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Abstract— We consider the problem of tracking the boundary
contour of a moving and deforming object from a sequence
of images. If the motion of the ‘“‘object” or region of interest
is constrained (e.g. rigid or approximately rigid), the contour
motion can be efficiently represented by a small number
of parameters, e.g. the affine group. But if the ‘“object” is
arbitrarily deforming, each contour point can move indepen-
dently. Contour deformation then forms an infinite (in practice,
very large), dimensional space. Direct application of particle
filters for large dimensional problems is impractical, due to
the reduction in effective particle size as dimension increases.
But in most real problems, at any given time, “most of the
contour deformation” occurs in a small number of dimensions
(““effective basis”) while the residual deformation in the rest
of the state space (‘“residual space”) is ‘“small”. The effective
basis may be fixed or time varying. Based on this assumption,
we modify the particle filtering method to perform sequential
importance sampling only on the effective basis dimensions,
while replacing it with deterministic mode tracking in residual
space (PF-MT). We develop the PF-MT idea for contour
tracking. Techniques for detecting effective basis dimension
change and estimating the new effective basis are presented.
Tracking results on simulated and real sequences are shown
and compared with past work.

I. INTRODUCTION

We would like to causally segment a moving/deforming
object(s) from a sequence of images. This is formulated as a
problem of tracking the boundary contour of the object, i.e.
computing an “optimal” estimate of the state (contour and
contour velocity) at the current time using all observations
(images) until the current time. We denote the state at time
t by X; and the observation by Y;. Any “optimal” state

(Observation Model)

(System Model)
((camera noise)
State ny (system noise) we Observation
(object contour, velocities) (Image)
X, D) | DV,

t=t+ 1|~

Observation
Sensor (Camera)

System (Object motion + deformation)

Problem Formulation

Fig. 1.

1-4244-0171-2/06/$20.00 ©2006 IEEE.

estimate can be computed once the posterior, 7y (X;) £
p(X¢|Y1.), is computed or approximated, e.g. MAP or
MMSE. The general problem formulation is depicted in
Fig. 1. The state dynamics is assumed to be Markovian.
The observed image is assumed to be a noisy and possibly
nonlinear function of the contour. The image likelihood given
the contour (“observation likelihood”) may be multimodal
or heavy tailed. Since the state space model is nonlinear
and multimodal, we study particle filtering(PF) [1], [2], [3]
solutions to the tracking problem.

A continuous closed curve (contour)[4] is the smooth
locus of points traced out by the mapping of the unit
interval into R2. Deforming contours occur either due to
changing region of partial occlusions or when the object
of interest is actually deforming its shape over a time or
space sequence of images. An example of the first kind is
shown in Fig. 5(a), where the contour representing the left
part of the car deforms as it moves under the pole. Examples
of the second kind are a beating heart, moving animals or
humans, or the cross-sections of different parts of a 3D
object like the brain, in consecutive MRI slices, e.g. Fig. 6.
Most biological images contain deforming objects/regions.
Contour tracking has many applications in medical image
analysis, e.g. sequential segmentation of volume images (Fig.
6); tracking heart regions [5], [6] or image guided surgery.

The observation likelihood is often multimodal due to
background objects (clutter) which are partially occluded
by the “object of interest” (e.g. see Fig. 2) or due to an
object which partially occludes the “object of interest” (e.g.
the two contour modes shown in Fig. 5(a), 5(b)) or due
to low contrast imagery (e.g. see Fig. 6 or [6]). Heavy
tailed or multimodal observation likelihoods occur when the
observation noise has occasional outliers (e.g. see Fig. 3).

Early work on contour tracking [7], [8], [9], [10] used
the Kalman filter to track a fixed number of marker points
[11] uniformly chosen on the initial contour or a fixed
parametric representation, such as B-spline control points [8].
The Kalman filter can only handle additive and unimodal
observation noise and so the observation needs to be an
observed contour extracted from the image by searching in
the vicinity of the predicted contour. The seminal work of
[12] (Condensation) introduced particle filters (PF) [1], [2],
[3] to tackle multimodal (and possibly nonlinear) observation
likelihoods that occur due to clutter or occlusions. It allowed
directly using the image (or the edge map) as the observation.
But it only tracked on the 6-dim space of affine deformations.

Many recent works on contour tracking, e.g. [13], [14], [6]
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use the level set representation [15], [16] of a contour and
propose different types of approximate linear observers for
contour deformation and/or for global motion. The level set
method [15], [16] provides a way to implicitly represent and
deform a continuous contour on a fixed pixel grid and thus
automatically handles changes in contour length or topology.
Specifically, [13] computes the current contour estimate as
an approximate linear combination of the predicted contour
and the observation likelihood mode nearest to it (and
similarly for global motion). We call this general technique
a Posterior Mode Tracker [17], since it can be understood as
computing the mode, X;, of p*(X;) & p(Xt|Xt,1,Y}) and
approximating the posterior, 7, by a Dirac delta function
(9) at X;. Setting, 71 (X¢—1) ~ 6(X¢—1 — Xt,l), one can
easily see that m,(X;) ~ p*(X,) i.e. X; is also the mode of
the posterior. Thus it implicitly assumes that the posterior is
effectively unimodal (has only one significant mode which
is near X;_1). This may not hold when there are multiple
distinct or overlapping objects.

In [18], we combined the ideas of [12] and [13] to handle
more general situations. A PF was used to track affine defor-
mations, while an approximate linear observer was defined to
estimate the non-affine deformation for each affine deformed
contour particle. In doing this, the implicit assumption is that
the posterior of non-affine deformation is unimodal. This is
valid for many practical problems shown in [18] where the
non-affine deformation per frame is small, e.g. a rigid object
tracked by a perspective camera with frequent viewpoint
changes, or approximately rigid objects, e.g. human body
contour from a distance. But in other situations, where local
deformation per frame are large, there may be more than one
non-affine mode for the same affine deformation value and
the same image, i.e. posterior of non-affine deformation may
be multimodal. This is demonstrated in Fig. 2 (overlapping
objects separated by non-affine deformation) and in Fig. 3
(multiple modes due to outlier image and due to overlapping
objects). Another example is the car sequence of Fig. 5,
where one may want to either track the whole car or only the
portion to the left of the street light (the two contour modes
are separated by non-affine deformation). [18] tracked the
full car by using a special occlusion handling method (which
penalized deviations from a rigid car template).

A. Main Idea

To address the problems of [18], we need an importance
sampling step [2] in the PF that also samples from the
space of non-affine deformations. For deforming objects,
each contour point can move independently and hence the
contour deformation forms an infinite (in practice, very
large), dimensional space. PF on such a large dimensional
space is impractical due to the reduction in effective particle
size [2] as dimension increases. But in most real problems,
at any given time, “most of the contour deformation” occurs
in a smaller number of dimensions (“effective basis”) while
the deformation in the rest of the state space (space of
“residual deformations”) is “small”. The effective basis may
be fixed or time varying. This is the “large dimensional state
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spaces (or LDSS)” property, introduced in [17], [19], applied
to deforming contours. In other words, the deformation
“signal” is approximately bandlimited (spatially), with the
approximate cut-off frequency being much smaller than the
maximum measurable frequency, 0.5Hz. This idea is detailed
in [20].

Using the LDSS property, we proposed to modify the PF
method to perform sequential importance sampling [2] only
on the effective basis dimensions, while replacing it with
deterministic mode tracking (MT) in residual space [17],
[19]. In this work, we develop the PF-MT idea for contour
tracking using global translation and deformation velocity at
subsampled contour locations interpolated using a B-spline
basis as the effective basis. Detecting change in effective
basis dimension (when contour length or deformation fre-
quency changes) and estimating the new effective basis is
discussed. In practice, explicitly tracking local deformation
(even with deformation velocity tracked at only K = 6
locations around the contour) is extremely beneficial as can
be seen from the last rows of Figs. 2 and 3.

We stress the difference from Condensation [12] which
uses B-spline control points to approximate the contour
itself and hence requires many more sample points for
accurate representation. This is because the maximum spatial
frequency of deformation cannot be larger (is usually much
smaller) than that of the two contours' from which it is
computed. Also, our effective basis is similar to that of [21]
which proposed an annealing based technique for segmenta-
tion. Another PF method that also improves effective particle
size by reducing PF dimension is Rao-Blackwellization [22].
But it requires that a part of the state have a linear Gaussian
state space model. PFs with time-varying dimension have
been used in other contexts cited in [19].

The paper is organized as follows. We give the form of
the state space model in Section II. The PF-MT algorithm
for contour tracking and PF-MT-TV for dealing with time-
varying effective basis is explained in Section III. Experi-
mental results on simulated and real sequences are given in
Section IV. Conclusions, open issues are given in Section V.

II. STATE SPACE MODEL

The observation at time ¢ (image and edge map at t) is
denoted by Y; and the state at ¢ (contour, contour velocity) is
denoted by X;. A block diagram is shown in Fig. 1. The con-
tour at ¢ can be represented as Cy = Cy(p) = [CF (p), CY (p)],
p € [0,1]. The parametrization is not unique, i.e. all re-
parameterizations of the parameter p of the form p = f(p),
where f : [0,1] — [0,1] is continuous and strictly mono-
tonic, yield the same contouL [4]. The outwgd normal to
contour Cy at p is denoted by N (Cy(p)) or by N¢(p). Denote
the space of contours [23] by S. Then the tangent space to S
at Cy will be [23] the space of all non-tangential velocities
(velocities along the normal to C; at each point), since

I'The radius of the osculating circle [4] as a function of arclength is
treated as the contour “signal”. Deformation (along the contour normal) is
the difference of the two consecutive contour “signals”. When performing
a linear operation, new frequencies cannot be introduced.
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tangential velocity only re-parameterizes the contour [4]. We

use v; to denote the vector of normal velocities. Also, we use
. . A 1 _pTy-1,

the notation N(.’L’,H,E) = Vo€ * *. We represent

the contour C; using the level set method [15]. Contour

dimension at ¢ is denoted by M;.

A. System Model

The state at any time ¢, consists of the contour, its normal
deformation velocity, and the global translational velocity.
Because of the LDSS property (described in Section I-
A), “most of the contour deformation” occurs in a smaller
number of dimensions, K, which form the “effective basis”.
Thus, we split vy as vi(p) = Bs(p)vrs + Br(p)ver +
N;(p)Tp; where B, denotes the effective basis directions
for contour deformation (with translation removed) while
B, denotes the basis spanning the residual space. v s, vy,
denote the corresponding coefficients. p; € R? denotes
the global x-y translation vector. We use velocity at K
subsampled locations interpolated onto the entire contour
using B-spline interpolation functions as the effective basis.
This is explained in Section II-B. We assume that p;, vy g
follow a first order autoregressive (AR) model, while v, , is
assumed temporally independent.

Let the observations arrive every 7 time instants, i.e. arrive
att = nt, n = 1,2,... Denote X,,; by X,. The system
dynamics of X,, = [C},, Uns, Un,r, pr] can be expressed as:

Cn == én + Br(cn—l)vn,rﬁ(én) (1)

~ —T —

Cn =Cp_1+ [Bs(cnfl)vn,s + anlpn] anl (2)
Un,s = Asvn—l,s + Un,sy Vn,s ™ N(Oa ES) (3)
Un,r = Vnyry, Vngpr ™ N(O, ZI) (4)

Pn = Appnfl + Vnyp, Vnp™ N(O; Zp) &)

where B £ By(C,,_1) is defined by (6) or by (7). Note, vy, .-
is actually not part of the state vector (since no element of the
next state, X,,, depends on v,, ;). The above discretization
assumes that

Assumption 1: The observation in}erval T is small enough
(compared to Bvy, s + Bruy, » + N—}n71pn) so that ﬁn,l is
also approximately normal to C,,.

B. Geometric and Parametric Effective Basis

Contour motion using the level set method is naturally im-
plemented using a B-spline basis that parameterizes velocity
of a contour point based on its location on the x-y plane
(geometric effective basis). There are many possible ways
to define a geometric basis, e.g. see [21]. For example, one
dimensional parameterizations can be obtained by using the
turning angle (angle made by the tangent with the x axis) or
the radial angle (angular coordinate of the contour point w.r.t.
the centroid of the contour’s inside region, [u¥, x¥2]) as the
parameter. In our implementations, we use the radial angle
(angular coordinate of the contour point w.r.t. the centroid
of the contour’s inside region, [u¥, u¥]), as the parameter.
A velocity sample v, 5,7 = 1,2,..K is assigned to each
angular region. For e.g., a four dimensional basis is obtained
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by allocating one velocity sample to one quadrant of the x-y
plane and smoothing across quadrant boundaries using B-
spline interpolation. Thus

By(Cp)(p) = Bs(87)(0(Cn(p))), where
A Cap) — pn
0(Cr(p)) arctan[cg(p) — M%] (6)
and the vector " contains K basis points (called “knots”
[24]) which are uniformly chosen at angular distance o, =
27 /K apart. B4(6")(p) contains the K B-spline basis func-
tions for a closed cubic B-spline [24] with knots 6.

A geometric basis automatically handles changes in con-
tour topology. But it cannot be used if one would like to
independently deform two or more points of a contour that
have the same radial angle, but are far if one moves along
the contour arclength. Such applications can be handled by
a parametric effective basis which parameterizes velocity
based on the arclength [4] of the contour point, s(Cy,(p)),
w.rt. an initial starting point. The basis points split the
contour arclength into K regions and a velocity sample,
Un,s,j,J = 1,2,..K, is assigned to each region. We initially
place the basis points (“knots”) on the contour uniformly at
as = L/K arclength distance apart where L is the contour
length. As the contour deforms, the knots also move on the
contour. Thus

By(Cy)(p) = Bs(s(z. Cn))(s(Cn(p))) @)

where z;, has components, z7, ;,j = 1,2,..K which denote
the x-y location of the j*" knot. The vector s has components
8j,J = 1,..K which denote the arclength location of the gth
knot w.r.t. a fixed starting point. Given a contour, C, there
is an invertible mapping between z* and s. The forward
mapping, s(z*) is: s;(z*,C) =0 and

), for j =2,3,.K

1
s;(x*,C)=s; ;1 + Earclen(gj,@_l,

mj

arclen(z},z;_4,C) £ Z [|C(pm) — C(pm—1)||, wWhere

m=m;_i

m; & arg min |z — C(pm)| ®)

Here arclen() is the arclength [4] between the two consec-

utive knot locations, z7, 27 ;. The inverse mapping is:

zi(s,C) = C(s;). )

The knot locations, z;; move along with the contour, i.e.

for all j = 1,2,..K, they follow:

N
Ty =g+ v*(pj)N(p;), p; 2 si(25—1,Crn-1) (10)

T
v*(p) = Bs(p)vns + N}nfl(p)pn is the term inside | | on

the right hand side of (2). After sometime, some knots may
come “too close” to each other, while others may go “too
far”. This requires a change in effective basis (Section III-B).

The parametric basis is useful when change in topology
is not allowed. In implementation, we can detect topology
change of contour particles and assign a zero likelihood to
particles for which topology change occurs.
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C. Observation Model

The observation at time n, Y,, is the image at n and
the edge map derived from it. We assume that Y,,, depends
only on C,, (and not on the velocity), i.e. the observation
likelihood, p(Y,|X,) = p(Y,|Cy). Many observation mod-
els have been proposed - these can be classified as “region
based”, e.g. [25], [18], [6], or “edge based”, e.g. [12] or
“motion based”, e.g. [10].Using a good observation model
is a critical issue, but we have not addressed it here. In
this paper, we use a product of the simple region-based
observation likelihood of [18] which was motivated by the
Chan and Vese model [25] and the edge-based observation
likelihood proposed in Condensation [12]. This combines the
advantages of a region based approach (robustness to blurred
edges and ability to select the object of interest) with those
of an edge based approach (ability to deal with intensity
variations across the sequence and with errors in learning the
foreground or background object intensities). The combined
model is multimodal with a strong mode at the object of
interest (high region and edge likelihood) and a weaker mode
at any “object” (high edge likelihood only).

III. PF-MT-TV (PARTICLE FILTER WITH MODE
TRACKER AND TIME VARYING BASIS)

We first explain a generic particle filtering (PF) algorithm
[1], [3], [2]. A PF outputs at each time n, a cloud of N
particles, { X! } with weights {w! } whose empirical measure
TN (X,) & Zfil w! §(X, — X!) closely approximates the
true posterior, 7, (X, ) = p(X,|Y1.,). Here §(X —a) denotes
the Dirac delta function at a. It starts with sampling N times
from 7o at n = 0 to approximate it by 7' (Xy). For each
n > 0, it approximates the Bayes recursion for going from

7| to Y using importance sampling. This consists of:

1) Importance Sampling (IS): Sample X! ~ q(X!), for
i =1,2...N. The importance sampling density, ¢, can
depend on X! ;| and Y,,.

2) Weighting: Compute the weights: w! = Z ~ ~( 7>

Whel‘e w wn 1 (Ynlxq))((i(l ‘Xn 1)

3) Resampling: Replicate partlcfes in proportlon to their
weights & reset w;, [2]. Set n «+— n 4+ 1 & go to step
L.

A. PF-MT (Particle Filter with Mode Tracker)

Since the effective particle size decreases with increasing
system noise dimension, direct application of PF becomes
impractical for large dimensional problems. We propose to
replace the PF by the following: importance sample only on
the effective basis dimensions, and replace the importance
sampling step by a deterministic Mode Tracking (MT) step
in the residual space [17]. This idea, which we call PF-MT,
assumes that the effective basis dimension K is large enough
to ensure that Assumptions 2 and 3, given below, hold [17].

Assumption 2: The total residual deformation variance,
Aot = trace(X,) is small enough so that the posterior in
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residual space, p**t (defined below), is unimodal.

**,i(

U”ﬂ“) = p(vﬂm‘v;,sv p;a XriL—lv Kl)
~ . —
x p(Y,|C}, + Byvy »N) N(vy, 30,

p
) (1D

When Assumption 2 holds, one can use the following im-
portance sampling strategy [17]: sample vn s Py, from their
state transition priors; compute CfL using (2); and sample
v}, . from a Gaussian approximation [26], N'(m!, %), to
p**" about its mode, m},. Finally, compute C! using (1).
Now, by conditional variance identity [27], Ey, [S%g] ~
Ey, [Variance(p***)] < X,. Thus if the following as-
sumption holds, we can replace importance samphng from
N(mt,3t) by [17] deterministically setting v/, . = m?,
We call th1s the Mode Tracking (MT) appr0x1mat10n

Assumption 3: The total residual deformation variance,
Ayor = trace(X,) is small enough, ie. Ay < Atorpnds
so that with high probability, there is little error in replacing
a random sample from N(mi, X% ) by m?,.

Based on the above ideas, we develop the PF-MT algorithm
for contour tracking.

1) Importance Sampling on Effective Basis Dimensions:
This involves sampling vt . and p!, from their state transition
priors, N'(Av, 4 4, ) and N(A,pi,_1,3,) respectively
and computing C” using (2), Vi = 1,2,..N. We implement
(2) using the level set method [16], [15].

The contour, C,,, is represented as the zero level set of a
“level set function”, denoted ¢,, i.e. C, is the collection
of all points {z € R? on(x) = 0} [15], [16] (x
denotes the x-y coordinates). The directi_o)n of the gradient
of ¢n, Vo,(z), is along the normal, N,,. The level set
evolution corresponding to contour evolution given by (2), is:
(bz ( ) = l — (:I:) +Ueztend(x)||vm¢iy,71(x)” where Vextend

is the normal extension [15], [16] of B, (p)v;,s—&—ﬁ:fl(p)p;
onto non-zero level sets. This implementation assumes that
Assumption 1 holds. If it does not hold (either T large or
motion fast), then (2) will have to be implemented using
multiple iterations within one observation interval. Also, if
the narrowband level set method [15], [16] is used, multiple
iterations may be required to implement (2), depending on
the velocity magnitude and the narrowband width.

B, and its extension onto all level sets need to be
computed at each step. This can be done without computing
the zero level set (contour) for the geometric basis?.For the
parametric basis, at each iteration, (i) the contour needs to
be computed; it needs to always be traversed in the same
order (say clockwise); and starting point correspondence
needs to be maintained; (ii) the basis points need to be
moved along with the contour using (10) and (iii) the B-
spline interpolation functions need to be recomputed using
the current arclength distance between the basis points.

2) Mode Tracking on Residual Space: ThlS involves com-
puting the mode, mn, of p** i setting v, ,. = mﬁl, and
computing C* using (1), Vi = 1,2..N. Computing mi,

2if the requirement of normal extension velocities [15], [16] is relaxed
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Algorithm 1 PF-MT-TV: PF-MT for a Time Varying Effective Basis. Going from 7. | to 7} (X,.), X}, = [CL, pi, U} «, Vi 1]

1) Importance Sample (IS) on effective basis: V1,

sample v}, . ~ N(Aw} 4, %), sample pi, ~ N'(A,p,_1,%,) and compute C, using (2).

2) Mode Tracking (MT) in residual space: Vi,

(exact) compute m;, (mode of p*** defined in (11)), set v}, ,, = m;, and compute C;, using (1). Or
(approximate) compute C? by starting with C? & running & iterations of Gradient Descent to minimize E(C,,) £

- log[p(Yn|Cn)].

3) Weight & Resample: Compute w!, using (14) and resample [2].

4)
5) Change Effective Basis:

Detect Effective Basis Change: as explained in Section III-B. If needed, go to step 5, else n «<— n + 1, go to step 1.

a) Compute K., = L/as where L is the length of the most likely contour particle and c is the desired distance

between basis points.

b) Vi, reallocate the knots uniformly and evaluate the new basis By, ., (C’S)) £ Bx

¢) Vi, project v}, . into the new basis: v}, , — (B

d) n+<—mn-+1 and go to step 1.

Kpew,t

new,?

_B;v? _and set B; «— Bx

new,? n,s

—1 T
Bk,wi)” Bk

new;t*

and C! requires being able to compute B,. But B, is
the solution of B,BI = I — B,(BTB,)"'BT. Since B,
depends on C!_,, it will need to be computed at each
n and for all 7, which is very expensive. By using some
approximations, we avoid having to compute B,. Define
E(C,) & —log[p(Y,|Cy)]. We have shown [17] that if
Assumption 2 holds, m!, can be computed by starting with
Up,» = 0 as initial guess and running £ iterations (for some k)
of gradient descent to minimize F (C’ﬁl + Byvpr) WIL Uy .
If we also allow change along B, the k gradient descent
iterations to minimize E as a function of v,, ,. can be replaced
by k gradient descent iterations to minimize F as a function
of C), (skips the need to compute B,). This assumes that:
Assumption 4: We replace (1) and (4) by:

Co = Ch +0n,N(Cp), vny ~N(O,AI)  (12)

Gradient descent is implemented using the standard level set
method[15], [16]. We start with ¢(1) = ¢, (level set function
corresponding to CN'fL) as initial guess and run k iterations
of gradient descent to minimize F, i.e. run k iterations of
the type ¢(T+1) = ¢(r) =+ Ueactende:cQS(r)H where vegtend 18
normal extension [15], [16] of (V¢ E) onto non-zero level
sets. After k iterations, we get is ¢’ Its zero level set is C?.

3) Weighting and Resampling: This involves computing
the weights, w!, Vi = 1,2..N, and resampling [2]. w? is
computed as:

. w% ~1 A 7 p(Yn|O711) N(U:L,T;O’ET)
"N a T T Nk mi, X)
Using Assumption 4, the above only requires knowing
[v¢ ,]|?. Since in the mode tracking step we minimize
directly over C!, we never compute v’ . We can replace
|[vi, || by any easily computable distance, d, between C?,
and C! (or between ¢! and ¢’ ) without much error in
practice. In our experiments, we use the set symmetric
distance.Also, since Ey,, [Z}S] < ¥,, when ¥, is small,
one can replace X%¢ by ¥,.. This makes the denominator

.

. (13)

a constant (can be removed). Thus, the weights can be
computed as:
w! ; a2(ch Gl
A

Wy, = =Ny Wn = w1 p(YalC) e

n N -
2 =1 Wn
B. Time-Varying Effective Basis: PF-MT-TV

The effective basis dimension needs to be large enough so
that the mode tracking approximation in residual space can
be justified at each n, i.e. we need to satisfy Assumptions
2 and 3 at each n. Assume that we know the maximum
allowable value of the distance between consecutive basis
points, o to ensure that Ay < Ayorpng and it remains
constant with time. Computing « is discussed in [20].
For a given ag, K = L/a, and thus K needs to change
when contour length changes significantly. As the contour
deforms, both its total length and arclength distance between
consecutive basis points changes. For the parametric basis,
there is a need to change effective basis if this distance
becomes significantly smaller (starting to estimate noise)’
or significantly larger (residual deformation too large) than
ag. This is done as follows. Choose a g ymin < s and
Qs.maxz > (5. We declare a need to change dimension,
whenever the following occurs for “most” (more than 50%)
of the contour particles: the arclength distance between any
two consecutive basis points exceeds s ynqz O goes below
Qs min. We evaluate the new effective basis as follows:
Compute K = [L/ag] for the most likely contour particle.
Uniformly allocate the K basis points on the arclength of
all contour particles and compute the new effective basis
functions. Entire algorithm is summarized in Algorithm 1.

For geometric basis, deformation is a function of ra-
dial angle and so total angular “length” L=27 remains
fixed. The only time K changes is when a,=1/(2fnin)

(14)

3 Assumptions 2 and 3 require Aot < A¢ot,bna Which only translates
to an upper bound on the distance between consecutive basis points, .
But, in practice, if the distance between basis points becomes too small, the
PF starts estimating noise (demonstrated in Fig. 4) because the velocities
at the different basis points are assumed to be uncorrelated. Thus, distance
becoming too small also needs to be detected and corrected.
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changes.Change in contour length results in change in fre-
quency response of deformation as a function of radial angle.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Since the posterior can be multimodal, plotting the “av-
erage” contour is not useful. In all figures, we plot two
contours with the largest posterior (largest weights). The
largest weight contour is shown as a solid cyan line, the
second one as a dotted yellow line. In Figs. 2 and 3, we
demonstrate some examples of situations where [18] will
not work. We simulated the image sequence of Fig. 2(a)
as follows. The contour of the white (light grey) object
in the background was simulated by starting with a circle
at n = 0 and using the system model described in (2)-
(3) with K = 6 knots defining a geometric basis. We
used ¥, = I, A, = 0.5/ and ¥, = 0.25]. The residual
deformation was assumed to be zero, i.e. we set ), = C’n.
The intensity of each pixel inside the contour was taken to be
i.i.d Gaussian distributed with mean u2 = 130 and variance
02,, = 100. The contour of the grey deforming object (object
of interest) was also simulated with a model similar to the
one above with the difference that a non-zero drift term,
pw=1[000002]T was added to the right hand side (RHS) of
(3). This introduced a non-zero bias in the velocity dynamics
of the 6" knot, resulting in an inward motion with non-zero
average velocity at any n. The mean intensity of this object
was u0 = 85 and variance was again o2, = 100. The outer
(black) background had mean intensity, v0 = 45 and same
variance.

We tracked the grey object using the particle filter de-
scribed in Algorithm 1 with N = 45 particles and K fixed.
During tracking, we used all simulation parameters with the
exception that we set = 0. Instead, to track the non-zero
bias in the velocity, we increased the system noise variance
of the 6" knot to 5, i.e. we used ¥, = diag([1 1111 5]).
Residual deformation was tracked using the Mode Tracking
step of Algorithm 1 with £ = 1 GD iteration. Observation
likelihood was defined as explained in Section II-C and it had
a strong mode at the grey object and a weak mode at the
white (light grey) object (due to the edge-based component).
Some frames of the tracked sequence are shown in the second
row of Fig. 2(a). In the first row, we show tracking of
the same sequence using Affine PF-MT (algorithm of [18]).
This algorithm used the space of affine deformations as the
effective basis. All non-affine deformation was treated as
“residual deformation™ (tracked using a method similar to
Mode Tracking of Algorithm 1). Since there are two distinct
OL modes with roughly the same affine deformation (w.r.t. a
circle) and since non-affine deformation per frame is large,
the posterior of non-affine deformation is multimodal. So
the contours often get stuck to the wrong mode in the Mode
Tracking step. £k = 4 GD iterations were used for tracking
the residual (non-affine) deformation. As demonstrated in
[20], increasing GD iterations does not improve tracking.
We would like to clarify that we did not learn the affine
deformation parameters (and hence it is not a fair compari-
son), but we did change the values a number of times until

WelP5.5

best possible results were obtained. The sequence of Fig.
2(b) was simulated in a manner similar to Fig. 2(a), with
the difference that now knot locations 3 and 5 were made to
move inside, i.e. £ =1[00 10 1 0]7 is added to the RHS of
(3). Here again Affine PF-MT[18] loses track.

The sequence of Fig. 3 was generated using a parametric
basis with K = 6 basis points. Starting with a circle, one
knot was made to move inside by adding a non-zero drift
term, o = [0 0 0 0 0 2]7, to the RHS of (3). Outlier
observations similar to the one shown in the second column
were simulated at every even frame starting at ¢ = 10. This
was done by increasing the observation noise and by setting
u2 = u0 = 85. Before n = 10, the grey object is well
approximated by affine deformation of a circle and hence
is in track using both algorithms. But after ¢ = 10, [18]
gets stuck in the wrong mode due to the outlier observation.
Since it does not generate samples for local deformation, it is
unable to get to back to the correct mode fast enough (outliers
appear every other frame). For this example, increasing GD
iterations will only worsen the loss of track. On the other
hand, Algorithm 1 is able to get back to the correct mode
quickly, because it samples the space of local deformations.

In Fig. 4, we demonstrate the need to change the effective
basis dimension, K. In the image sequence shown, the
contour length keeps reducing because of inward motion
of knots 3 and 5 (simulated by adding a non-zero drift
w=1[001010]T) to (3). We used a parametric basis here
and a; = 35. While generating the sequence, K reduces
from 6 to 4 at n = 15 and to 3 at n = 23. While tracking
using Algorithm 1, we detected the need to reduce K from
6to5atn =14, from5to4 at n =17 and to 3 at n = 23.
The results are shown in the first three columns. In the last
column, we show what happens if we do not allow change in
K (use K = 6). When the knots come too close, independent
velocity samples at these points often erroneously result in
a contour with self-intersections (which breaks). All such
contours get assigned zero weights. The contour particles
that remain with non-zero weights are those which started
expanding erroneously.

Fig. 5 shows a moving car going under a street pole which
partially occludes it for some frames. One may want to track
the full car or track the portion to the left of the pole or the
right portion of the car. We demonstrate the first two cases.
The tracking of the full car is not as accurate because we
do not enforce closeness to a rigid car template as is done
in [18] and [14]. A geometric basis was used. Fig. 6 shows
sequential segmentation of a set of MRI slices of different
cross-sections of the brain. We show results on segmenting
brain tumor (grey-white region) in Fig. 6(a). A geometric
basis was used. The low contrast in the images results in a
large number of weak observation likelihood modes, very
near the true one. There is intensity variation across the
sequence and hence the edge likelihood helps remain in
track. Preliminary results on sequentially segmenting the
right ventricle (inside black region) are shown in Fig. 6(b).
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[18]’s algorithm:

Algorithm 1:

(a) Simulation sequence 1

Fig. 2.

WelP5.5

(b) Simulation sequence 2

Multiple local deformation modes & large non-affine deformation per frame (simulation examples). First row: using Affine PF-

MT[18] with k£ = 4 GD iterations. Second row: using Algorithm 1 with k£ = 1 GD iteration. The solid contour is the particle with largest

posterior weight, the dotted one has the second most largest weight.

Affine PF-MTJ[18]:

Algorithm 1:
Both in track

Both out of track

[18] out of track [18] out of track

(Outlier image)

Fig. 3.

Tracking through outlier observations (simulation example). At and after n=10, every even frame was an outlier observation

similar to frame 10 shown in the second column above. First row: using Affine PF-MT[18] with k = 4 GD iterations. Second row: using
Algorithm 1. First three plots use £ = 0 GD iterations. Last plot uses £ = 1 GD iteration.

Frame 13, K=6

Frame 14, K=5

20

Frame 20, K=4 Frame 20, K=6

Fig. 4. The need to change K. The grey object deforms and keeps reducing in size which requires reducing K. The tracking is not great
because only N=15 particles were used. In the last column, we show what happens if we keep tracking with K = 6 all the time. Some
contours develop self intersections resulting in zero weight assigned to them (not shown). The ones with non-zero weight are those which
did not self-intersect because they started expanding instead (shown).

V. CONCLUSION AND OPEN ISSUES

A new algorithm for tracking deforming contours is pro-
posed, which uses the fact that in most problems, at any
given time, most of the contour deformation occurs in a small
number of dimensions (effective basis) while the deformation
in the rest of the dimensions (residual space) in small. The

dimension of the effective basis may change over time. Note
that the proposed algorithm can also be used with other types
of effective basis, e.g. PCA basis [28], [6] and also with other
representations of the contour (other than level sets).

There are many open issues. The appropriate choice of
effective basis is not clear. A second issue is the choice of
effective basis dimension, K, and how to change K for both
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—
i

5""’ 5"",

(a) Trdckmg the contour for the car to left of the pole

Fig. 5.

(a) Tracking the tumor (grey-white region)

WelP5.5

e P T

(b) Tracking the full car

Tracking a car through partial occlusion by a pole.

(b) Attempt to track the right ventricle (black region in the center)

Fig. 6. Tracking the tumor (grey-white region) and the ventricle (black region in the center) in a brain MRI sequence. Sequence provided
by Dr. Viren Amin of Iowa State University.

types of bases. When changing K while tracking, one also  [12]
needs to deal with errors in estimating K, for e.g. using the
ideas introduced in [19]. A very important implementation ;3
issue is the choice of observation models and the use of
efficient resampling techniques [3], for large dimensional [14]
problems. Application to medical image sequence segmen-
tation problems, e.g. tracking different regions of an organ  [15]
such as the brain or the heart, from an MRI sequence or (16]
from a more noisier ultrasound sequence, is currently being
explored. For most medical image sequences, large amounts  [17]
of hand-segmented training data can be obtained and hence
learning the system dynamics can greatly improve the results. [18]
This is discussed in [20].
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