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Abstract— PI controllers are often tuned such that the
overall performance is a trade-off between performance in
steady state and transient regimes. By introducing reset of
the integrator value in these controllers, the performance in
transient regimes may be increased without influencing the
performance in steady state. An advantage of this strategy is
that it can be integrated into an already existing controller as
a separate module. This will only affect the performance in
the transient regimes, by speeding up the controller response
only when large control errors are measured. We will in this
paper show how integrator reset can be used for anti-spin in
local thruster speed control on ships with electric propulsion.
Transient regimes arise when the ship is in extreme seas, where
ventilation and in-and-out of water effects may give rise to loss
in propeller thrust. In this paper, a Lyapunov function is used
to decide when a reset of the integrator value is appropriate.
The method is illustrated with experimental results.

I. I NTRODUCTION

Electrically driven thrusters are becoming the standard
in advanced ship propulsion for offshore vessels, cruise
vessels, navy ships and some advanced tankers. In these
systems, thrusters are electrically driven taking the power
from power buses, where the power is supplied by gener-
ators driven by diesel engines or gas turbines. The con-
trol hierarchy consists of a high-level controller giving
commands to a thrust allocation scheme, which in turn
gives commanded thrust set-points to the different local
thruster controllers (LTC), see [1]. Examples of high-level
controllers are dynamic positioning (DP) systems, joysticks
and autopilots. In many cases the LTC is a conventional
PI-controller, controlling the propeller shaft speed. The
PI-controller may be tuned such that the performance is
acceptable in both steady-state and transient regimes. The
faster the PI-controller is tuned, the better the controller will
perform in transient regimes. This will in turn increase the
sensitivity to noise and increase variations in torque, power
and mechanical load, and hence decrease the performance
while in steady-state.

In normal operation, there may be no need for high
transient performance. When the ship is in extreme seas,
however, the propeller may start to spin due to ventilation
and in-and-out-of water effects. This, in turn, may lead
to wear and tear of the ship’s propulsion equipment and
undesired transients on the power bus that may increase the
risk of blackouts due to overloading of the generator sets,
see [2].

To handle these phenomena, an anti-spin controller is
developed in [3], which utilizes an estimate of the torque
loss to detect ventilation incidents. The anti-spin controller
in [3] is based on a combined power/torque controller
which in order takes control of the propeller shaft speed. A
similar approach is considered here, but instead the anti-spin
controller is based on a standard shaft speed PI-controller,
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where the integrator value may be reset if appropriate.
The torque loss observer in [3] is here utilized for online
calculation of the Lyapunov function origin (equilibrium
point), hence the Lyapunov function value may jump to a
higher value when the propeller starts or stops ventilating.
A multiple model Lyapunov algorithm decides when to
take integrator reset actions, selecting the integrator value
which gives the greatest drop in the Lyapunov function
value. This approach may also includes the possibility of
hard constraints, such as power limitations, propeller speed
limitations etc. The advantage of such a reset approach
is that the only alteration from prevailing installations are
more or less restricted to software updates.

II. L OCAL THRUSTER CONTROLLER

An illustration of a local thruster shaft speed control
system is given in Figure 1. From the high-level control
module, the desired propeller thrustTd is given as an input
to the controller. Further, a direct mapping transforms this
into the desired shaft speedωd. This is in turn fed into a
set-point mapping, which may limit the value of the desired
shaft speed to cope with possible events of ventilation, see
[3] for more details. The main idea pursued in this paper
is that the integrator in the PI-controller may be reset to a
different value to make the thruster approach its new steady
state value faster.

Locally, one may look at this controller as an ordinary
PI-controller, which is in addition able to reset the integrator
value. With reference to Figure 1, the different blocks;
thruster model, PI-controller, thrust to propeller speed map-
ping, set-point mapping, integrator resetting, propellerload
torque observer and ventilation detection are considered in
the following.

A. Thruster model
The rotational dynamics are described as in [4] p. 473

by a first-order dynamic model for the propeller and shaft:

Jω̇ = Qc − Qp(
h

R
, ω) − Kωω (1)

whereQc is commanded torque,J is the rotational inertia
of the propeller (including hydrodynamic added mass, shaft,
gears and motor),Kω is a linear friction coefficient,ω is
the angular speed of the propeller, andQp is the propeller
load torque. The load torqueQp is here modelled as:

Qp(
h

R
, ω) = Qn(ω)βQ(

h

R
,

ω

ωmax

) (2)

where h/R is the relative submergence of the propeller,
with R being the radius of the propeller, andh the shaft
submergence. The nominal torqueQn is given as:

Qn(ω) = Φsgn(ω)ω2 (3)

whereΦ = (KQ0ρD5)/(4π2), D is the propeller diameter,
and ρ is the density of water.KQ0 is the nominal torque



Fig. 1. Local thruster control system.

(a) Ventilation loss functionβQ. (b) Propeller load torque.

Fig. 2. Ventilation loss and propeller load torque as functions of relative
submergenceh/R and relative shaft speedω/ωmax.

coefficient commonly used for DP and low speed manoeu-
vering operations, when the advance speedVa is low. For
transit operations with higherVa, other models forKQ can
be established.βQ in (2) expresses the torque loss, which
is the ratio of actual to nominal torque, whereωmax is a
chosen maximum speed of the propeller. Figure 2(a) shows
a typical shape of this torque loss coefficient, see [5] for
more details.

B. PI-controller

Given a PI-controller:
Qc = Kp (ω∗ − ω) + z (4)

whereKp > 0 is the proportional gain and the integrator
state is:

ż = KI (ω∗ − ω) (5)

with KI = Kp/Ti and Ti > 0 the integral time constant.
The complete closed loop system becomes:

ω̇ =
1

J

(

−Kpω + Kpω
∗ − Kωω − Qp(

h

R
, ω) + z

)

(6)

ż = −KIω + KIω
∗

with Kω, J > 0 system constants.
Assumingh/R and ω∗ being constant, we also obtain

steady state values forz, i.e.:

z∗ = Kωω∗ + Qp(
h

R
, ω∗) (7)

Based on the definition of the error variablesω̃ = ω∗ − ω
and z̃ = z∗ − z, we have the following error dynamics:

˙̃ω =
1

J

(

z̃ − (Kp + Kω) ω̃ +

(

Qp(
h

R
, ω) − Qp(

h

R
, ω∗)

))

(8)
˙̃z = −KI ω̃

Further definingx̃ = [ω̃, z̃]T , the control error may be
written in compact form:

˙̃x = Ax̃ +
1

J
F (x̃,

h

R
, ω∗) (9)

where
A =

[

− 1

J
(Kω + Kp − a) 1

J
−KI 0

]

(10)

F (x̃,
h

R
, ω∗) =

[

f
(

h
R

, ω∗, ω̃
)

0

]

(11)

f(
h

R
, ω∗, ω̃) = Qp(

h

R
, ω) − Qp(

h

R
, ω∗) − aω̃ (12)

The linear partaω̃ is subtracted from the nonlinearity in
(8), leavingF (x̃, h

R
, ω∗) as the remaining nonlinear part in

(9). This is done in order to incorporate a linear approxi-
mation of the nonlinear part of the system as accurately as
possible. The nonlinear system may then be approximated
by a linear system. We search for a Lyapunov function
as for the linear systems, and analyze the effects of the
nonlinearity later.

We know that forA in (9) being Hurwitz, there exists a
solutionPT = P > 0 of the Lyapunov equation:

AT P + PA = −Q (13)

whereQT = Q > 0 and in general

P =

[

p11 p12

p12 p22

]

(14)

The following choice of Lyapunov candidate:

V (x̃) = x̃T P x̃ (15)

will prove stability of the closed loop system.
Proposition 1: Assumeω∗ and h/R constant, and sup-

poseKI andKp are chosen such thatA in (9) is Hurwitz
and PT = P > 0 is a solution to the Lyapunov equation
(13), whereQ = diag(q11, q22) > 0. Further, if there exists
an α such that the graph off( h

R
, ω∗, ω̃) in (11) belongs to

the sector[−α, α], ∀ ω̃ ∈ R, and there existµ1 > 0 and
µ2 > 0 such that

q11 −
1

J
(µ1 + µ2)α

2 −
1

Jµ1

(p11)
2 > 0 (16)

q22 −
1

Jµ2

(p12)
2 > 0 (17)

holds, then the origiñx = 0 is a globally exponentially
stable (GES) equilibrium point of (9).

Proof: The time derivative of (15) along the trajecto-



ries of the nonlinear system (9) is:

V̇ (x̃) = −x̃T Qx̃ +
2

J
x̃T PF (x̃,

h

R
, ω∗) (18)

The two terms in (18) are:
−x̃T Qx̃ = −q11ω̃

2 − q22z̃
2 − 2q12ω̃z̃ (19)

2

J
x̃T PF (x̃,

h

R
, ω∗) =

2

J
p11ω̃f(

h

R
, ω∗, ω̃)

+
2

J
p12z̃f(

h

R
, ω∗, ω̃) (20)

Using Young’s inequality,2xy ≤ 1

µ
x2 + µy2, ∀µ > 0,

on the second term of (20), we obtain:
2

J
x̃T PF (x̃,

h

R
, ω∗) ≤

1

Jµ1

(p11ω̃)2 +
1

J
µ1f

2(
h

R
, ω∗, ω̃)

+
1

Jµ2

(p12z̃)2 +
1

J
µ2f

2(
h

R
, ω∗, ω̃)

(21)

SinceQ is diagonal andf( h
R

, ω∗, ω̃) belongs to the sector
[−α, α], i.e.f2( h

R
, ω∗, ω̃) ≤ (αω̃)

2, ∀ω̃ for constantω∗ and
h
R

, we obtain:

V̇ (x̃) ≤ −

(

q11 −
1

J
(µ1 + µ2)α

2 −
1

Jµ1

(p11)
2

)

ω̃2

−

(

q22 −
1

Jµ2

(p12)
2

)

z̃2 = −W (x̃) (22)

From (16)-(17), the functionW (x̃) is positive definite,
hence GES follows from Thm 4.1 in [6].

Note that for a sudden change in the loss factorβQ, the
Lyapunov function value will make a positive jump due to
its new equilibrium point.

C. Thrust to propeller speed mapping
For fixed pitch propellers, the industrial standard is shaft

speed control based on a static mapping from desired thrust
Td to desired shaft speedωd. We use the following mapping:

ωd = 2πsgn(Td)

√

∣

∣

∣

∣

Td

KT0ρD4

∣

∣

∣

∣

(23)

Note that in this mapping, the nominal thrust coefficient
for Va = 0, KT0, is used. In transit whereVa 6= 0, an
alternative thrust coefficientKT (Va) could be used.

D. Integrator resetting
Integrator reset may improve performance in transient

regimes, when the equilibrium suddenly changes due to
ventilation, without influencing performance in steady-state.
Stability should be ensured even when these reset incidents
occur. A reset criterion can be stated with the help of the
already obtained Lyapunov function.

To maintain stability when the integrator is reset, one may
perform a reset only when this leads to a negative jump in
the Lyapunov function. Changes in value of the Lyapunov
function (15) due to reset of the integrator, is stated in the
following lemma.

Lemma 1: A reset of the integrator valuez(t+) to zi,
where t+ denotes an infinitely small time increment oft,
of system (9) leads to a jump in the Lyapunov function (15)
as follows:

∆Vi(t) = p22

(

z̃2
i − z̃2(t)

)

+ 2p12ω̃(t) (z̃i − z̃(t)) (24)

where z̃i = z∗ − zi.

Proof: Let ω̃i = ω∗−ωi andx̃i = [ω̃i, z̃i]
T . The jump

in the Lyapunov function is calculated as follows:

∆Vi(t) = V (x̃i) − V (x̃(t)) = x̃T
i P x̃i − x̃T (t)P x̃(t)

= p11ω̃
2
i + p22z̃

2
i + 2p12ω̃iz̃i

− p11ω̃
2(t) − p22z̃

2(t) − 2p12ω̃(t)z̃(t)

= p22

(

z̃2
i − z̃2(t)

)

+ 2p12ω̃(t) (z̃i − z̃(t)) (25)

where the fact that̃ωi = ω̃(t), due to the continuity of
solutions of ordinary differential equations, has been used.

We assume a finite set of integrator reset candidates,H =
{z1, . . . , zn}. The following result states stability when the
integrator is reset.

Theorem 1: Given a closed-loop system with PI-
controller as in (9). Assume thatV (t) in (15) is a Lyapunov
function that proves the equilibrium point of the nonlinear
system in (9) to be GES. Further assume that∆Vi(t)
denotes the jump in the Lyapunov function value if the
integrator of the PI-controller in (9) is reset to a different
value zi ∈ H. Then if z is reset to the valuezi only if
∆Vi(t) < 0, the equilibrium point of the nonlinear system
in (9) is GES.

Proof: The reader is referred to [7], where the switch-
ing system is proved to be stable in sense of Lyapunov if
∆Vi(t) < 0. Further, the condition∆Vi(t) < 0 leads to a
negative jump in the Lyapunov function, which also leads
to V̇ (x̃) ≤ −W (x̃) in (22), hence GES follows.

Remark 1: Assume the choice ofQ in (13) is done in
such a way that the Lyapunov function is an appropriate
measure of remaining transient trajectory. Then, in addition
to the overall stability being preserved with resetting, there
will be a transient performance improvement if the system
is reset.

E. Propeller load torque observer

Based on the rotational dynamics (1), the observer equa-
tions for the estimated propeller load torquêQp presented
in [8] are written as:

˙̂ω =
1

J
(−Q̂p − Kωω̂ + Qc) + k1(y − ŷ),

˙̂
Qp = −k2(y − ŷ), (26)

where the propeller load torqueQp has been modelled as
Q̇p = 0, and the shaft speedω is taken as the measured
output y (and henceŷ = ω̂). The equilibrium point of
the observer error dynamics is globally exponentially stable
(GES) in the case of a constant load torque if the observer
gainsk1 andk2 are chosen according to [8]:

k1 > −Kω/J, k2 < 0. (27)

An estimate of the torque loss factorβQ may be calcu-
lated based on the estimated propeller load torqueQ̂p from
(26) and an estimated expected nominal load torqueQ̂n.
Q̂n is given from (3) by feedback from the propeller shaft
speedω as:

Q̂n(ω) = Φsgn(ω)ω2. (28)

The estimated torque loss with respect to the nominal torque
expected from the measured shaft speed is then:

β̂Q = αb(ω) + (1 − αb(ω))
Q̂p

Q̂n

. (29)



αb(ω) is a weighting function of the type:

αb(y) = e−k|py|r for y ∈ R, (30)

wherek, p and r are positive tuning gains. The weighting
function is needed because the estimate otherwise would be
singular for zero shaft speed [8].

F. Ventilation detection
The estimated loss factor̂βQ may be subject to some

fluctuations during the period of ventilation. Instead of
using this estimate directly as a measure of whether the
propeller is ventilating or not, a translation of this valueinto
a discrete valueζ may be appropriate, as in [3]. For a single
ventilation incident,ζ will have the following evolution:

β̂Q ≥ βv,on ⇒ ζ = 0 (no ventilation)
β̂Q < βv,on ⇒ ζ = 1 (ventilation)
β̂Q ≥ βv,off ⇒ ζ = 0 (no ventilation)

(31)

G. Effects of not knowing the loss value
Because the loss factorβQ is unknown, the steady state

valuez∗ in (7) is estimated:

ẑ∗ = Kωω∗ + Φsgn(ω∗)ω∗2β̂Q (32)

where the estimate of the loss factorβ̂Q is given in (29).
Hence, the Lyapunov function value used in the integrator
reset algorithm is also an estimate. Erroneous resets due
to measurement noise during estimation ofz∗ in (32)
is reduced by decreasing the density of integrator reset
candidates inH.

H. Set-point mapping
In normal operation, increasing the rotational speed of the

propeller leads to an increase in the propeller load torque.
However, in case of ventilation, it might be necessary to
reduce the rotational speed of the propeller in order to
increase the propeller load torque, see Figure 2(b). In [5]
both stationary and dynamical tests of these effects are
studied. Due to the given controller design and since the
desired thrustTd is the input of the controller, a set-point
mapping may prevent the controller from demanding torque
above the limit of saturation:.

ω∗ =

{

ωopt, if ζ = 1 andωd ≥ ωopt

ωd, otherwise (33)

whereωopt is some optimal propeller speed during ventila-
tion, ωopt/ωmax = 0.45 in Figure 2. Further note that the
ventilation detectionζ from section II-F includes hysteresis,
hence robustness due to measurement noise in the loss value
estimateβ̂Q is achieved.

III. E XPERIMENTAL TEST RESULTS

An experimental set-up in the Marine Cybernetics Labo-
ratory (MCLab) at NTNU was used to test the resulting
strategy. The thruster set-up had the following physical
characteristics:

D J Kω KT0 KQ0

0.25 m 0.005 kgms2 0.01 Nms 0.575 0.075

where the maximum speed of the propeller wasωmax =
125 rad/s. The density of water in the basin wasρ = 1000
kg/m3, and the following set of controller gains were used:

Kp = 0.032, Ti = 0.05
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Fig. 3. Upper: Load torque nonlinearitiesQp( h
R

, ω) − Qp( h
R

, ω∗) in
(12) for different values ofω∗ running fromω̃ = −125 to ω̃ = 125 with
βQ = 1. The dotted line represents the linear part−aω̃ in (12). Lower:
The minimized nonlinear termf( h

R
, ω∗, ω̃) in (12) for different values

ω∗ for ω̃ ∈ [−125, 125].

In this set-up, the thruster is stationed at a fixed position,
centered in the basin. Hence, the use of the nominal thrust
and torque coefficientsKT0 and KQ0 in (23) and (3) are
appropriate.

The nonlinear termQp(
h
R

, ω) − Qp(
h
R

, ω∗) in (12) is
shown in Figure 3 for different values ofω∗. The loss factor
βQ is assumed to be constant equivalent to 1, where the
nonlinear term is most dominant.

We considerω̃ ∈ [−125, 125], hencea = −0.33 will
minimize the remaining nonlinear partf( h

R
, ω∗, ω̃) en-

closed inside the sector[−α, α], see Figure 3. However, note
that f( h

R
, ω∗, ω̃) is not enclosed inside the sector[−α, α]

for |ω̃| > 125, but due toω̃ ∈ [−125, 125], exponential
stability (ES) may still be ensured for all feasible initial
conditions.

The resulting eigenvalues of the matrixA areλ1 = −73.4
andλ2 = −1.7. Including the sectorα = 0.37 from Figure
3 in Lemma 1, ES of the nonlinear function (9) is proven
with Q = diag(1, 0.1), µ1 = 0.015 andµ2 = 0.00012. The
solution of (13) is:

P =

[

0.006652 −2.5 · 10−4

−2.5 · 10−4 2.1081

]

(34)

hence (15) will act as a suitable Lyapunov function.
For evaluation of the modular integrator reset strategy

outlined in this paper, test scenarios are given both with
and without the reset module. With reference to Figure
2, the propeller speed region of interest is selected to be
located aboveω/ωmax = 0.45. The desired thrust was
therefore chosen asTd = 300 N which yields ωd = 73
rad/s. Tests were performed both with and without the set-
point mapping. To demonstrate extreme seas, the propeller
was moved in and out of water by raising and lowering the
thruster with a period of 5 seconds and an amplitude of 15
cm. The propeller was then fully submerged at its lower
position, i.e. the distance from the propeller blades to the
sea surface was 5 cm. In the upper position, the shaft of
the propeller was in the mean free surface.

Plots of the experimental results are shown in Figure
4-7. A wave probe was used for measuring the relative
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Fig. 4. Experimental results with local thruster PI-control(no reset). Desired speedωd = 73.
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Fig. 5. Experimental results of the same situation as in Figure4, but with integrator resetting with the following candidates:H = {0, 2, 4, 6, 8, 10, 12}.
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Fig. 6. Experimental results with local thruster PI-controland set-point mapping (no reset). When ventilation is detected, the set-point of the PI-controller
is changed from the initialωd = 73, to a lower valueω∗ = 56.
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Fig. 7. Experimental results of the same situation as in Figure6, but with integrator resetting with the following candidates:H = {0, 2, 4, 6, 8, 10, 12}.

submergenceh/R. In order to plot the reset progress,σ(t)
is defined by:

σ =

{

zi, if ∆Vi < 0
−1, otherwise (35)

The exact Lyapunov function value is not available, but
an estimateV̂ of this is included in the plots. Thrust and
torque sensors on propeller shaft were used to measure
Tp and Qp. The motor time constant is neglected in this
paper, supported by the likeness between commanded motor
torqueQc and measured motor torqueQm. The discrepancy
betweenQc andQp is mainly due to the frictionKω.

Figure 4 shows a situation where a conventional PI-
controller is used. Note the peaks in propeller speedω when
the propeller ventilates. Also note the positive jumps in the
estimated Lyapunov value due to shifted equilibrium point
when the propeller starts and stops ventilating. The same
situation is shown in Figure 5, but with integrator resetting.
Clearly, the reset leads to reduced peaks inω. The plots
of V̂ shows the transient reductions when the PI-controller
is reset. Also note that the mean propeller thrustT̄p is not
reduced when the PI-controller is reset: the mean propeller
thrust without reset is̄Tp = 136 N while the value with
reset isT̄p = 152 N.

Figures 6 and 7 show the same controllers as Figures
4 and 5, but with a set-point mapping toω∗ = 56 when
ventilation is detected. Note the peak reduction ofω in
Figure 7, where the integrator resetting is made active.
In this last situation, a positive slew rate limiter has been
included at the integrator output. This reduces the noise in
the estimated̂βQ, and hence reduces the risk of performing
erroneous resets. A more sophisticated solution to this issue
would be to implement the noise reduction in the estimator
β̂Q instead. This is not considered here. A brief discussion
of this problem is included in [8]. The mean propeller
thrust is in this case kept more or less constant with the
introduction of integrator reset:̄Tp = 130 N without reset,
while T̄p = 128 N with reset. The small reduction may
be due to the introduction of the slew rate limiter. A more
appropriate choice of this slew rate limiter may lead to an
increase rather than a decrease of this value.

IV. CONCLUSIONS

We have presented a modular way of improving the
transient performance of a PI-controller for marine thruster
speed control by integrator resetting. A Lyapunov function
is used to decide when to reset and to prove asymptotic
stability of the overall system.

A test of the control strategy is made in a basin, where
improved performance is observed at situations where the
propeller ventilates. Tests showed reduced peaks in pro-
peller speed, hence reduction of structural loads on propeller
blades, while maintaining or even increasing the mean
propeller thrust.

ACKNOWLEDGEMENTS

This work was in part sponsored by the Research Council
of Norway, project number 157805/V30.

REFERENCES

[1] A. J. Sørensen, “Structural Issues in the Design and Operation of
Marine Control Systems,”IFAC Journal of Annual Reviews in Control,
vol. (29:1), pp. 125–149, 2005.

[2] D. Radan, Ø. N. Smogeli, A. J. Sørensen, and A. K.Ådnanes,
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