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Abstract—In this paper we present a new approach for In this paper, we use this new framework in the context
hierarchical control based on the recent notions of approximate of hierarchical control. Given a complex system that need

simulation relations and simulation functions. Given a complex to be controlled, approximate simulation relations allaw t
system that need to be controlled, approximate simulation ’

relations allow to characterize a simple approximation of the characterize a simple apprOXImf’;ltlon of the system, th_at
system, that can be used for the control design. The controller €an be used for the control design. The controller of this
of this approximate system can be lifted to the complex system approximate system can be lifted to the complex system
using an interface which is completely characterized by a ysing an interface which is completely characterized by a

simulation function. Then, the distance between the external gy |ation function. Then, the distance between the eatern
trajectories of the complex system and the external trajectdes

of the approximation is guaranteed to remain bounded by a t_rajeCtories of the _Com_plex_ system and the eXtemal traject
precision that can be evaluated from the simulation function. ies of the approximation is guaranteed to remain bounded
This makes our approach suitable for safety critical systems. by a precision that can be evaluated from the simulation
We show an application to robot motion control. function.

The organization of the paper is the following. In Section
I, we briefly review the approximation framework developed

The design of controllers for complex nonlinear systems it [8]. In Section I, we show how it can be used to formally
order to achieve possibly complex behaviors is a very haesign hierarchical controllers. Finally, in Section IVew
task that rapidly becomes intractable unless a hierarchigaresent an application to robot motion control.
approach is used. The simplest hierarchical control system
consists of two layers. The first layer consists of a coarse
model of the system. A controller is designed so that the Let us consider two control systems:
coarse model meets the specifications of the problem. Then, . .
the control is lifted to the second la isti L al) = Sl u),

yer consisting of a P y(t) h(x(#)) Q)

detailed model of the system. One of the main challenges
of hierarchical control is to design the interface betwéden t wherez(t) € R, x(0) € I, u(t) € U C RY, y(t) € R* and
two layers of the system. )

An approach using a hierarchy of consistent continuous S { Z/(t) = g(2(t), v(t)), @)
abstractions of continuous systems has been proposed in yt) = k=)
[14], [19]. It is based on the notion of simulation relation.where »(t) € R™, 2(0) € J, v(t) € V C RP, y/(t) € R,
widely used in computer science for discrete systems [3lote that both systems have the the same observation space
[12], and extended in several works to the continuous angle. r¥), put may have different input spaces.
hybrid settings [9], [13], [14], [17], [20].

Recently, the notion of approximate simulation relatiorA. From exact to approximate subsystems

has begn introduced in [8]. This generaligation .is MOre e say that the control systeRY is a subsystenof 3 if
appropriate for systems whose state-space is equipped Wiy external trajectories ot/ form a subset of the external
a natural topology such as continuous and hybrid systemgajectories ofs:!. Let us remark that an external trajectory
In this framework, it is not requ!red that the trajectorids Oy () can be obtained frorit andy’ for different inputsu(t)
the system and of its abstraction match exactly but onlgndv(t) (note that, in general, the sets of inpifsand V/
approximately. Consequently, this relaxation enablegelar e different).

simplifications [7]. The main concept of this approximation pyrther, 5 is acomplete subsysterii we can relate any
framework is the simulation function which defines effecinjtial state z, of & to an initial statez, of >’ such that
tively approximate simulation relations.

I. INTRODUCTION

Il. APPROXIMATE SIMULATION RELATIONS

for every state trajectory(t) of X’ starting in 2, there
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An effective way to characterize subsystems is to use Definition 2.3: A function V : R™ x R* — R* is a
the notion of simulation relation, traditionally definedr fo simulation function betweel’ and X if for all (z,z) €
discrete systems [3], [12] and extended more recently ®&™ x R™,

continuous and hybrid systems [9], [13], [14], [17], [20]. V(z,x) > ||k(2) — h(z)|?, (©)]
However, when considering continuous systems such as AV (z, ) AV (z,z)
(1) whose state-space is equipped with a natural topologysup 11615 <Tz’g(z,v) + 7x’f(x,u)> <0. (4)
’UEV“

this notion ofexact subsysteis quite restrictive and may not
allow significant complexity reduction in the control desig o
Weaker notions such approximate subsystenssem more Remgrk 2.4:There are similarities between the class of
appropriate. S|mul_at|on functions and the class _of rok_)ust control Lyapun
We will say that the control systef’ is anapproximate unctions [6], [11]. However, there is an important concept
subsystem of precisiohof ¥ if for every external trajectory difference. Considering the inputas a disturbance and the

y/(t) of ¥, there exists an external trajectonyt) of as a control input, equation (4) is interpreted as follows: f
satisfying for allt > 0, ||y(t) — /(t)|| < 4. Similar to the any disturbance there exists a control such that the fumctio

V' is non-increasing. In this setting, the control input
can be chosen with the knowledge of the disturbamnctn
of 3 to an initial statez, of %' such that for every trajectory comparison, a robust control Lyapunov function requires th
2(t) of ¥ starting inz, there exists a state trajectoryt) control input to be chosen independently of the disturbance
of  starting inzo and satisfying|h(z(t)) — k(z(t))| < 0, (i.e. the order of the supremum and infimum in equation (4)
forall t > 0. - is reversed) which is a more restrictive condition.

In the_following section, we show that approximate sub- The definition of approximate simulation relations can be

systems can be characterized using the notion of approeximé:{c’ne by considering the level sets of a simulation function
simulation relation as stated in the following Theorem.

Theorem 2.5:Let V' be a simulation function betweexf
B. Approximate simulation relations andX. Then, for all§ > 0, the relation defined by

exact case, we will say that’ is a complete approximate
subsystem of precisiah if we can relate any initial state,

Approximate simulation relations have been introduced in R={(z2) eR™ xR"| V(z,2) < §°} )
[8], in the general framework of so-called metric transitio ;s 4 annroximate simulation relation of precisibbetween
systems. For control systems such as (1) and (2), approrximag, andx.
simulation relations can be defined as follows.

Definition 2.1: A relation R C R™ x R™ is an approxi-
mate simulation relation of precisiahbetweeny’ and ¥ if |k(20) — h(zo)|l < v/ V(20,70) < 6.
for all (zo,20) € R,

Proof: Let (z0,z0) € R, then

Moreover, letz(t) be a state trajectory @’ such that:(0) =
1) [[k(z0) — h(zo)|| <6 z andu(t) be the associated input. From equation (4) there
2) For all state trajectory:(t) of X' such thatz(0) = existsz(¢) a state trajectory oF satisfyingz(0) = z, and

zo there exists a state trajectonyt) of X such that the associated input(¢) such that for allt > 0,

z(0) = z¢ and satisfying OV (=(t), (1))

30, (8) 20) € R. VE0,a(0) = =g (e (t), o)
Let us remark that fos = 0, we recover the notion of +8V(z(t)7x(t))f(x(t) () <0
exactsimulation relation as defined in [13], [20]. Ox ’ -
The characterization of complete approximate subsystemgien, for allt > 0, V(z(t), z(t)) < V(z0,20) < §% which
by approximate simulation relations is given by the follogi is equivalent to say that:(t), z(t)) € R. [ |
straightforward result. The precision of the approximate subsystendo€an be

Proposition 2.2:Let R C R™ x R™ be an approximate evaluated by solving a static game involving a simulation
simulation relation of precisiod betweenX’ and X. If for  function.
all zy € I, there existsyy € J such that(zg,z9) € R and Corollary 2.6: Let V be a simulation function betweetl
conversely, thert’ is a complete approximate subsystem otindX. Let § be defined by
> of precisiond.
6% = max (max min V(zg, o), max min V(zo, J;O)) .

C. Simulation functions zo€l zo€] 20€J zo€l ©)

The construction of approximate simulation relations cafihen, ¥’ is a complete approximate subsystem Xf of
be done effectively using a class of functions called simulgrecisions.
tion functions [8]. Essentially, a simulation function Ween Proof: Straightforward from Proposition 2.2 and The-
¥ and X is a positive function bounding the distance beorem 2.5. ]
tween the observations and non-increasing under the elarall Methods for the computation of simulation functions have
evolution of the systems. been presented for the class of constrained linear systems



[7] where approximate simulation relations have been usdgl Effective synthesis of low-level inputs

in the context of safety verification.¢. the inputsu and | et us assume that there exists a simulation function
v are considered as disturbances rather than controls) gatweeny’ and & such thatV(zg,zo) < 2. Then, the

approximate large systems by smaller or simpler ones witf¥ective synthesis of the control inputt) is given by the

guaranteed error bounds. following result:
In the following, we show how approximate subsystems proposition 3.3:Let uy : V x R™ x R" — U be a
can be used for hierarchical control. continuous function such that for gk, z, z) € V xR™ xR™,
[1l. HIERARCHICAL CONTROL USING APPROXIMATE sup <3V(Z,$) (2.0) + 8V(Z’I)f(x wy (v, 2 m))) <0
SUBSYSTEMS eV 0z ’ Oz ’ B -

C)

Approximate subsystems are useful for hierarchical conpan for any control inputu(t) and associated external

trol in that they can be used to simplify a control problem b¥rajectoryy’(t) of ', the external trajectory(t) of 3 given
separating the concerns due to the complexity of the syst

and to the complexity of the specified behavior that we want it) = flz@),uy (o), z(t),z())),
to achieve. { y(t) = h(z(t)
A. High-level synthesis for low-level specifications satisfies for allt > 0, |ly(t) — ¥’ (#)||> < V(z0,20). The

- : function uy is called aninterfacebetweenY’ and X.

Let us consider a compleiw-level systenkt, given by v . :
equation (1), that need to be controlled so that it meets some Proof. From quatlon (9), we have the(+(t), z(t)) <
specifications. For simplicity, we will consider only two 0. Then, from equation (3), for all > 0,
types of properties, nameipvariance and reachability, but ly() — ' @®)|1> < V(2(t),z(t)) < V(20,70)-
our approach extends to more complex specifications such
as those expressed with some temporal logecg. (TL [5],
[10], [18]).

Definition 3.1: Let Inv C RF, let y(t) be an external
trajectory ofX. Theny(t) satisfies the invariance property
with respect tanv if

[ |
The architecture of the controller allowing to synthesize
the control inputu(t) is shown on Figure 1. Note that the
initial statez, of the high-level system must be chosen so that
it satisfiesV (29, z¢) < §2. Therefore, it is not independent
of the initial statex, of the low-level system.

Vi >0, y(t) € Inv. 7)
Definition 3.2: Let Target C R¥, let y(¢t) be an external v
trajectory of¥. Theny(t) satisfies the reachability property !
with respect tdTarget if /
High Level System| Y _
It >0, y(t) € Target. (8) ¥
Let zy be the initial state of the systerm, our goal
is to design a control input(t) such that the associated ¥ “y T
external trajectoryy(t) satisfies both the invariance and the Interface-u
e . uv
reachability properties.
Let X' be a simple high-level systenthat is a complete u
approximate subsystem of precisiérof X. For all subsets v
S of R*, let Low Level System v_
1(S,8) = {s €S| |s— ]| <5 — & €S} Z‘
T

Let zo be the initial state o’ related tox,. Let v(t)
be a control input forY) such that the associated external
trajectoryy’(¢) satisfies the invariance property with respect
to Z(Inv,d) and the reachability property with respect to Remark 3.4:0ur approach is related to more classical
Z(Target,d). Since ¥’ is an approximate subsystem oftopics in control theory such as tracking control (seg.
precisiond of X, there exists an input(t) for ¥ such thatthe [15]). However, in our work,>> does not need to be able
associated external trajectoyyt) satisfies||y(t) —¢'(¢)|| < to track any reference trajectory but only those associated
g, for all ¢t > 0. Then, it is clear thaty(¢) satisfies the with its approximate subsystedy’. Therefore, the tracking
invariance property with respect fav and the reachability controller {.e.the interface) can be designed with the knowl-
property with respect t@arget. edge of the dynamics generating the reference trajectory.

Synthesizing the control input(¢) for the high-level sys- Also related is the work on model matching [4]. The main
temY’ is generally much easier than synthesizing the contralifference is that, in our approach, we do not want to design
input u(t) for the low-level systent. In the following we a controller forX so that it matches exactly or asymptoti-
show howu(t) can be obtained from(t). cally X’. The controller we design guarantees approximate

Fig. 1. Architecture of the controller



matching with guaranteed and uniform (in the sense of thehen, V(z,z) > Q(z,z) > ||x1 — z||* and equation (3) is
L*-norm) error bounds. This property makes our approacsatisfied.
particularly suitable for control of safety critical systs. To prove thatV is a simulation function between’ and
Y, it is sufficient to show that equation (9) holds since this
IV. APPLICATION TOROBOT MOTION CONTROL clearly implies that equation (4) holds as well.
We consider a point like planar robot evolving in an If Q(z,z) < 4/2, then it is clear that equation (9) holds.
environmentInv. Inv can be a complex, non convex setlf Q(z,x) > 4v2, then
with several holes. The control problem is to drive theyy, oV ov 4
robot to a setTarget while remaining in the environment —v+ 5 a2+ o —uy = —[(—221 + 22 — x2) v +
. o . . . z 0x1 0xo 3
Inv. This specification of this standard motion planning

. . . . . . 2r1 — 2 - X
problem clearly consists in the conjunction of the invac&an (221 = 22+ 22) - 22 +

property with respect tdnv with the reachability property (11— 2+ 222) - uy].
with respect tdlarget. After the substitution of the expression of; and simplifi-
The low-level systenk that need to be controlled consistscation, we arrive to
of a dynamical model of the robot. oV oV oV
i - - = — —92 —2)-
#1() = (1) 22" T o T Q) =2z = 2) v,
X 2(t) = w(t) (10) < —Q(z,2) + 2|z — 2|
yt) = =) becausd|v|| < v. Since|jz; — 2|2 < Q(z,z), we have

wherer(t) € R?, x5(t) € R2. Initially, z1(0) € Init and 9V oV oV
the velocity of the robot is zerd.¢. zo(0) = 0). The input 3,V T g %2 T g-uv = —Q(z,2) + 2vV/Q(z, x),

u(t) € R? is such thafl|u(t)|| < p. < SO
The high-level systenY’ that we want to use for control - @z, 2)(2v Q= 2)).
synthesis consists of a kinematic model of the robot. SinceQ(z,z) > 412, we have
; ov ov ov
I 2t) = () — v+ —x3 + —uy <0.
v { St = () () 0z " om " dmy " T
Then, equation (9) holds. ]

2 . - 2 .
v;gherez(t) € R%, 2(0) € Init. The inputv(t) € R*is such | ot s remark that the initial stat€0) of the approximate
that [u(®)]] < v. subsystem can chosen such thét) = z,(0). Then, we have

: ,
Fl_rst, let us remark thakt is not an exact subs_,ys_tgr_n OfV(z(O),x(O)) = 412 and from Corollary 2.6, we have the
3 since all the external trajectories af have their initial lowing result

velocity equal tg zero wherleas _this is.clearly not the case I’?ICoroIIary 4.2: Let 4 = +oo, then Y is a complete
the. external trapctones af’. This motivates the use of the approximate subsystem of precision of ¥..

notion of approximate subsystem. Thus, it is possible to make the approximate subsystem as
A. Approximate subsystem for robot motion control. precise as desired by choosing the velocity bounsmall
enough. The implementation of the controller that makes

In the following, we show that under some assumptiong, o ave like its approximate subsystéthis very simple

. }
on the parameterg and v, ¥’ is a complete approximate since the interfaces,, is a linear function.
subsystem of..

. . .. Generally, the robot has hard constraints on its accederati
Let us assume that the acceleration of the robot is possmd.

. i X Ye. i < —+o00). Then, we can show that the result of
unboundedi(e. . = +oc). The l?ound will be reintroduced Corollary 4.2 still holds, provided the bound is large
later. Then, we have the following result.

- enough.
Proposition 4.1:Let y1 = 400, let @ : R? x R* — R* be Thgorem 4.3:Lety > (v6+1/2)v, thenX is a complete
defined by approximate subsystem of precisidn of >.
Proof: It is clear that it is sufficient to show that for
all (z,) such thatV (z,z) < 412, |Juy (v, z,7)|| < u. First,
let us remark that

Q) = 5 (Il = 2l + (1 = 2) -2+ al)

Then,V(z,z) = max(Q(z, ), 4v?) is a simulation function

betweenY’ and ¥ and an interface is given by the linear luy (v, z,2)|| < v/2+ || — 22 + 2 — x4
function o
v Moreover, it is easy to show that
uy(v,z,x) = = — 29+ 2 — x7.
. ; 2
Proof: Let us start by remarking that Q(z, 1) = 3 (o1 — 2 + @2 + &1 — 2[|2 + 2]?)
Qzx) = o —2|*+ which implies that
1 2 2 3 3
g (lor =P+ dlm =)t dleall), gy b < QG 0) < SV (5 2) <602

1
a1 — 2)* + 3l — 2+ 2a. Therefore,||uy (v, z,z)|| < (V6 +1/2)v < p. n



B. Example

We now consider a practical motion planning problem.
The environmeninv where the robot evolves can be seen
on Figure 2. It consists of a corridor of width At the end
of the corridor, there is a room with an obstacle. Theget, ]
a circle of diametet, is behind the obstacle. M\ﬂ/kﬂﬂ\ﬂ/\ﬁ/bm

The velocity boundr is chosen equal t®.25 and the ]
accelaration bound: is assumed large enougke.g§. 1 =
3v = 0.75). Then, from Theorem 4.3, the precision Bf,
the approximate subsystem Bfis § = 0.5. I L R

We can design easily a path fai’ consisting of line rg 3 value of the function,/Q(z (), z(t)) for the trajectories of
segments along which the approximate system evolves at thel S’ presented on Figure 2. The vertical lines correspond toithestat
constant speed. The input synthesized fat’ is lifted tox;  Which the direction of the trajectory df’ changes.
using the controller shown on Figure 1.

On Figure 2, the external trajectony(t) (dashed, red)  Figyre 4 is an illustration of what may happen when
of the approximate subsystel’ satisfies the invariance the motion of the approximate subsystemt is designed
property with respect td(Inv,§) and the reachability with jnqependantly of its precision. In this example, the exern
respect toZ(Target,d). Then, from the results obtained trajectoryy/(t) (dashed, red) of’ satisfies the invariance
in section lll, it is guaranteed that the external trajey:torproperty with respect tdnv and the reachability property
y(t) (plain, blue) of the controlled systel safisfies the yjth respect toTarget. However, it does not satisfy the
invariance property with respect fav and the reachability jnyariance property with respect (Inv,s). We can see
property with respect tdarget. This example illustrates how hat the external trajectory(t) (plain, blue) ofX does not

the motion planning problem can be solved very easily Usmgatisfy the invariance property with respectitor.
the approximate subsysteRi.

Fig. 4. Trajectories of the systeld (plain, blue) and of its approximate
Fig. 2. Trajectories of the system (plain, blue) and of its approximate SubsystemX’ (dashed, red). The trajectory of’ does not satisfy the
subsystemy’ (dashed, red). The trajectory af satisfies the invariance invariance property with respect %(Inv, ). Then, the trajectory of
property with respect t(Inv,d) and the reachability with respect to does not satisfy the invariance property with respedite.
Z(Target, d). This insures that the trajectory &f satisfies the invariance

roperty with respect tdnv and the reachability property with respect to . . .
%arr;et.y P Y Propery P C. Hierarchical architecture of autonomous robots

Often, we are interested in designing a closed loop con-
On Figure 3, we represented the evolution of the functiotroller rather than an open loop controller such as those
VQ(z(t),z(t)) for the trajectories ob and ¥’ represented considered in the previous section. Indeed, a closed loop
on Figure 2. Particularly, the value of this function pravid controller can be used for infinitely many initial states and
bound on the distance betweg(t) andy’(¢). We can check allows to implement autonomous robots.
that The design of control laws for kinematic models such as
for all t > 0, \/Q(z(t), z(t)) < 0.5, ¥’ is quite well developped. Purely continuous approaches
such as those based on potential or navigation functiors (se
which is expected because the precision of the approximatey. [2]) allows to solve efficiently control problems with
subsystem ig).5. invariance and reachability specifications. More recently
Let us remark that the functioy Q(z(t), z(t)) has twelve methods based on discrete abstractionsX6fhave been
local maxima corresponding to the initial phase when thproposed [1], [5]. Then, using algorithms for discrete egst
robot starts to move and the eleven changes of direction (e.g. algorithms from model checking [5]), these discrete
the trajectory of the approximate subsyst&n During the abstractions allow the design of hybrid controllers fof
period where the trajectory of’ is a straight line, it seems even for complex specifications such as those expressed in
that the function stabilizes arourid25. LTL.



Then, the controller designed for the approximate subsys-We can see that our approach allows to lift a possibly
tem X’ can be lifted toX the dynamic model of the robot complex controller designed for the simple approximate
using the hierarchical closed loop controller presented asubsystem in order to control the more complex sysim

Figure 5. Then, it is guaranteed that the distance between

y'(t) andy(t), the external trajectories af’ and of ¥, will
be bounded by the precision &f.

—
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Fig. 5. Hierarchical architecture of the autonomous robot

For illustration, let us consider the example whéreis
driven by the normalized van der Pol equations:

sy — )

20 £ I

22

where f(z1, z2) = (1= 22) — 2

The velocity bound in the approximate subsystEmgiven
by equation (11) can be chosen equal(Ot6. Then, from
Theorem 4.3, the precision &f is bounded byi. On Figure

V. CONCLUSION

In this paper, we presented an approach for hierarchical
control based on the notion of approximate subsystem. It
allows to use a simplified model of a complex system for
control design. The resulting controller is easily liftedthe
complex system using an interface given by a simulation
function with guaranteed error bounds.

Future work includes the development of algorithmic
methods for the computation of simulation functions and
of the associated interfaces. An interesting applicatidh w
consists in coupling our approach with the methods for the
design of hybrid controllers [1], [5] for kinematic models
in order to control complex systems so that they satisfy
specifications expressed in temporal logics.
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