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Abstract— We consider the analysis and control problem
of Active Queue Management (AQM) in communication net-
works. Specifically, we are interested in the complex and non-
equilibrium dynamic queue behavior arising in nonlinear AQM
models. We propose a dynamical systems based approach for
stochastic modeling of the non-equilibrium behavior in these
deterministic models. The asymptotic dynamics are interpreted
using invariant measures of certain stochastic operators. For
computational tractability, we consider set-oriented numerical
methods to construct finite-dimensional Markov models includ-
ing control Markov chains and hidden Markov models. We
pose and solve the AQM control problem using a Markov
Decision Process (MDP) based framework and present results
of numerous simulations that show persistent non-equilibrium
queue behavior with an optimal control strategy.

I. INTRODUCTION

Communication networks such as the Internet exhibit
a wide variety of non-equilibrium and complex behavior.
Examples of such complex behavior include user flow rate
oscillations in the presence of delays [1], dynamic synchro-
nization of the flows passing through the same bottleneck
link [2], and chaotic behavior of user flows and queues at
the routers [3].

The control of complex networks has been a focus of
much recent research interest. Kelly’s framework for network
capacity optimization [4], [5] together with control-oriented
stability analysis of these solutions in the context of conges-
tion control problems has had an important impact [6]. The
game theoretic approach to network control and optimization
has been another avenue of research [7]-[9]. However, much
of this research has focussed on a single-point equilibrium
solution and analysis of its stability properties.

This paper is concerned with the analysis and control
of non-equilibrium behavior in communication networks.
Specifically, we consider the Active Queue Management
(AQM) problem. AQM provides a mechanism by which
a link (router) sends congestion notification to the users.
In particular, an AQM algorithm uses the queue length
information to either mark or drop packets. The latter is the
case in the widely-used droptail algorithm. Random Early
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Detection (RED) and its variations are other well-known
examples of AQM algorithms [6].

There exists significant evidence in literature for complex
and chaotic queue behavior in Internet-type networks and
their models [3], [10]-[12]. From a practical viewpoint, the
control of such behavior could play an important role in
the performance of the overall congestion control scheme.
As a result, a number of AQM schemes with different
characteristics has been proposed and studied by the research
community [13]-[16].

In this paper, we represent, for modeling and control,
the dynamic variables by their stochastic counterparts. Even
though, the models are deterministic, the analysis and control
approach is stochastic. The modeling approach is based upon
the methods of Ergodic theory for representing complex
behavior in nonlinear dynamical systems. In particular, we
replace the dynamical models by their stochastic counterparts
- the so-called Perron-Frobenius operator [17]-[19]. While,
the dynamical model propagates the initial condition, the
Perron-Frobenius (P-F) operator propagates uncertainty in
initial condition. The upshot is that it is frequently easier
to represent the complex asymptotic dynamic behavior as
invariant probability measures of the P-F operator. In the
context of this paper, we do this to represent and model the
queue behavior.

Next, we use the recent set-oriented numerical methods for
discretization of the dynamical systems; cf. [20], [21]. The
idea is to use these simulation based methods to construct
finite-dimensional Markov chains from the dynamic model.
These Markov chains are used for both the computational
analysis as well as for control design. A somewhat different
Markov modeling of communication networks has addition-
ally been considered in [22], [23]. However, application
of the stochastic modeling approach for control of non-
equilibrium behavior in AQM appears to be novel.

For control, we propose a Markov Decision Process
(MDP) based framework for optimization of the asymptotic
dynamics. Even though, the control framework is quite
general, we use an AQM control structure similar to RED
for the purposes of this paper. We pose and solve the control
problem as a MDP where the full state — user and queue
behavior — is observed, and as control of Hidden Markov
Models (HMM) where only the queue size is observed. Both
the analysis and control are verified using simulations in
MATLAB.

The outline of this paper is as follows. In Section II, the
network model of user and queue behavior is presented. In
the following three Sections III-V, stochastic modeling of the
network model together with its discrete approximation as



finite-dimensional Markov models — control Markov chains
and hidden Markov model — is presented. In Sec. VI, an
MDP based framework for estimation and control of these
models is summarized. The simulation results demonstrating
control of non-equilibrium behavior in AQM are described
in Sec. VII, and conclusions appear in Sec. VIIL

II. THE NETWORK MODEL

We consider a network consisting of a single bottleneck
link of fixed capacity C' shared by M users. Instead of
conducting a packet level analysis of the network we use
a discrete-time network model based on fluid approxima-
tions [6], [7]. Each user is associated with a unique con-
nection for simplicity and transmits with a nonnegative flow
rate x; over this bottleneck link. The i*" user is assumed to
follow a TCP-like additive-increase multiplicative-decrease
flow control scheme responding to the observed rate 0 <
p < 1 of marking (or depending on the implementation,
dropping) of its packets,

1 +

zin+1)=z;(n) + & T Bizi(n)’p(n)| , (1)

(2
where k denotes the step-size, and d; and (3; denote the user-
specific rate increase and decrease parameters, respectively.
The function [z]T = z for nonnegative values of x and is
zero otherwise. Here, n denotes the discrete time instance
normalized with respect to the round trip time (RTT) of users.
However, the effect of information (feedback) delay is not
taken into account.

If the aggregate sending rate of users exceeds the capacity
C of the link then the arriving packets are queued in the
buffer ¢ of the link. The non-negative queue size evolves
according to
+

q(n +1) = q(n) + 2)

M
Z xi(n) = C

For simulations, we sometimes consider an ideal buffer of
infinite size in order to compare various queue management
schemes. Finally, p(-) in Eq. (1) is set by the AQM control
and will be discussed in Sec. I'V.

III. STOCHASTIC MODELING OF NETWORK DYNAMICS

We study the deterministic network model’s dynamics
using a stochastic framework. For stochastic modeling, it is
first assumed that all the users are symmetric and have the
same parameters, d; = d; and 3; = B; Vi, j =1,...,M, as
well as same initial conditions. Consequently, the user flow
rates are also symmetric z = x; ¢ = 1,..., M. The system
dynamics in the symmetric fixed-point space are

1 +
zn+1)=z(n)+r [d — ﬁx(n)2p(n)} B
g(n+1) = q(n) + [Mx(n) - C"
We denote these equations as a dynamical system 7" : X X
Q — R?, where X C R! is the compact state-space for z(-)

and @ C R! is the compact state-space for ¢(-). We define
S=XxQ.

Remark III.1. It is possible to approximately treat the
asymmetric multi-user case just like the symmetric one by
formally replacing the symmetric flow rate z in (3) with
the average flow rate of asymmetric users (1/M) Zf\il x;.
Admittedly, such a study of the asymmetric case is only an
approximation. Sec. VII describes some simulation results
with the asymmetric multi-user model.

In stochastic settings, the basic object of interest is the
Perron-Frobenius (P-F) operator P corresponding to the
dynamical system 7. It is given by

Plu](A) = u(T~'(A)), 4)

where A C B(S), the Borel g-algebra of S and p € M(S),
the measure space on S. While the dynamical system 7'
describes the nonlinear evolution of an initial condition, the
P-F operator P describes the linear evolution of the uncer-
tainty (probability density function) in initial conditions. The
advantage of using a stochastic framework is that asymptotic
dynamics of T' can be interpreted as invariant measures of the
stochastic operator P. The invariant measure is a probability
measure that is also a fixed-point of the P-F operator P, i.e.,

From Ergodic theory, an invariant measure is always known
to exist under the assumption that the mapping 7' : S — S
is at least continuous and S is compact; cf., [17].

The set-oriented numerical methods have recently been
employed for constructing efficient finite-dimensional ap-
proximations of the P-F operator; cf. [20], [21]. The approx-
imation arises as a Markov matrix defined with respect to a
finite partition Sy, = {D1, -+, D} of the phase space S.
Instead of a Borel o-algebra B(.S), consider now a o-algebra
of the all possible subsets of Sy. A real-valued measure 1
is defined by ascribing to each element D; a real number.
Thus, one identifies the associated measure space with a
finite-dimensional real vector space R’. Using Galerkin
approximations, the discrete P-F approximation arises as a
matrix
m(Tﬁl(Dj) N Dl)

(6)

on the “measure space” R%; m is the Lebesgue measure [21],
[24]. The resulting matrix is non-negative and if T': D; — S,

L
> pj=1, (7
j=1

i.e., P is a Markov or a row-stochastic matrix. P is inter-
preted as a randomly perturbed approximation of PP and P
converges to P in L? as the partition gets finer and finer [18].

The partition Sy, for the stochastic approximation of the
network model is constructed by taking a uniform quanti-
zation for the user flow-rates (in X) and queue size (in Q)
between a lower and upper bound. The lower bounds are
taken to be 0 because of the non-negativity of these quanti-
ties. The upper bounds are taken to be suitable multiples of
link capacity and maximum queue buffer size. On account



TABLE I
QUANTIZATION OF THE STATES (X AND Q)

X 015 | Q1 010
X 1530 | Q2 1020
Xo  120-135 | Qg 80-90

X10 150- Q10 90-

of computational constraints, we chose 10 quantization levels
for the user flow rate and the bottleneck link queue size. The
two quantized partitions are denoted as X = [X7,..., Xj(]
and Q = [Q1,...,Q10] and the partition size L = 100. We
denote Sy, = X x Q, where the states s € Sy, are indexed as
{(Xl, Ql), (Xl, Qg), ceey (XQ, Ql); (XQ, QQ), .. } Table 1
tabulates the quantization values used for constructing the
cells in X and Q. The sub-script L is dropped for the
remainder of the paper to simplify the notation.

For the network dynamical system (3), a Markov Model
(MM) consists of a Markov chain with states in S and
transition probabilities (entries of P in Eq. (6)) between these
states. The entry P;; denotes the transition probability of
the next state being in D; conditioned on the current state
being in D;. The state evolution associated with the nonlinear
dynamical system 7' (Eq. (3)) is replaced its stochastic
approximation,

uin +1) = u(n)P, (8)

where 1(-) € R is the row probability vector.

One approach for numerically approximating P in Eq. (6)
is to use a Monte Carlo algorithm. Here, N uniformly
distributed random samples n!" = (z,q); i =1,...,N in S
are used as initial conditions for the dynamical system 7' in
Eq. (3). Denote n¢“* = (z,q); i = 1,..., N, as the image of
these points after one iterate of the dynamical system. After
identifying the input and output samples n'” and n°** with
the states s € S of the MM, the transition probability from
state ¢ to j is estimated as

Py = 72[1@:@%6]'] )

Z[l:nf"‘ei]
where Z[k:ng“te il denotes the number of points k such that
ngut € j.

As one takes finer partitions, the invariant measure of
Markov matrix P converges to a weak limit p* that ap-
proximates the invariant measure of the P-F operator P. The
invariant measure of P is a stochastic counterpart of the
asymptotic dynamics (attractor set) of the original dynamical
system (3); see Theorem 3.1 in [21]. In typical situations, the
support of the invariant measure is the attractor set. Thus,
the stochastic MM provides a description of the original dy-
namical system’s asymptotic behavior. Figure 1 compares the
invariant measure p* for the MM corresponding to (3) with
the time-averaged (asymptotic) dynamics of its simulation;
cf., [24]. As shown in the figure, the MM is fairly accurate
in describing the asymptotic behavior of the system.
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Fig. 1. The time-averaged dynamics and invariant measures from the MM
for (top) the user flow rate  and (bottom) the queue size g; 1-10 are the
10 quantization bins X and Q (see Table I)

Remark 111.2. We use the simple network model in Eq. (3)
as an example to illustrate the proposed approach. Real
networks exhibit much more chaotic and complex dynamics
than these simplified models. Thus, aspects of the stochastic
approach are perhaps even more suitable to the real networks.

IV. CONTROL MARKOV CHAINS

Given the user and queue dynamical system in (3),
we define the AQM control structure using three separate
packet marking (or dropping) schemes p;, p2, and ps. These
schemes, implemented at the bottleneck link, set the value
of p() = p, in the user equation. The AQM scheme
p1 corresponds to well-known “droptail” behavior whereas
scheme py and p3 can be interpreted as a simple variant of
RED and a very aggressive marking algorithm, respectively.
In all of the schemes, the queued packets are not marked
(corresponds to p, = 0), if the queue size is less than a
certain lower threshold ¢,,;,. The packets are always marked
if the queue size is larger than a upper threshold g4z
(corresponds to p,, = 1). If the current queue size is between
the two thresholds (¢min < ¢ < @maz), the packets are not
marked in the case of scheme 1 (p; = 0), half of the packets
are marked randomly in scheme 2 (py = 0.5), and all the
packets are marked in scheme 3 (p3 = 1).

The AQM control modifies the dynamical system (3) and
leads to control Markov chains P%, where v € {1,2,3}
corresponds to the choice of control scheme p,. The P
denotes the probability of the next state being in D; condi-
tioned on the current state being in D; and control being w.
The control Markov chain corresponds to the approximation
of the Perron-Frobenius operator of the control dynamical
system and as such is a straightforward extension of the
discussion in Section III.

Finally, the number and properties of these active queue
management (AQM) schemes are chosen for simplicity and
illustrative purposes. Our analysis can be extended to a more
complex control structure in a straightforward manner.



V. HIDDEN MARKOV MODEL

It is not realistic to assume knowledge of both the user
flow rates and the queue sizes for control design. At the
bottleneck link, one would typically know only the queue
size and not the the user flow rates. Therefore, we consider a
hidden Markov model (HMM) for describing the dynamical
system’s behavior in the presence of partial observations.
For the network model, only the set of queue states Q is
assumed to be observed. The emission matrix E maps the
set of states S of the MM to the set of queue states Q and
has the structure

0 --- 0
1

O =
= O

1
0
E =

0 0 1 00 oxx
Remark V.1. Note that all three of the AQM schemes in
Section IV do not mark (or drop) packets if the queue
size is less than ¢,.;,. This behavior is needed in order
to ensure the observability of the system and states in
the HMM. Otherwise, given the observed queue states Q
(through emission matrix E) it would not be possible to
estimate the full state S.

VI. OPTIMIZATION, CONTROL, AND ESTIMATION

Now that we have a Markov model on a finite state space
S with finitely many control actions v = {1,2, 3}, we pose
the control problem as a Markov Decision Process (MDP). In
particular, given a state s € S, we would like to determine
the optimal policy s — (s) such that a certain expected
reward

max F

(s(0))

> a’“R(s(k))] ©)
k

is maximized over a time horizon. The expectation is taken
with respect to the Markov model and « denotes the discount
factor. It is chosen as 0.3 for the results in this paper. The
reward function R(s) is defined over the states in S and
is depicted in Figure 2. It is chosen to be the largest for
a queue size between 10 and 20. The expectation is that
a positive but moderate queue size will ensure maximum
capacity utilization while preventing large queue fluctuations
and resultant buffer overflows. For large values of queue, the
state with large values of user flow rate are penalized more
than those with smaller values. For very small queue size,
lower values of user flow rate are penalized.

The solution of the optimization problem in (9) is obtained
by solving a linear program

min g Zs
S

subject to
zs > R'(s) + aZPs“jzs Vs, u
2s >0 Vs. (10)
Here z; for s = 1,..., L are auxillary variables, and R’ =

R + ¢, where c is chosen such that R’ is non-negative; cf.,

Reward Function

Fig. 2. The reward function on X X Q.

Chapter 6 in [25]. Figure 3 depicts the resulting stationary
optimal policy solution %. We note that the stationary policy,

MDP Results - Strategies

Strategy

Fig. 3. The optimal strategy (actions) obtained as a result of solving the
MDP.

while being more general, is not very different from the
existing AQM schemes such as RED in terms of dependence
of p(-) on queue size. In particular, the policy drops (or
marks) packets aggressively for larger queue sizes.

Using the optimal policy u, we also computed the invariant
probability measures of the controlled Markov matrix P% for
user flow rates (in X’) and queue size (in Q). These measures
were found to compare favorably with the asymptotic distri-
butions obtained from the time-domain simulations of the
closed-loop dynamical system (3) with the optimal policy.
The latter are shown in Figure 4. We note that either of
these results point to non-equilibrium queue behavior with
the optimal policy. The details of the simulation results will
be discussed in the following section.

To test the optimal policy for the practical situation where
the user flow rate is hidden, we applied the Viterbi algo-
rithm [26] to estimate the state (in S) from the time-series
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Fig. 4. The asymptotic stationary probabilities of the states in (top) X (flow
rate) and (bottom) Q (queue size) under optimal AQM control.

of the simulation. In particular, given the HMM consisting of
E, P* (u =1,2,3) and given a sequence of m observations
at the bottleneck link o := [01, ..., 0], 0; € Q, we estimate
the single best state sequence (path) § = [$1,. .., §,,] of the
real state sequence s = [$1,...,8m,], s € S. The chosen
estimation criterion was to maximize P(§|o, P“, E) given
the obervations o. Figure 5 depicts the typical estimation
results obtained with a window based implementation of the
Viterbi algorithm.

Estimated and Real System States
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Fig. 5. Estimated § and actual system states s € S = X’ X Q under AQM
control.

VII. SIMULATIONS

In simulations carried out with Matlab, we chose the
bottleneck link capacity as C' = 1,000, and the number of
users as M = 10. Table II summarizes these together with
other simulation parameters for the dynamical system model
in (3). A Monte Carlo algorithm with 100, 000 sample points
was used for constructing the Markov models (matrices P")
with each of the three AQM schemes.

TABLE I
SIMULATION MODEL PARAMETERS FOR SYMMETRIC USERS

C = 1000
M =10
Gmin = 10, gmaz = 100
k=0.01, d=0.01, g=0.1

Link capacity

# of users
Queue bounds
User parameters

System Evolution = = = Flow Rate
150 T Queue Size
State
100+ ,‘IV“ ‘0”‘/""‘]""‘ ,.Q'AI,|,‘,‘l I\"‘l"" 4
L’ I\ A I\ I\
50f 1
0 )
0 100 200 300 400 500 600

AQM Strategy
3 T

0 100 200 300 400 500 600
Time

Fig. 6. Results of the simulation with a state-dependent optimal policy: (top)
The evolutions of user flow rate x, link queue size g, the state s of the MM,
and (bottom) the AQM scheme deployed versus time are shown.

We first simulated the system with the assumption that the
full state is known. The AQM control actions correspond to
the stationary optimal policy computed off-line as a result
of the MDP described in Section VI. Figure 6 depicts the
evolution of the controlled system — x (averaged over 10
users), ¢, and state s — as a function of time. Also shown is
the sequence of control actions, i.e., specific AQM scheme at
any given time instance. Note that the average queue size is
approximately 15 with near capacity utilization. Averages of
the non-equilibrium solution are consistent with the choice
of reward function used for MDP and shown in Figure 2.
In order to compare this with the standard AQM, we next
simulated the system with AQM scheme 1 (droptail) used for
all times. These results are shown in Figure 7. It is evident
from the two figures that while either of the two solutions
are non-equilibrium, the MDP based solution is clearly better
because it shows

1) larger user capacity utilization,

2) smaller queue fluctuations, and

3) averages close to the requirement with respect to the
reward function.

In summary, the MDP based solution uses the state infor-
mation to better anticipate the congestion and adjust the
packet marking accordingly. That it is able to do so with
non-equilibrium queue behavior that still achieves very close
to maximum capacity utilization (see Figure 6) is notable.
In the subsequent simulation, we considered the more
practical case where only the queue size was assumed to be
known. For the HMM, we used the Viterbi algorithm (Sec-
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Fig. 7. Results of the simulation with the drop-tail AQM scheme: the
evolutions of user flow rate x, link queue size g, the state s of the MM
versus time are shown.

TABLE III
SIMULATION MODEL PARAMETERS FOR ASYMMETRIC USERS

Link capacity C = 1000
# of users M =10
Queue bounds qmin = 10, gmaz = 100
User parameters k= 0.01

d; € [0.008, 0.015], 3; € [0.08, 0.15]

tion VI) for state estimation. We formally assumed certainty
equivalence to hold and treated the estimate as the state.
Using stationary policy with respect to estimates still yielded
promising results as shown in Figure 8. The estimation
errors had little detrimental effect on the performance of
the algorithm. Analysis of this will be the subject of future
investigations.

System Evolution
250 T T T T

= = = Flow Rate
2001 Queue Size |

150 q

100 ] PRI PRI PR IR P UL R R 1

0 50 100 150 200 =
State

State Estimation and Control | = = = Estimate
80 T T T T Strategy (1,2,3)

Time

Fig. 8. Results of the simulation with a state estimation based feedback
control: (top) the evolutions of user flow rate « and link queue size g;
(bottom) the real s vs. estimated § state of the HMM and the AQM scheme
deployed vs. time are shown.

Finally, we also carried out simulation based studies for
an asymmetric multi-user case with M = 10 number of
users. Table III summarizes the simulation parameters. The
users are asymmetric because the parameters d; and [;
for individual user ¢ is picked from a uniform distribution
whose range is indicated in the Table. In order to test the
robustness of our method, we used the stationary policy and

estimation based on the reduced order symmetric model. The
symmetric user flow rate variable x was formally replaced
by the average flow rate for the M asymmetric users. As
a result, there are modeling errors introduced because of
the reduction in dimension (M states to a single state) and
averaging. Note that the simulations were carried out with
the M + 1-dimensional asymmetric multi-user dynamical
system (1) and (2). Figure 9 depicts the results of the
simulation with estimation and control using the symmetric
stationary policy. Remarkably, even though the dynamic
behavior now is more complex (see for example, the queue
trajectory), the performance shows good average capacity
utilization (for x) and queue size g within limits as dictated
by the reward function. Analysis of this will be considered
in the journal version of this paper.

System Evolution
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Fig. 9. Results of the simulation with a state estimation based feedback
control for the asymmetric multi-user case: (top) the evolutions of average
flow rate = and link queue size g¢; (bottom) the real s and estimated state §
of the HMM and the AQM scheme deployed versus time are shown.

VIII. CONCLUSION

In this paper, we outlined a dynamical systems based
framework for stochastic modeling, model computations,
analysis, estimation, and MDP based control of nonlinear
problems in communication networks. The framework was
demonstrated for the problem of Active Queue Manage-
ment (AQM). Even though the results were presented using
a simple AQM control structure and a particular choice
of optimality criterion, the framework is applicable more
generally. The two ideas of set-oriented computations of
Markov models and symmetry-based averaging over user
flow rates were effectively used to manage complexity in
estimation and control design. Extensive simulations with
asymmetric multi-user models demonstrate both the applica-
bility and robustness of our approach. A unified and rigorous
theoretical framework for control and optimization of non-
equilibrium dynamic behavior in communication networks
together with its applications is a subject of continuing
research investigation.
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