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Abstract— We study the problem of using a small number
of mobile sensors to monitor various threats in a geographical
area. Using some recent results on stochastic sensor scheduling,
we propose a stochastic sensor movement strategy. We present
simple conditions under which it is not possible to maintain a
bounded estimate error covariance for all the threats. We also
study a simple sub-optimal algorithm to generate stochastic
trajectories. Simulations are presented to illustrate the results.

I. INTRODUCTION AND MOTIVATION

In recent years, systems comprised of multiple mobile

sensors acting cooperatively have garnered increasing atten-

tion. Even though using a network of mobile sensors is more

complicated than having one static sensor, the increased

accuracy and flexibility often makes it worthwhile. In this

work, we look at the problem of monitoring a geographical

region using multiple sensors cooperatively. Each sensor can

individually sense a limited region, but together the sensors

must monitor the entire area. The problem of optimal

sensor location in case there are no bounds on the range

over which the sensors can sense leads to the problem

of Voronoi partitioning of the space and has been solved

both in a centralized framework [2] and in a decentralized

fashion [3]. The latter reference also discussed imposing

sensing range restrictions and proposed altering the cost

function in a similar manner to deal with the situation.

The problem when there are range (or direction) limitations

on the sensors has also been looked at other places in the

literature. However most of the approaches that have been

proposed are very application specific, see [4] for a typical

example. Finally some greedy approaches have also been

proposed to determine the optimal sensor trajectory using

different cost functions, e.g., in [5], [6].

A different approach was proposed in [1], which showed

the formal similarity between the sensor trajectory gen-

eration and the sensor scheduling problem. A stochastic

algorithm was proposed to solve the problem. The algorithm

differs from the other approaches mentioned above in that it

is based on the idea of letting the sensors switch randomly

according to some optimal probability distribution to obtain

the best expected steady-state performance. In this note,

we explore the algorithm further for the problem of sensor

coverage. We consider multiple sensors patrolling a grid of
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points and identify conditions when no stochastic strategy

would lead to a bounded expected error covariance. We also

provide a gradient descent based algorithm to generate the

optimal probability distribution.

This paper is organized as follows. We set up the problem

in the next section. We then present some results that place a

bound on how fast the dynamics of the underlying systems

evolve and how many sensors need to be present for the

estimation error to be unbounded. Finally we present an

algorithm to design an optimal probability distribution.

II. PROBLEM SETUP

Let the geographical region that needs to be monitored

be divided into a grid of N points. There are dynamical

processes occurring at these points whose state we want to

estimate. Denote the state at the i-th point at time k by xk
i .

The process at the i-th point is driven by wk
i , assumed to

be zero mean, white and Gaussian with covariance matrix

Ri. We assume that the noises at two distinct points i and

j are uncorrelated. We consider two distinct cases:

1) Coupled processes: The processes at points i and j
are coupled. Thus the process at a point i evolves as

xk+1
i = Aix

k
i +

∑
j �=i

Ai,jx
k
j + wk

i ,

where all the matrices Ai,j are not zero.

2) Uncoupled processes: Processes at distinct points are

unaffected by each other. All matrices Ai,j are zero.

Denote the state of the entire region obtained by stacking

all xk
i ’s as xk. Then xk evolves according to the equation

xk+1 = Axk + wk,

where wk is the vector formed by stacking wk
i ’s. If the

processes are uncoupled, A is a (block) diagonal matrix

with Ai’s along the diagonal.

The region is monitored using n sensors. If the m-th

sensor is at point i at time k, it generates the measurement

yk
m = xk

i + vk
m, (1)

where vk
m is zero mean white Gaussian noise with covari-

ance Rm, assumed independent of all other noises present.

This can be rewritten as an observation of the state xk as

yk
m = Cix

k + vk
m,

where Ci is a row vector with zeros everywhere except the

i-th element which is replaced by 1.1 This gives rise to

1This description of Ci assumes the states xk
i ’s to be scalars. The

extension to the vector case is obvious. Similarly we can consider a sensing
matrix being present in (1).
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the concept of a virtual sensor. A physical sensor at point i
gives rise to a virtual sensor being used with sensing matrix

Ci. Similarly, if there are physical sensors at points i and

j, we will say that a virtual sensor is being used that has a

sensing matrix with rows Ci and Cj .

If there is more than one sensor present, we assume that

all measurements are exchanged without delay or distortion.

Thus based on all the measurements obtained by all the

sensors, any sensor can compute an estimate x̂k of the state

xk.2 Let P k denote the covariance of the estimate error,

P k = E
[
(xk − x̂k)T (xk − x̂k)

]
. (2)

There are two basic problems that arise.

1) Under what conditions does P k remain bounded?

2) What is the optimal trajectory that minimizes P k?

The error covariance is a function of the trajectory of the

physical sensor, or of the sensor schedule for the virtual

sensor. All the possible sensor schedules can be represented

by a tree. The depth of any node represents time steps with

the root at time zero. The branches correspond to choosing

a particular sensor to be active at that time instant. Thus,

the path from the root to a node at depth d represents a

sensor schedule for time steps 0 to d. We can associate with

each node the cost function evaluated using the schedule

corresponding to the path from the root to that node. Finding

the optimal sequence requires traversing all the exponential

number of paths from the root to the leaves in the tree.

This procedure might place too high a demand on the

computational and memory resources of the system.

In this note, we forgo traversing the tree altogether

and propose stochastic trajectories, i.e., the sensors choose

their positions at any time step at random according to

a probability distribution. The probability distribution is

chosen so as to minimize the expected steady state error

covariance. We cannot calculate the exact value of the error

covariance since that will depend on the specific sensor

schedule chosen. Hence we optimize the expected value

of the error covariance. To characterize the expected error

covariance, we use some of the framework developed in [1].

In this work, we assume that the sensor trajectories are

designed independent of each other. There are two particular

cases of sensor motion that we will study:

1) The choice for the position of the j-th sensor at time

step k + 1 is done in an i.i.d. fashion at each time

step with probability qi of being at the i-th point.

2) The choice is done according to a Markov chain

with transition probability matrix Q. This can model

physical constraints on the sensor motion, e.g., the

probability qij is 0 if i and j are points that are

physically distant from each other.

Note that we have assumed that each sensor chooses its

trajectory according to the same parameters (probabilities

qi’s or the transition probability matrix Q). We will say

2Since every sensor has access to the same information set, they would
have identical estimates.

that the problem can be solved if there exists at least one

choice of parameters such that beginning from any initial

condition, the expected error covariance remains bounded

as time progresses; otherwise the problem cannot be solved.

In the above description we have assumed that all the

agents are interested in coming up with an estimate for the

processes in the area. We can use the same framework if

the data is transmitted to a central data processing node. In

this case, we can also allow for communication channel im-

perfections. As an example, if the communication channel

loses packets stochastically, we can model the time instants

at which data loss occurs as being used up by a fictitious (as

opposed to physical and virtual) sensor which has sensing

matrix 0. The data can be lost in an i.i.d. or a Markovian

fashion (e.g., according to the Gilbert-Elliot channel model).

III. MOTION GOVERNED BY I.I.D. CHOICES

In this section we will consider the case when each sensor

is choosing the next point to move to in an i.i.d. fashion,

with the probability of any sensor being at point i being qi.

A. Uncoupled processes

From theorem 4 of [1], we can obtain the following result.

Proposition 1: (Theorem 4 from [1]) Let a process with

evolution matrix A be observed at each time step by one

among n sensors with sensing matrices C1, C2, · · · , Cn

such that the i-th sensor is chosen at any time step with

probability qi. Denote λmax(Ai) as the eigenvalue with the

maximum magnitude of the unobservable part of A when

the pair (A,Ci) is put in the observable canonical form.

Then a sufficient condition for the expected estimate error

covariance to diverge from at least one initial value is

qi|λmax(Ai)|2 > 1,

for any i = 1, 2, · · · , n.

Let λi be the eigenvalue with the maximum magnitude of

matrix Ai. Without loss of generality, we can assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. (3)

We can prove the following result.

Proposition 2: Consider the sensor coverage problem

when N points are to be patrolled by one sensor. If the

processes are uncoupled and (3) holds, then the problem

cannot be solved if for any 1 ≤ m ≤ N − 1,(
N−1

m

)
|λ1|2 +

(
N−2
m−1

)
|λ2|2 + · · · +

(
N−1−m

0

)
|λm+1|2 <

(
N − 1
m − 1

)
. (4)

Proof: The m-th sufficient condition is obtained by

considering all virtual sensors formed by considering sets

of m points. We say that a virtual sensor is used if the

physical sensor is present at any point in the set of m points

that the virtual sensor represents.

1) There are
(
N
m

)
such virtual sensors.

2) Denote the probability of choosing the j-th virtual

sensor by πj . For a virtual sensor with the set of m
points denoted by M, πj =

∑
t∈M qt.
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For each virtual sensor, denote the lowest i which is not

included in its set of m points by imin. Then the condition

for stability when that virtual sensor is used is πj |λimin
|2 <

1. Simple algebra yields that λt occurs in
(

N−t
m−t+1

)
such

inequalities. Adding all the inequalities together, we obtain

that at least one inequality will be violated if(
N−1

m

)
|λ1|2 +

(
N−2
m−1

)
|λ2|2 + · · · +

(
N−1−m

0

)
|λm+1|2 <

(
N − 1
m − 1

)
.

Considering different values of m, we obtain the result.

For specific values of m, the condition in equation (4) looks

as follows. For m = 1, the condition is

N − 1
|λ1|2 +

1
|λ2|2 < 1. (5)

For m = N − 1, the condition is

N∑
i=1

1
|λi|2 < N − 1. (6)

Neither of the conditions is more general. As an example,

for a system with λ1 = 2, λ2 =
√

3, λ3 = 1/
√

2 the

problem is predicted to be unsolvable by (5) but not by (6).

The opposite is true for a system with λ1 = λ2 = λ3 =
√

2.
We now move on to the case when there is more than

one physical sensor, i.e., n > 1. To begin with, consider the

case of only two points to be patrolled, i.e., N = 2.

Proposition 3: If N = 2 points have to be patrolled by

n sensors with the assumptions stated above, the sensor

coverage problem cannot be satisfied if

1
|λ1| 2

n

+
1

|λ2| 2
n

< 1.

Proof: There are 2n virtual sensors in this case,

corresponding to the n physical sensors being present at

either of the two points. When both the points are covered

by at least one physical sensor, the entire system matrix A
is observed. There are two cases when A is not observed

1) all the physical sensors are located at the first point.

This event occurs with a probability (q1)n; or

2) all the physical sensors are located at the second point.

This occurs with a probability (q2)n or (1 − q1)n.

Thus the conditions for covariance of the error to diverge

are for any one of the following inequalities to be true,

(q1)n|λ2|2 > 1
(1 − q1)n|λ1|2 > 1.

Adding the inequalities completes the proof.

Combining the proof technique of Propositions 2 and 3

immediately leads to the generalization stated below.

Proposition 4: The sensor coverage problem when N
physical points are to be patrolled using n sensors, but

otherwise the same assumptions hold as above, cannot be

solved if for any 1 ≤ m ≤ N − 1,(
N−1

m

)
|λ1| 2

n

+

(
N−2
m−1

)
|λ2| 2

n

+ · · · +
(
N−1−m

0

)
|λm+1| 2

n

<

(
N − 1
m − 1

)
. (7)

B. Coupled processes

Let the process at the i-th point evolve as

xk+1
i = Aix

k
i +

∑
j �=i

Ai,jx
k
j + wk

i .

As long as all Ai,j’s are not zero, it is possible to obtain

information about xk
j even though the sensor is at point i.

Moreover, the eigenvalues of the unobservable modes when

considering two physical sensors located at points i and j
may have no relation to the eigenvalues when the sensors

are at points i and k. Thus the analysis is more involved

in this case. We will now consider virtual sensors formed

by sets of m physical points and say that a virtual sensor

is used if none of the physical sensors are located outside

the specified m points. Denote the set of all such virtual

sensors by Sm. For any member M of this set, consider

the sensing matrix CM formed by stacking all the Ci’s such

that i belongs to the set of m points corresponding to M .

Denote by αM the eigenvalue with the maximum magnitude

of the unobservable part of A when the pair (A,CM ) is put

in the observer canonical form.

Proposition 5: The sensor coverage problem for N phys-

ical points and n sensors with the above assumptions cannot

be satisfied if for any m such that 1 ≤ m ≤ N − 1,∑
M∈Sm

1
|αM | 2

n

<

(
N − 1
m − 1

)
.

Proof: Proof follows exactly along the lines of that of

proposition 4 and is omitted.

IV. MOTION GOVERNED BY A MARKOV CHAIN

We now consider the more general case where each

sensor decides its position at time step k + 1 according to

its position at time step k by using a transition probability

matrix Q. This can also model the case when data loss is

occurring according to a Markov chain. We still assume

that the various sensors act independently. We will use the

following result from [1].

Proposition 6: (Theorem 5 from [1]) Let a process with

evolution matrix A be observed at each time step by

one among n sensors with sensing matrices C1, C2, · · · ,

Cn such that the i-th sensor is chosen at any time step

according to a Markov chain with transition probability

matrix Q = [qij ]. Denote λmax(Ai) as the eigenvalue with

the maximum magnitude of the unobservable part of A
when the pair (A,Ci) is put in the observable canonical

form. Then a sufficient condition for the expected estimate

error covariance to diverge from at least one initial value is

qii|λmax(Ai)|2 > 1,

for any i = 1, 2, · · · , n.

We assume that the Markov chain is positive recurrent

and irreducible, thus there exists a unique stationary distri-

bution. Let πi denote the stationary probability of being in

the i-th state. The general result statement along the lines

of proposition 5 is now presented. Define αM as before.
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Proposition 7: The sensor coverage problem for N phys-

ical points and n sensors with the above assumptions cannot

be satisfied if for any m such that 1 ≤ m ≤ N − 1, any of

the following
(
N
m

)
conditions are satisfied

1∑
j∈M πj

⎡
⎣ ∑

k∈M

∑
j∈M

qkjπk

⎤
⎦ >

1
|αM | 2

n

.

Proof: Proof is along the lines of proposition 5. The

only trick is in the calculation of the probability qii for

the i-th virtual sensor. For a Markov chain with transition

probability matrix P and a set of states S, the probability

that the state at time k +1 belongs to S given that the state

at time k belonged to S is given by the expression

1∑
j∈S πk

j

⎡
⎣∑

t∈S

∑
j∈S

ptjπ
k
t

⎤
⎦ ,

where πk
t is the probability of being in state t at time k.

Since the Markov chain reaches a stationary distribution,

πk
t → πt as k increases. Thus qii’s can be evaluated.

Remarks:
1) One special case is when the sensors are chosen in an

i.i.d. fashion. Thus qkj = qj for all pairs (k, j) and

the conditions in proposition 7 reduce to∑
j∈M

qj >
1

|αM | 2
n

.

Summing all
(
N
m

)
inequalities obtained by the various

choices of M yields the condition in proposition 5.

2) When the processes at various points are uncoupled,

the terms αM are expressible in terms of the eigenval-

ues with the maximum magnitude λi of the processes

at the various points. Let the points be numbered such

that |λ1|≥ |λ2|≥· · · ≥ |λN |. Let M̄ be the set of

points i ∈ {1, 2, · · · , N} that are not contained in

M . Then αM = λi, where i = minj∈M̄ (j).

V. SENSOR SCHEDULE DESIGN

In this section, we look at designing the probabilities such

that the sensor coverage is done in some optimal fashion.

As a metric, we would consider the trace of the steady-state

value of the estimate error covariance P k as defined in (2).

Since the trajectories we consider are stochastic, the error

covariance is a random quantity. We will adopt the trace of

the steady state expected error covariance as the metric to

be minimized. We begin by characterizing this quantity.

Consider a process with evolution matrix A being driven

by white noise with mean 0 and covariance matrix Q.

Let the process be observed at each time step by one

among n sensors, with the i-th sensor characterized by the

sensing matrix Ci and measurement noise with mean 0 and

covariance Ri. Further let all the noises be independent of

each other. Let the choice of sensor be done randomly at

each time step. Then the minimum mean square estimator is

a Kalman filter with a time-varying sensor. If the i-th sensor

was chosen at time step k, the error covariance at time step

k + 1, denoted by P k+1, is given by P k+1 = fi

(
P k

)
,

where fi (.) is the Riccati operator defined as

fi (X) = AXAT +Q−AXCT
i

(
CiXCT

i + Ri

)−1
CiXAT .

Because of the random schedule of the sensors, the error

covariance is a stochastic quantity. We consider its mean

value which evolves as

E
[
P k+1

]
= E

[
fi

(
P k

)]
. (8)

However, exact evaluation of the above quantity seems

intractable. Instead, we consider an upper bound on the

expected error covariance, using the results from [1].

A. Sensor motion being governed by i.i.d. choices

Denote the probability of sensor m being at point i at

time step k by qi. We start by obtaining an upper bound

for the mean error covariance in (8) using Theorem 3 of [1].

Proposition 8: (Theorem 3 of [1]) The mean error co-

variance E
[
P k

]
evolving as in (8) is upper bounded by

∆k, where ∆k evolves according to the recursion

∆k+1 = A∆kAT + Q

−
n∑

i=1

qiA∆kCT
i

(
Ci∆kCT

i + Ri

)−1
Ci∆kAT , (9)

with ∆0 = P 0. Further if there exist matrices K1, K2, · · · ,

Kn and a positive definite matrix P such that

P > Q+
n∑

i=1

qi

(
(A + KiCi)P (A + KiCi)T + KiRiK

T
i

)
,

then the above recursion converges for all initial conditions

P 0 > 0 and the limit X is the unique positive semi-definite

solution of the equation

X = AXAT + Q

−
n∑

i=1

qiAXCT
i

(
CiXCT

i + Ri

)−1
CiXAT . (10)

X is an upper bound on the steady state expected error

covariance. In the sequel, we will adopt trace(X) as the

metric to be minimized as an approximation to minimizing

the expected error covariance itself. Divergence of the upper

bound is a necessary condition for the divergence of the

expected error covariance; hence the design can be expected

to be conservative in this sense. Let there be p virtual

sensors present. The design problem is

min
qi

trace(X) (11)

s.t. X =
p∑

i=1

qifi (X)

∑
qi = 1 0 ≤ qi ≤ 1 X ≥ 0.

For a problem of small size, a brute force search suffices

to find the optimal probabilities. However, we can also use
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a gradient descent algorithm to solve the problem. For ease

of notation, we adopt the following notation. Define

gq(X) =
p∑

i=1

qifi(X),

where q is the vector of qi’s. The cost function of our

problem is trace(X) or trace(gq(X)). From now on, we

will refer to any vector γ whose components γi’s are non-

negative and sum to 1 as a valid probability vector. The

algorithm proceeds as follows:

1) Initialize at step k = 1, with an arbitrary valid

probability vector γ1 and calculate the positive semi-

definite matrix X1 that satisfies X1 = gγ1

(
X1

)
.

2) At every step k, do the following :

• Calculate γmin as a valid probability vector that

minimizes trace
(
gγ(Xk)

)
.

• Calculate γ̄k = γk + δ
(
γmin − γk

)
, where δ is

the step size parameter between 0 and 1.

• Obtain γk+1 by projecting γ̄k on the set of valid

probability vectors.

• Calculate Xk+1 = gγk+1

(
Xk+1

)
.

• If γk = γk+1 (within a prescribed tolerance) then

break else repeat the loop.

3) Output γk+1 as the minimizing vector and

trace
(
Xk+1

)
as the minimum cost function.

γmin is obtained through an optimization of the form

arg min
γ

trace

(
p∑

i=1

γifi(X)

)
∑

γi = 1 0 ≤ γi ≤ 1,

where X is a given positive semi-definite matrix. This

is a linear program and can be solved efficiently. The

projection step in the algorithm is required since γ̄k may

have individual components that are negative or greater

than 1, even though they sum up to 1. Even though the

optimal projection would be to find out the vector that

is a valid probability vector and minimizes the Euclidean

distance from the original vector, in practice, heuristics such

as setting the negative components to 0 and redistributing

their weight to all the other components seem to work well.

Also since we have not proven anything about the convexity

of the problem, the minima may not be global. Finally

note that we can consider additional constraints placed on

the probability vector. As an example if packets are being

dropped with a probability λ, then the other p − 1 sensors

are being used with a probability q1(1− λ), q2(1− λ) and

so on, where the qi’s still sum to 1.

B. Sensor motion being governed by Markovian choices

Denote the probability of sensor m being at point i at

time step k by πk
i and the probability of the sensor moving

from point i to point j as qij . We again obtain an upper

bound for the mean error covariance using a result from [1].

Proposition 9: (Theorem 5 of [1]) The mean error co-

variance P k evolving as in (8) when sensors are chosen in

a Markovian fashion is upper bounded by ∆k, where ∆k

evolves according to the recursion

∆k+1 =
n∑

j=1

πk
j ∆k+1

j (12)

πk
j ∆k+1

j =
n∑

i=1

fj

(
∆k

i

)
qijπ

k
i ,

with the initial conditions ∆0
i = P 0. Further, assume that

the Markov chain transition probability matrix Q is such

that the states reach a stationary probability distribution with

the probability of the j-th sensor being used as πj > 0. If

there exist n positive definite matrices X1, X2, · · · , Xn and

n2 matrices K11, K12, · · · , K1n, K2,1, · · · , Kn,n such that

πjXj >
n∑

i=1

(
(A + KijCj)Xi(A + KijCj)∗

+ Q + KijRjK
∗
ij

)
qijπi,

then (12) converges for all initial conditions X0 > 0 and

the limit X̄j is the unique positive semi-definite solution of

πjXj =
n∑

i=1

fj (Xi) qijπi. (13)

The upper bound for the error covariance is given by

X̄ =
n∑

j=1

πjX̄j .

Similar to the i.i.d. case then, if we assume p virtual sensors

to be present, we can pose the following optimization

problem to solve for the transition probability matrix.

min
qij

trace(X) (14)

s.t. X =
p∑

j=1

πjXj πjXj =
p∑

i=1

fj (Xi) qijπi

∑
j

qij = 1 0 ≤ qij ≤ 1

Xj ≥ 0 πi =
p∑

j=1

qjiπj .

This can again be solved by an algorithm similar to the one

proposed above for the i.i.d. case. The step of finding the

minimizing qij’s remains a linear program.

VI. EXAMPLE

We now illustrate our results with the help of some simple

examples. As the first example, consider a grid of 6 points

such that the value at each point represents a flow traveling

from the first node towards the sixth node. Thus the dynamic

equation at points 2 through 6 is given by

xk+1
i = xk

i−1 + wk
i ,

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrIP2.1

5916



while for point 1 it is given by xk+1
1 = wk

1 . We assume that

the covariance matrix of the noise wk
i is Ri = 0.5. Consider

only one sensor of the form (1) with the matrix Rm = 0.1
that chooses its position independently from one time step

to the next. There are 6 virtual sensors with the sensing

matrix of the i-th sensor, Ci, being a row vector with all

zeros except a 1 at the i-th place. The noise covariance

matrix for all the sensors is Rm. The process matrix A is

a 6× 6 identity matrix. Let qi denote the probability of its

being at the i-th point. Naively, we may assume that the

optimal probability distribution would be either to spend

a lot of time at the source, i.e., the first node or equally

among all the nodes. However if we optimize the probability

distribution (using a brute-force search), it turns out that for

the optimal distribution, q3 = 1. The optimal cost is 6.28.

If the sensor spends all its time at the source node, the cost

is 8.42 while for a strategy of spending time with the same

probability at all the points it is 8.23. If we use a greedy

strategy in which the sensor moves to minimize the cost at

every time-step, it leads to the sensor spending all its time at

the fourth point, leading to a cost of 6.69. Thus our strategy

performs better than heuristic or greedy algorithms.

As our second example we choose a ring network of 4

agents in which each agent is trying to calculate the average

of the values of all the agents. Thus for the i-th agent

xk+1
i = xk

i − h(2xk
i − xk

i+1 − xk
i−1) + wk

i ,

where the addition in the agent number i is done modulo

4 and h is a positive constant. For a small enough value

of h, the agents will calculate the average if no noise were

present. We assume the noises wk
i to be independent of

each other and with variance R1 = R4 = 1 and R2 =
R3 = 0.8. We again assume there is only one sensor that is

choosing its position in an i.i.d. fashion. We will consider

h = 0.2. We use the gradient descent algorithm with initial

probability distribution q1 = q2 = 0.5 and a step size of

0.01. On optimizing the distribution, the values turn out to

q1 = q4 = 0.3 and q2 = q3 = 0.2 with an optimal cost

(upper bound) of 5.81. Indeed if we run 10000 random

runs of the system generating sensor switching with this

probability, we obtain a mean steady state error covariance

trace of 5.8. Hence the upper bound is pretty tight at least

in this example.

We can also impose the restriction that the sensor can

only move from one physical point to its neighbors. Thus

the sensor positions are chosen according to a Markov

chain. Let us assume no packet losses for simplicity. Be-

cause of the symmetry of the system, we look for transition

probability matrices of the form⎡
⎢⎢⎣

1 − 2λ1 λ1 0 λ1

λ2 1 − 2λ2 λ2 0
0 λ2 1 − 2λ2 λ2

λ1 0 λ1 1 − 2λ1

⎤
⎥⎥⎦ .

Then the optimal parameters turn out to be λ1 = λ2 = 0.5.

As we vary the value of h, the system becomes more or less

stable. Thus to keep the error covariance bounded, we need

different number of sensors. Figure 1 shows a bound on the

number of sensors required, as predicted by Proposition 5.
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Fig. 1. Lower bound on the number of sensors required.

VII. CONCLUSIONS AND FUTURE WORK

We considered the problem of monitoring a geograph-

ical region using a small number of mobile sensors. We

proposed a stochastic strategy to determine the trajectories

of the sensors. We identified conditions under which no

probability distribution can lead to a bounded expected error

covariance and presented an algorithm to generate optimal

probability distributions for choosing the sensor trajectories.

The work can be extended in multiple ways. In this

work, we assumed that the motion for the n sensors was

independent of each other. If the sensors are able to plan

their motion together, they probably can be represented as

one sensor with a bigger transition probability matrix. We

are currently working on the details of this case. Another

possible avenue for future work is to determine a relaxation

such that the optimization problem stated in the paper can

be solved efficiently (possibly as a convex program).
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