)#0, then
Replace G; and E; with G} and E]; go to E2
End(1f)

End(For)

e EIl: Sup‘fW(E,) provides the solution and X, N X identifies a minimal set of con-

trollers; stop

o E2: continue

End(While)

In the main loop ( the While loop), a controller event ‘c’ is removed from the event set.

If the supervisory control problem is solvable for the resulting plant G} and legal behavior E],

then the set of controller events in %, is not minimal and G; and E; are replaced with G} and

E/ and the main loop continues. If for all controllers ‘c’, the supervisory control problem is

not solvable, then the set of controller events in %, is minimal and the algorithm terminates.
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To find a minimal set of controllers satisfying the specifications, one needs to calculate
the supremal controllable, normal, and L,,(G)~—closed sublanguage of the legal behavior at
every step of the algorithm (after deleting each controller). This could be time consuming.

Next, we will simplify these computations.

5.2.3 Second Solution to the Problem of Finding a Minimal Controller

Set

First we characterize the set of all controllable sublanguages of L,,(G).

Proposition 5.1 The controllable sublanguages of L,,(G) are 0 and all K such that { pa, ...,

pnt CK

To prove Proposition 5.1, we need the following result.

Lemma 5.1 Let K C L,,(G) and suppose {pa,...,pn} C K. Then K is controllable with re-
spect to G.

Proof: It is sufficient to show that for all s € K, sZ,. NL(G) C K.
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Four cases are possible:

o s=¢: Then by Remark 4.2, s, NL(G) = {pa,...,pn}> therefore s, NL(G) C K.

o sendsinp;(i=2,...,n) : Thus s = s'p; for some s' € £*. By Remark 4.2, p; can only
occur as the first event in every sequence and it is followed by only o, therefore s = p;
(i.e, s =¢€)and s¥, NL(G) = {p;0,} . Now since s = p; € K then there existt € L
such that pit € K C L,(G). Then by Remark 4.3, there exist t' € &% such that t = 0,1,

Therefore s%,: NL(G) = {p;0,} CK.

® s ends in 0, or O; . By Remark 4.2, in plant G, the event following G, or O must be

some ¢ € L. Thus sZ,. NL(G) =0 C K.

® sendsinc € Zg: By Remark 4.2, in G, in the state reached with s, either O is defined
or 0y (not both). Thus sZ,: NL(G) = {s0;} or sy NL(G) = {s0,}. In the first case,
since s € K there exist t € £% such that st € K C Ly(G). By assumption, s, ¢ L(G);
therefore, there exists t' € T* such that t = ot' and hence soit’ € K C Ly (G). Thus
505 € K and s, NL(G) C K . Similarly, in the second case, there exist t' € X such

that so,t' € K C L,y(G). Thus so, € K and 5%, NL(G) CK. O

Proof of Proposition 5.1. Obviously 0 is controllable. Furthermore, by Lemma 5.1, all

K C L,,(G) such that {ps,...,pn} C K are controllable. Conversely, suppose K C L,,(G) and
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K#0. Ifpi¢ K (for some i € {2,...,n}), then p; = £p; € KX, NL(G) but p; ¢ K. Therefore,

K is not controllable. O

The following theorem shows that all normal sublanguages of L,,(G) are controllable.

Theorem 5.1 IfK C L,,(G) and K is (L(G), P)—normal, then K is controllable.

Proof: If K = 0 then obviously K is controllable. Suppose K # 0. It follows from Re-
mark 4.2 that there exists p; (2 < i < p) such that p; € K. Furthermore, P~'P(p;)NL(G) =
{p2,...,pp}. Itfollows from normality of K that {p,,...,pp} C K. Hence, by Proposition 5.1,

K is controllable. 0

It follows from Theorem 5.1 in Algorithm 5.1, all Sup@.#(.) operations can be substi-

tuted with SupA4/(.).

Next, we consider the property of L,,(G)—closedness.

Theorem 5.2 If K is L,,(G)—closed, then K' = K — Z*A%* is L,,(G') — closed.

Proof: We have to show K' = K' N Ly,(G'). K C Ly(G) implies K' C Ly,(G) and therefore

64



K' CK'NLy(G'). Thus we only have to show K' N Ly,(G') C K. We have

K'NLy(G) = K—Z*AT* N (L,(G) — Z*AZ¥)
= KN (Z*AZ*)0 N Ly (G) N (T*ATH)O
C KN (Z*AZF)0 N (Z*AZH)° N Ly(G)
= KNLy(G)N (Z*AZ*)®

=KN(Z*AZ)*? (K is Ly (G)-closed)

=K

Theorem 5.2 implies that if legal behavior E is L,,(G)—closed, then the legal behavior

E’ after removing events A from the event set X, will be L,,(G')—closed

In Algorithm 5.1, E; is L,,(G;)—closed and therefore, by Theorem 5.2, E/ constructed
in the loop will be L,,(G})—closed and step LC can be eliminated. After combining the results

of Theorems 5.1 and 5.2, we simplify Algorithm 5.1 and arrive at Algorithm 5.2.

Algorithm 5.2 e Given: DES plant G = (Q,X, 08,90, 0m) and

legal behavior E

e Start: Let Gt - (Qt)zt,staqm Qm;) =G= (sza 63Q07 Qm) and
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E; = SupRg(E)

If Sup6 N (E,) =0, then
Problem has no solution; stop

End(If)

While 3,0 (U7, Za,) 7 0
Forallc € Z,n (UL, Zo,)
LetS, =%, — {c}.
Construct G = (0, X;,6/,90, 0y, ) and E] = E; —Z*cZ*
If Sup AV (E!)#0, then
Replace G, and E; with G, and E]; go to E2

End(If)

End(For)
o EI: Sup A (E,) provides the solution and ;N Xg identifies a minimal set of con-
trollers; stop

o E2; continue

End(While)

In general case, unlike the L,,(G)—closedness, the normality property is not necessarily
preserved after deleting some controller switching events. The following counter example
explains that the normality of K does not imply the normality of K’ = K — X*AX*,
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Example 5.4 Consider a problem with three plants {Py,P,,P;}. Assume K as shown in Fig-
ure 5.7 is the legal behavior. The reader can verify that K is normal. Now let K' be the new le-
gal behavior obtained by removing c3 from the set of controller commands (Figure 5.7). K' is

not normal since for instance, pr0,cy € K, p36,c € P~ P(py6,¢0) NL(G') but p30,c2 ¢ K'.

Figure 5.8: Specification K’ for Example 5.4

Example 5.5 Let us find a minimal set of controllers for the problem in Example 5.1. The
design specification is to have a maximum of one unstable switching for the given set of plants
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and controllers. By using the same algorithm for finding the switching path from initial pair
of plant and first layer stabilizing controller (P1,C1) as used in Example 5.1, we arrive at
controllers Cy, Cy, C3, C4, Cs, Ca34, C34. Next, for the initial pair (P,Cy) we obtain the set
C1, Cy, C3, Cy4, Cs, C34s, C3q following the same algorithm. To prevent adding redundant
controllers, whenever possible, we have tried to use the controller from the list for (P1,Cy).
For the initial pair (P3,C3), Cs12 and Ci; needed to be added to the controller set. It can be
seen that for the initial pairs (Py4,Cy4) and (Ps,Cs) the available controller set is sufficient and

no more controller needs to be added.

Thus, the set of controllers is Cy, Cy, C3, C4, Cs, Cp34, C34, C345, Cs12, and C13. Now
let us use Algorithm 5.2 to minimize this set of controllers. Let us consider removing C3y4s. It
can be seen that if we build DES G with the initial pair of (P1,C1), and run Algorithm 5.2,
Sup N (E,) # 0. Therefore, starting from (Py,C1), in order to lock onto the matching controller
(if the plant model changes), the controller Cy4s is not required. However, we should use this
algorithm with all the possible initial pairs of plants and controllers. Building G with the

initial pair of (P2,C;) and running the algorithm result in, Sup.# (E]) = 0 and accordingly,

the controller C345 cannot be removed from the controller set.

If we follow the same procedure with different initial pairs, we will conclude that only
C34 can be removed from the controller set to come up with a minimal set of controllers. This

can be justified in the following way. In the switching path, whenever it is needed to switch to
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Cs4 from the upper layer (layer 3), another controller in layer 3 can be used instead of C14.
For instance, suppose the initial pair is (Py,C1). The plant model changes and we first switch
to Cz4s. If C345 results in instability, the plant model must be P,. If C34s result in stability, then
to see whether the plant model is Ps, the controller can switch to C34. In this case, since we
know P is not the current plant model, the system can switch to Cp34 (instead of C34). Here
instability would imply Ps and stability would point to Py and Py as the possible for the current

plant models.

As shown in Example 5.5, switching to the lower layers is not always the best choice
to keep the controller set minimal. In this example, considering switching between the con-

trollers at the same layer as an alternative helps to reduce the number of controllers.

Remark 5.1 As the previous example shows, in problems where we wish to limit the number
of unstable switchings to one and controllers are chosen following the procedure suggested in
[11], if there exists any controller, say C,q, at layer i that stabilizes plants that are stabilized
by two controllers at layer i + 1, then C,.y can be removed from the controller set. In the
example, C34 at layer 2, stabilizes P3 and Py. These plants are stabilized by both Cy34 and C3as

at layer 3. Thus, C34 can be removed from the controller set.
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This chapter addresses two major problems in switching control. First, it provides a
method to check whether there exists a switching policy for a given set of controllers and
plants, and design specifications. Secondly, having a set of controllers that can satisfy the
specifications, it finds a minimal set of controllers. The above tasks are accomplished using

the computational procedure for supervisory control of DES.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we show that the problem of designing a switching policy for a multi-layered
switching control system can be converted into a supervisory control problem of a Discrete

Event System (DES).

After briefly reviewing the theory of Supervisory Control of DES and Single-layered

and Multi-layered switching control systems in Chapters 2 and 3, in Chapter 4, we introduce

71



a method to reformulate the switching control problems as a supervisory control problem of
DES. In fact, this chapter contains one of the contributions of the thesis. To our knowledge,
formulating the design of switching policy as a DES supervisory control problem has not been
done previously in the literature. The described method is general enough to be applied to al-
most all single-layer and multi-layer switching problems. We demonstrate the transformation

method with a running example.

Chapter 5 contains the main results of the thesis. Two main problems are addressed
here. First a method is provided to verify whether a switching policy exists to satisfy the
design specifications. If so, a minimally restrictive switching policy is designed. Next, an
iterative algorithm is introduced to find a minimal controller set that can satisfy the design
specifications. We show that in the supervisory control problem considered in this thesis, lim-
itation on event observation is the factor that essentially restricts supervisory control. In other
words, once observation limitations are respected, limitations on control will be automatically
satisfied. We use the above result to simplify our iterative algorithm for finding a minimal

controller set.
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6.2 Future Research

In this section, we discuss directions for future research.

o In our study of designing switching policies in Chapter 4, we mentioned that typically
it is assumed once a plant model changes, the plant model remains unchanged for a
sufficiently long time (Assumption 4.2). In order to generalize our solution, we may
attempt to relax this assumption. This assumption is also used in the study of switching
systems at the continuous-time level. We expect that relaxing this assumption requires

progress both the continuous-time as well as discrete-event levels of abstraction.

e One of the main results of this thesis is the proposed iterative algorithm for obtaining
a minimal control set. It would be useful to develop a software to automate the imple-

mentation of the algorithm.

o In Chapter 5, we studied the issue of problem solvability for the design of switching
policy. For a given set of controllers and design specifications, the result of this test
may be negative. It would be interesting to develop an algorithm to find and add new
controllers to the set of controllers to render the problem solvable. This basically cor-
responds to developing a bottom-up algorithm for finding a controller set for which a

switching policy satisfying the specifications exists. Note that the algorithm proposed
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in this thesis for obtaining a minimal controller set is a top-down algorithm.

¢ Finally, the minimal controller set in general is not unique. It would be useful to develop
an algorithm that can find a minimal controller set that has the minimum number of

controllers (i.e., the controller set with minimum cardinality).
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