
Hierarchical Control using Approximate Simulation Relations

Antoine Girard and George J. Pappas

Abstract— In this paper we present a new approach for
hierarchical control based on the recent notions of approximate
simulation relations and simulation functions. Given a complex
system that need to be controlled, approximate simulation
relations allow to characterize a simple approximation of the
system, that can be used for the control design. The controller
of this approximate system can be lifted to the complex system
using an interface which is completely characterized by a
simulation function. Then, the distance between the external
trajectories of the complex system and the external trajectories
of the approximation is guaranteed to remain bounded by a
precision that can be evaluated from the simulation function.
This makes our approach suitable for safety critical systems.
We show an application to robot motion control.

I. I NTRODUCTION

The design of controllers for complex nonlinear systems in
order to achieve possibly complex behaviors is a very hard
task that rapidly becomes intractable unless a hierarchical
approach is used. The simplest hierarchical control system
consists of two layers. The first layer consists of a coarse
model of the system. A controller is designed so that the
coarse model meets the specifications of the problem. Then,
the control is lifted to the second layer consisting of a
detailed model of the system. One of the main challenges
of hierarchical control is to design the interface between the
two layers of the system.

An approach using a hierarchy of consistent continuous
abstractions of continuous systems has been proposed in
[14], [19]. It is based on the notion of simulation relation,
widely used in computer science for discrete systems [3],
[12], and extended in several works to the continuous and
hybrid settings [9], [13], [14], [17], [20].

Recently, the notion of approximate simulation relation
has been introduced in [8]. This generalization is more
appropriate for systems whose state-space is equipped with
a natural topology such as continuous and hybrid systems.
In this framework, it is not required that the trajectories of
the system and of its abstraction match exactly but only
approximately. Consequently, this relaxation enables larger
simplifications [7]. The main concept of this approximation
framework is the simulation function which defines effec-
tively approximate simulation relations.
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In this paper, we use this new framework in the context
of hierarchical control. Given a complex system that need
to be controlled, approximate simulation relations allow to
characterize a simple approximation of the system, that
can be used for the control design. The controller of this
approximate system can be lifted to the complex system
using an interface which is completely characterized by a
simulation function. Then, the distance between the external
trajectories of the complex system and the external trajecto-
ries of the approximation is guaranteed to remain bounded
by a precision that can be evaluated from the simulation
function.

The organization of the paper is the following. In Section
II, we briefly review the approximation framework developed
in [8]. In Section III, we show how it can be used to formally
design hierarchical controllers. Finally, in Section IV, we
present an application to robot motion control.

II. A PPROXIMATE SIMULATION RELATIONS

Let us consider two control systems:

Σ :

{

ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t))

(1)

wherex(t) ∈ R
n, x(0) ∈ I, u(t) ∈ U ⊆ R

q, y(t) ∈ R
k and

Σ′ :

{

ż(t) = g(z(t), v(t)),
y′(t) = k(z(t))

(2)

wherez(t) ∈ R
m, z(0) ∈ J , v(t) ∈ V ⊆ R

p, y′(t) ∈ R
k.

Note that both systems have the the same observation space
(i.e. R

k), but may have different input spaces.

A. From exact to approximate subsystems

We say that the control systemΣ′ is a subsystemof Σ if
the external trajectories ofΣ′ form a subset of the external
trajectories ofΣ1. Let us remark that an external trajectory
y(t) can be obtained fromΣ andΣ′ for different inputsu(t)
and v(t) (note that, in general, the sets of inputsU and V
are different).

Further,Σ′ is a complete subsystem, if we can relate any
initial state x0 of Σ to an initial statez0 of Σ′ such that
for every state trajectoryz(t) of Σ′ starting in z0, there
exists a state trajectoryx(t) of Σ starting inx0 and satisfying
h(x(t)) = k(z(t)), for all t ≥ 0. Then, for all initial states
of Σ, there exists an initial state ofΣ′ such that it is possible
to makeΣ behave likeΣ′. Thus, hierarchical control ofΣ
can be achieved by designing a controller forΣ′.

1The termsubsystemis borrowed from [16]. This notion is traditionally
referred to asrefinementin the computer science literature.



An effective way to characterize subsystems is to use
the notion of simulation relation, traditionally defined for
discrete systems [3], [12] and extended more recently to
continuous and hybrid systems [9], [13], [14], [17], [20].

However, when considering continuous systems such as
(1) whose state-space is equipped with a natural topology,
this notion ofexact subsystemis quite restrictive and may not
allow significant complexity reduction in the control design.
Weaker notions such asapproximate subsystemsseem more
appropriate.

We will say that the control systemΣ′ is anapproximate
subsystem of precisionδ of Σ if for every external trajectory
y′(t) of Σ′, there exists an external trajectoryy(t) of Σ
satisfying for all t ≥ 0, ‖y(t) − y′(t)‖ ≤ δ. Similar to the
exact case, we will say thatΣ′ is a complete approximate
subsystem of precisionδ, if we can relate any initial statex0

of Σ to an initial statez0 of Σ′ such that for every trajectory
z(t) of Σ′ starting inz0, there exists a state trajectoryx(t)
of Σ starting inx0 and satisfying‖h(x(t)) − k(z(t))‖ ≤ δ,
for all t ≥ 0.

In the following section, we show that approximate sub-
systems can be characterized using the notion of approximate
simulation relation.

B. Approximate simulation relations

Approximate simulation relations have been introduced in
[8], in the general framework of so-called metric transition
systems. For control systems such as (1) and (2), approximate
simulation relations can be defined as follows.

Definition 2.1: A relation R ⊆ R
m × R

n is an approxi-
mate simulation relation of precisionδ betweenΣ′ andΣ if
for all (z0, x0) ∈ R,

1) ‖k(z0) − h(x0)‖ ≤ δ
2) For all state trajectoryz(t) of Σ′ such thatz(0) =

z0 there exists a state trajectoryx(t) of Σ such that
x(0) = x0 and satisfying

∀t ≥ 0, (z(t), x(t)) ∈ R.

Let us remark that forδ = 0, we recover the notion of
exactsimulation relation as defined in [13], [20].

The characterization of complete approximate subsystems
by approximate simulation relations is given by the following
straightforward result.

Proposition 2.2:Let R ⊆ R
m × R

n be an approximate
simulation relation of precisionδ betweenΣ′ andΣ. If for
all x0 ∈ I, there existsz0 ∈ J such that(z0, x0) ∈ R and
conversely, thenΣ′ is a complete approximate subsystem of
Σ of precisionδ.

C. Simulation functions

The construction of approximate simulation relations can
be done effectively using a class of functions called simula-
tion functions [8]. Essentially, a simulation function between
Σ′ and Σ is a positive function bounding the distance be-
tween the observations and non-increasing under the parallel
evolution of the systems.

Definition 2.3: A function V : R
m × R

n → R
+ is a

simulation function betweenΣ′ and Σ if for all (z, x) ∈
R

m × R
n,

V (z, x) ≥ ‖k(z) − h(x)‖2, (3)

sup
v∈V

inf
u∈U

(

∂V (z, x)

∂z
g(z, v) +

∂V (z, x)

∂x
f(x, u)

)

≤ 0 . (4)

Remark 2.4:There are similarities between the class of
simulation functions and the class of robust control Lyapunov
functions [6], [11]. However, there is an important conceptual
difference. Considering the inputv as a disturbance and theu
as a control input, equation (4) is interpreted as follows: for
any disturbance there exists a control such that the function
V is non-increasing. In this setting, the control inputu
can be chosen with the knowledge of the disturbancev. In
comparison, a robust control Lyapunov function requires the
control input to be chosen independently of the disturbance
(i.e. the order of the supremum and infimum in equation (4)
is reversed) which is a more restrictive condition.

The definition of approximate simulation relations can be
done by considering the level sets of a simulation function
as stated in the following Theorem.

Theorem 2.5:Let V be a simulation function betweenΣ′

andΣ. Then, for allδ ≥ 0, the relation defined by

R =
{

(z, x) ∈ R
m × R

n| V (z, x) ≤ δ2
}

(5)

is an approximate simulation relation of precisionδ between
Σ′ andΣ.

Proof: Let (z0, x0) ∈ R, then

‖k(z0) − h(x0)‖ ≤
√

V (z0, x0) ≤ δ.

Moreover, letz(t) be a state trajectory ofΣ′ such thatz(0) =
z0 andv(t) be the associated input. From equation (4) there
existsx(t) a state trajectory ofΣ satisfyingx(0) = x0 and
the associated inputu(t) such that for allt ≥ 0,

V̇ (z(t), x(t)) =
∂V (z(t), x(t))

∂z
g(z(t), v(t))

+
∂V (z(t), x(t))

∂x
f(x(t), u(t)) ≤ 0 .

Then, for all t ≥ 0, V (z(t), x(t)) ≤ V (z0, x0) ≤ δ2 which
is equivalent to say that(z(t), x(t)) ∈ R.

The precision of the approximate subsystem ofΣ can be
evaluated by solving a static game involving a simulation
function.

Corollary 2.6: Let V be a simulation function betweenΣ′

andΣ. Let δ be defined by

δ2 = max

(

max
x0∈I

min
z0∈J

V (z0, x0),max
z0∈J

min
x0∈I

V (z0, x0)

)

.

(6)
Then, Σ′ is a complete approximate subsystem ofΣ of
precisionδ.

Proof: Straightforward from Proposition 2.2 and The-
orem 2.5.

Methods for the computation of simulation functions have
been presented for the class of constrained linear systems



[7] where approximate simulation relations have been used
in the context of safety verification (i.e. the inputsu and
v are considered as disturbances rather than controls) to
approximate large systems by smaller or simpler ones with
guaranteed error bounds.

In the following, we show how approximate subsystems
can be used for hierarchical control.

III. H IERARCHICAL CONTROL USINGAPPROXIMATE

SUBSYSTEMS

Approximate subsystems are useful for hierarchical con-
trol in that they can be used to simplify a control problem by
separating the concerns due to the complexity of the system
and to the complexity of the specified behavior that we want
to achieve.

A. High-level synthesis for low-level specifications

Let us consider a complex,low-level systemΣ, given by
equation (1), that need to be controlled so that it meets some
specifications. For simplicity, we will consider only two
types of properties, namelyinvarianceand reachability, but
our approach extends to more complex specifications such
as those expressed with some temporal logics (e.g.LTL [5],
[10], [18]).

Definition 3.1: Let Inv ⊆ R
k, let y(t) be an external

trajectory ofΣ. Then y(t) satisfies the invariance property
with respect toInv if

∀t ≥ 0, y(t) ∈ Inv. (7)
Definition 3.2: Let Target ⊆ R

k, let y(t) be an external
trajectory ofΣ. Theny(t) satisfies the reachability property
with respect toTarget if

∃t ≥ 0, y(t) ∈ Target. (8)
Let x0 be the initial state of the systemΣ, our goal

is to design a control inputu(t) such that the associated
external trajectoryy(t) satisfies both the invariance and the
reachability properties.

Let Σ′ be a simple,high-level systemthat is a complete
approximate subsystem of precisionδ of Σ. For all subsets
S of R

k, let

I(S, δ) = {s ∈ S| ‖s − s′‖ ≤ δ =⇒ s′ ∈ S}.

Let z0 be the initial state ofΣ′ related tox0. Let v(t)
be a control input forΣ′ such that the associated external
trajectoryy′(t) satisfies the invariance property with respect
to I(Inv, δ) and the reachability property with respect to
I(Target, δ). Since Σ′ is an approximate subsystem of
precisionδ of Σ, there exists an inputu(t) for Σ such that the
associated external trajectoryy(t) satisfies‖y(t) − y′(t)‖ ≤
δ, for all t ≥ 0. Then, it is clear thaty(t) satisfies the
invariance property with respect toInv and the reachability
property with respect toTarget.

Synthesizing the control inputv(t) for the high-level sys-
temΣ′ is generally much easier than synthesizing the control
input u(t) for the low-level systemΣ. In the following we
show howu(t) can be obtained fromv(t).

B. Effective synthesis of low-level inputs

Let us assume that there exists a simulation functionV
betweenΣ′ and Σ such thatV (z0, x0) ≤ δ2. Then, the
effective synthesis of the control inputu(t) is given by the
following result:

Proposition 3.3:Let uV : V × R
m × R

n → U be a
continuous function such that for all(v, z, x) ∈ V ×R

m×R
n,

sup
v∈V

(

∂V (z, x)

∂z
g(z, v) +

∂V (z, x)

∂x
f(x, uV (v, z, x))

)

≤ 0

(9)
then for any control inputv(t) and associated external
trajectoryy′(t) of Σ′, the external trajectoryy(t) of Σ given
by

{

ẋ(t) = f(x(t), uV (v(t), z(t), x(t))),
y(t) = h(x(t))

satisfies for allt ≥ 0, ‖y(t) − y′(t)‖2 ≤ V (z0, x0). The
function uV is called aninterfacebetweenΣ′ andΣ.

Proof: From equation (9), we have thatV̇ (z(t), x(t)) ≤
0. Then, from equation (3), for allt ≥ 0,

‖y(t) − y′(t)‖2 ≤ V (z(t), x(t)) ≤ V (z0, x0).

The architecture of the controller allowing to synthesize
the control inputu(t) is shown on Figure 1. Note that the
initial statez0 of the high-level system must be chosen so that
it satisfiesV (z0, x0) ≤ δ2. Therefore, it is not independent
of the initial statex0 of the low-level system.

Low Level System

High Level System

Σ
′

Σ

Interface:uV

x

z

v

u

y
′

y

Fig. 1. Architecture of the controller

Remark 3.4:Our approach is related to more classical
topics in control theory such as tracking control (seee.g.
[15]). However, in our work,Σ does not need to be able
to track any reference trajectory but only those associated
with its approximate subsystemΣ′. Therefore, the tracking
controller (i.e. the interface) can be designed with the knowl-
edge of the dynamics generating the reference trajectory.
Also related is the work on model matching [4]. The main
difference is that, in our approach, we do not want to design
a controller forΣ so that it matches exactly or asymptoti-
cally Σ′. The controller we design guarantees approximate



matching with guaranteed and uniform (in the sense of the
L∞-norm) error bounds. This property makes our approach
particularly suitable for control of safety critical systems.

IV. A PPLICATION TO ROBOT MOTION CONTROL

We consider a point like planar robot evolving in an
environmentInv. Inv can be a complex, non convex set
with several holes. The control problem is to drive the
robot to a setTarget while remaining in the environment
Inv. This specification of this standard motion planning
problem clearly consists in the conjunction of the invariance
property with respect toInv with the reachability property
with respect toTarget.

The low-level systemΣ that need to be controlled consists
of a dynamical model of the robot.

Σ :







ẋ1(t) = x2(t)
ẋ2(t) = u(t)
y(t) = x1(t)

(10)

wherex1(t) ∈ R
2, x2(t) ∈ R

2. Initially, x1(0) ∈ Init and
the velocity of the robot is zero (i.e. x2(0) = 0). The input
u(t) ∈ R

2 is such that‖u(t)‖ ≤ µ.
The high-level systemΣ′ that we want to use for control

synthesis consists of a kinematic model of the robot.

Σ′ :

{

ż(t) = v(t)
y′(t) = z(t)

(11)

wherez(t) ∈ R
2, z(0) ∈ Init. The inputv(t) ∈ R

2 is such
that ‖v(t)‖ ≤ ν.

First, let us remark thatΣ′ is not an exact subsystem of
Σ since all the external trajectories ofΣ have their initial
velocity equal to zero whereas this is clearly not the case of
the external trajectories ofΣ′. This motivates the use of the
notion of approximate subsystem.

A. Approximate subsystem for robot motion control.

In the following, we show that under some assumptions
on the parametersµ and ν, Σ′ is a complete approximate
subsystem ofΣ.

Let us assume that the acceleration of the robot is possibly
unbounded (i.e. µ = +∞). The bound will be reintroduced
later. Then, we have the following result.

Proposition 4.1:Let µ = +∞, let Q : R
2 ×R

4 → R
+ be

defined by

Q(z, x) =
4

3

(

‖x1 − z‖2 + (x1 − z) · x2 + ‖x2‖2
)

.

Then,V (z, x) = max(Q(z, x), 4ν2) is a simulation function
betweenΣ′ and Σ and an interface is given by the linear
function

uV (v, z, x) =
v

2
− x2 + z − x1.

Proof: Let us start by remarking that

Q(z, x) = ‖x1 − z‖2 +
1

3

(

‖x1 − z‖2 + 4(x1 − z) · x2 + 4‖x2‖2
)

,

= ‖x1 − z‖2 +
1

3
‖x1 − z + 2x2‖2.

Then,V (z, x) ≥ Q(z, x) ≥ ‖x1 − z‖2 and equation (3) is
satisfied.

To prove thatV is a simulation function betweenΣ′ and
Σ, it is sufficient to show that equation (9) holds since this
clearly implies that equation (4) holds as well.

If Q(z, x) ≤ 4ν2, then it is clear that equation (9) holds.
If Q(z, x) ≥ 4ν2, then

∂V

∂z
v +

∂V

∂x1

x2 +
∂V

∂x2

uV =
4

3
[(−2x1 + 2z − x2) · v +

(2x1 − 2z + x2) · x2 +

(x1 − z + 2x2) · uV ].

After the substitution of the expression ofuV and simplifi-
cation, we arrive to
∂V

∂z
v +

∂V

∂x1

x2 +
∂V

∂x2

uV = −Q(z, x) − 2(x1 − z) · v,

≤ −Q(z, x) + 2ν‖x1 − z‖
because‖v‖ ≤ ν. Since‖x1 − z‖2 ≤ Q(z, x), we have

∂V

∂z
v +

∂V

∂x1

x2 +
∂V

∂x2

uV ≤ −Q(z, x) + 2ν
√

Q(z, x),

≤
√

Q(z, x)(2ν −
√

Q(z, x)).

SinceQ(z, x) ≥ 4ν2, we have

∂V

∂z
v +

∂V

∂x1

x2 +
∂V

∂x2

uV ≤ 0.

Then, equation (9) holds.
Let us remark that the initial statez(0) of the approximate

subsystem can chosen such thatz(0) = x1(0). Then, we have
V (z(0), x(0)) = 4ν2 and from Corollary 2.6, we have the
following result.

Corollary 4.2: Let µ = +∞, then Σ′ is a complete
approximate subsystem of precision2ν of Σ.

Thus, it is possible to make the approximate subsystem as
precise as desired by choosing the velocity boundν small
enough. The implementation of the controller that makes
Σ behave like its approximate subsystemΣ′ is very simple
since the interfaceuV is a linear function.

Generally, the robot has hard constraints on its acceleration
(i.e. µ < +∞). Then, we can show that the result of
Corollary 4.2 still holds, provided the boundµ is large
enough.

Theorem 4.3:Let µ ≥ (
√

6+1/2)ν, thenΣ′ is a complete
approximate subsystem of precision2ν of Σ.

Proof: It is clear that it is sufficient to show that for
all (z, x) such thatV (z, x) ≤ 4ν2, ‖uV (v, z, x)‖ ≤ µ. First,
let us remark that

‖uV (v, z, x)‖ ≤ ν/2 + ‖ − x2 + z − x1‖.
Moreover, it is easy to show that

Q(z, x) =
2

3

(

‖x1 − z + x2‖2 + ‖x1 − z‖2 + ‖x2‖2
)

which implies that

‖ − x2 + z − x1‖2 ≤ 3

2
Q(z, x) ≤ 3

2
V (z, x) ≤ 6ν2.

Therefore,‖uV (v, z, x)‖ ≤ (
√

6 + 1/2)ν ≤ µ.



B. Example

We now consider a practical motion planning problem.
The environmentInv where the robot evolves can be seen
on Figure 2. It consists of a corridor of width1. At the end
of the corridor, there is a room with an obstacle. TheTarget,
a circle of diameter1, is behind the obstacle.

The velocity boundν is chosen equal to0.25 and the
accelaration boundµ is assumed large enough (e.g. µ =
3ν = 0.75). Then, from Theorem 4.3, the precision ofΣ′,
the approximate subsystem ofΣ is δ = 0.5.

We can design easily a path forΣ′ consisting of line
segments along which the approximate system evolves at the
constant speedν. The input synthesized forΣ′ is lifted to Σ
using the controller shown on Figure 1.

On Figure 2, the external trajectoryy′(t) (dashed, red)
of the approximate subsystemΣ′ satisfies the invariance
property with respect toI(Inv, δ) and the reachability with
respect toI(Target, δ). Then, from the results obtained
in section III, it is guaranteed that the external trajectory
y(t) (plain, blue) of the controlled systemΣ satisfies the
invariance property with respect toInv and the reachability
property with respect toTarget. This example illustrates how
the motion planning problem can be solved very easily using
the approximate subsystemΣ′.

Fig. 2. Trajectories of the systemΣ (plain, blue) and of its approximate
subsystemΣ′ (dashed, red). The trajectory ofΣ′ satisfies the invariance
property with respect toI(Inv, δ) and the reachability with respect to
I(Target, δ). This insures that the trajectory ofΣ satisfies the invariance
property with respect toInv and the reachability property with respect to
Target.

On Figure 3, we represented the evolution of the function
√

Q(z(t), x(t)) for the trajectories ofΣ andΣ′ represented
on Figure 2. Particularly, the value of this function provide a
bound on the distance betweeny(t) andy′(t). We can check
that

for all t ≥ 0,
√

Q(z(t), x(t)) ≤ 0.5,

which is expected because the precision of the approximate
subsystem is0.5.

Let us remark that the function
√

Q(z(t), x(t)) has twelve
local maxima corresponding to the initial phase when the
robot starts to move and the eleven changes of direction in
the trajectory of the approximate subsystemΣ′. During the
period where the trajectory ofΣ′ is a straight line, it seems
that the function stabilizes around0.25.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Fig. 3. Value of the function
p

Q(z(t), x(t)) for the trajectories ofΣ
andΣ′ presented on Figure 2. The vertical lines correspond to the times at
which the direction of the trajectory ofΣ′ changes.

Figure 4 is an illustration of what may happen when
the motion of the approximate subsystemΣ′ is designed
independantly of its precision. In this example, the external
trajectory y′(t) (dashed, red) ofΣ′ satisfies the invariance
property with respect toInv and the reachability property
with respect toTarget. However, it does not satisfy the
invariance property with respect toI(Inv, δ). We can see
that the external trajectoryy(t) (plain, blue) ofΣ does not
satisfy the invariance property with respect toInv.

Fig. 4. Trajectories of the systemΣ (plain, blue) and of its approximate
subsystemΣ′ (dashed, red). The trajectory ofΣ′ does not satisfy the
invariance property with respect toI(Inv, δ). Then, the trajectory ofΣ
does not satisfy the invariance property with respect toInv.

C. Hierarchical architecture of autonomous robots

Often, we are interested in designing a closed loop con-
troller rather than an open loop controller such as those
considered in the previous section. Indeed, a closed loop
controller can be used for infinitely many initial states and
allows to implement autonomous robots.

The design of control laws for kinematic models such as
Σ′ is quite well developped. Purely continuous approaches
such as those based on potential or navigation functions (see
e.g. [2]) allows to solve efficiently control problems with
invariance and reachability specifications. More recently,
methods based on discrete abstractions ofΣ′ have been
proposed [1], [5]. Then, using algorithms for discrete systems
(e.g. algorithms from model checking [5]), these discrete
abstractions allow the design of hybrid controllers forΣ′

even for complex specifications such as those expressed in
LTL.



Then, the controller designed for the approximate subsys-
tem Σ′ can be lifted toΣ the dynamic model of the robot
using the hierarchical closed loop controller presented on
Figure 5. Then, it is guaranteed that the distance between
y′(t) andy(t), the external trajectories ofΣ′ and ofΣ, will
be bounded by the precision ofΣ′.

Low Level System

High Level System

Σ
′

Σ

Interface:uV

x

u

y
′

y

v

Motion Planner

z

Fig. 5. Hierarchical architecture of the autonomous robot

For illustration, let us consider the example whereΣ′ is
driven by the normalized van der Pol equations:

ż(t) =
f(z(t))

2‖f(z(t))‖ ,

wheref(z1, z2) =

[

z2

z2(1 − z2
1) − z1

]

.

The velocity bound in the approximate subsystemΣ′ given
by equation (11) can be chosen equal to0.5. Then, from
Theorem 4.3, the precision ofΣ′ is bounded by1. On Figure
6, we represented some trajectories (dashed, red) of the
approximate subsystemΣ′ and the corresponding trajectories
(plain, blue) of systemΣ driven by the hierarchical controller
of Figure 5.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

4

Fig. 6. Examples of trajectories of the systemΣ (plain, blue) and of its
approximate subsystemΣ′ (dashed, red).Σ′ is driven by the van der Pol
equations.

We can see that our approach allows to lift a possibly
complex controller designed for the simple approximate
subsystem in order to control the more complex systemΣ.

V. CONCLUSION

In this paper, we presented an approach for hierarchical
control based on the notion of approximate subsystem. It
allows to use a simplified model of a complex system for
control design. The resulting controller is easily lifted to the
complex system using an interface given by a simulation
function with guaranteed error bounds.

Future work includes the development of algorithmic
methods for the computation of simulation functions and
of the associated interfaces. An interesting application will
consists in coupling our approach with the methods for the
design of hybrid controllers [1], [5] for kinematic models
in order to control complex systems so that they satisfy
specifications expressed in temporal logics.
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