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Abstract—This paper addresses the design of algorithms  When the cost function is defined over average quantities,
for the collective optimization of a cost function defined over the evaluation of its partial derivatives (e.g. its gradient)
average quantities in the presence of limited communication. requires a same average quantity as the sole global infor-

We argue that several meaningful collective optimization prob- . . . - .
lems can be formulated in this way. As an application of mation. This suggests a simple (local) approximation of

the proposed approach, we propose a novel algorithm that the (global) partial derivatives, in which thgdobal average
achieves synchronization or balancing in phase models of quantities are replaced bgcal estimates. The vast literature

coupled oscillators under mild connectedness assumptions on on consensus algorithms provide a good sourcdoo#l

the (possibly time-varying and unidirectional) communication estimators ofglobal averages. The basic idea in this paper
graphs. is thus very simple: starting from a global information

optimization algorithm, one constructs a local information
algorithm which replaces the global average information by

Collective design problems have received considerab|@c@l estimates provided by consensus algorithms. _
attention in the recent years. Applications include formation !N this approximation process, the dynamics of the opti-
control of autonomous vehicles [1], [2] and sensor network@ization algorithm become coupled with the dynamics of
[3], [4]. In those applications, the collective design can pdhe estimation (consensus)' algorithm. As a consequence, the
formalized as the design of decentralized algorithms for thgPnvergence of the approximated algorithm cannot be guar-
collective minimization of a suitable cost function character2nteed a priori and must be studied in specific situations. In
izing a common objective. The natural —e.g. gradient-basdBiS Paper, we successiully apply the general approximation
— optimization algorithms require all-to-all communicationidé@ to @ specific problem where the convergence properties
because the cost function depends on the entire state. In ffeth® global information algorithm are recovered with a
present paper we call such algorithrgibal information local one. We propose a local information algorithms that

algorithms However the communication constraints restricflinimizes or maximizes the synchronization in phase models
the information available to a given agent at a given instafff coupled oscillators. The proposed algorithm recovers the

of time. In the present paper we call the algorithms thﬁlo_be}l properties of t.he global one from whic_h it is derive_d.
fulfill the communication constraintscal information algo-  THiS is in contrast with recent results in the literature which
rithms The optimization based design of local information@veé focused on local information algorithms wikbcal
algorithms either requires to constrain the cost function jfonvergence properties for phase models of oscillators [5],
accordance with the communication constraints or to a;ﬁﬁ]-
proximate the global information algorithm with a local one. The paper is organized as follows. In the next section, we
The first solution —adapting the cost function — is systematféefine the problem ofollective optimization over average
but challenging when the communication constraints ar@uantitiesand we illustrate two meaningful problems that
uncertain and might change over time, which is the typicdit the proposed framework. In Section Il we review the
situation encountered in practice. The present paper focugg@blem of estimating an average quantity in a limited com-
on the second solution, which consists in approximating th@unication setting. Subsequently, in Section IV, our local
global information algorithm. information optimization scheme is presented. Section V and
More specifically, we assume in this paper that the cosection VI, present_a nontrivial example in_which a global
function is defined oveaverage quantitiesThis situation Convergence analysis of the proposed local information algo-
is frequent in applications and we provide two meaningfurl't.hm can be establlshed. Flnglly, in Section VII, we conclude
examples: a synchronization problem, where the avera{j\éth some technical observations about the proposed scheme.
guantity is a measure of synchrony between the agents, and
an optimal experiment design, where the average quantity is |l. COLLECTIVE PROBLEMS INVOLVING AVERAGES
the Fisher Information Matrix, which plays a fundamental
role in information measures.

I. INTRODUCTION

A collective optimizatiorproblem is a problem where a
group of N autonomous agents act together to optimize a
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The distinct feature of &ollective optimization problem where the inner product -,- > is defined by< z1, z; >=
with respect to a standard optimization problem is that thBe{z;z>} for 21,2, € C ~ R2. A continuous-time gradient
available information to agerit is not the entire state but  algorithm associated to the cost function (4) is
rather the stater; of a few ‘neighbors’. The optimization N
algorithm must take _into account the limited communic_ation 0p = w — K Zsm(gj —0)) =w— K < pg,ic’” >, (6)
between agents, which could moreover change over time. N

In this paper, we assume that the cost function is a co%r i
over average quantities, that is,

j=1
= 1,..., N, where the sign of the parametdf
determines a descent or ascent algorithm for the cost (4). This
V(z) = V(z(z)), (1) all-to-all sinusoidal coupling is the most frequently studied
coupling in the literature of coupled oscillators [7], [9]. Its
~ 1 application in the context of collective stabilization of steered
z(z) = N Zz(xk)’ particles in the plane is discussed in [10].

k Recently, phase synchronization or phase balancing in the
and wherez is the (arithmetic) mean over all the agents otontext of local information algorithms has been an active
the continuously differentiable function frooY to RY. In  research area [2], [6], [5]. In those algorithms, one needs to
general, descent algorithms that minimize the cost functioplace the global informatiopy that appears in the gradient
V will depend on the entire state For instance, a gradient- (5) by a local information that might change over time. The
based algorithm will require for agehtthe partial derivative approach proposed in the present paper is to augment the

oy ov o3 state of each oscillator with an estimator of the centygid

Zr _ 27 R 2
Jxy 0z #(@)) oxy, (ze) ) B. Collective Optimal Experiment Design

which depends on the entire statethrough the average Consider a collective Optimal Experiment Design Problem

quantity zZ(x). A local information optimization algorithm where N Decision Makers can acquire information about an

must replace this global information by local information.unknown guantity by means of a noisy measurement process.

This suggests to equip each agent with an estimator of tietypical setting for this problem is as follows: one considers

average quantity(z) and to update this estimator with thethe measurement equation

locally available information. Before proceeding with this

idea, we illustrate two collective optimization problems that ar = H(xp) w + g, k=1,...,N, (7)

fit the proposed framework. where w is the vector of parameters to estimaig, is a

A. Synchronization in phase models of oscillators th.e measurement vegtork is an i'i'd.' Gaussiaq no?se vector
T with zero mean and diagonal covariance matrix with all equal

The_problem of phase synch_romzatlon_ in Igrge en_sembl%'fementh’ and H() is a matrix that is a function of the
of oscillators has been extensively studled_ in the literaturgste of the Decision Maket. The objective is to optimize
[7], [8], [9]. Phase models are popular in this contextihe measurements intake such that the information about the

) : . )
each oscillator is modeled by a phase variablec S° nknown parameters is maximized. By rewriting (7) in a
that, in the absence of coupling, obeys the trivial dynamicgacior form we obtain

6, = w, Wherewy, is the natural frequency of oscillatdr

where

In the present paper, we consider a population of identical q=H(z)w+n, k=1,...,N, (8)
oscillators, that isw;, = w for all £. The centroid of N where
oscillators is defined asN A(z) = [HT (z1), ..., H (z3)]T.
Py = 1 Z e = |pgle™. (3) Standard information measures (both in the bayesian setting
N 1 and in the classical one) are scalar functions of the Fisher

The parametefpy| is a measure of synchrony of the phasénformatlon Matrix [11]:

variablesf. It is maximal when all phases are synchronized M(z) A i]f]T(x)f{(x) 1 ZHT(xk)H(xk) )
5 )
k

(identical). It is minimal when the phases balance to result in o o?

a vanishing centroid. Hence synchronization and balancir]_gor instance, the so-called D-optimal criterion aims at min-

correspond to maximizing or minimizing the cost function . ~. .
imizing the cost

V(9) = g|p9|2~ 4) Vi(x) = logdet M~ (),

This is an example of a cost function defined over averageshile the so-called A-optimal experiment design aims at
with =, = 0, € S and z(z) = € € C. Its gradient is minimizing the cost

computed as Vo(z) = Trace (M~ ().

N
WV =< pp,ie'f >= %Zsm(gj — 1), (5) Because (9) is an average quantity, the two cost functions
j=1

90 V1, and V3, as well as any other scalar function of the Fisher



information matrix, fit the framework of the present paper. Definition 2: G(¢) is said to be uniformly connected if
When the communication among the experimenters is limitetiere existsT" > 0 such that for all¢ there is one node
and is constrained by some communication topology, optéonnected with all the other nodes acrdss + 7).
mization algorithms must rely on local information, which
requires to replace the Fisher Information Matrix by a locaConsider a group ofV agents with state;, € Y, where
estimate. In sensor networks the problem of moving senso¥s is an Euclidean space. The communication between the
to acquire information about a dynamic or static process i&-agents is defined by the graglt each agent can sense
particularly in vogue [4], [12], [3]. Applications in under- only the neighboring agents, i.e. aggntceives information
water robotics and environment exploration are particularlfrom agent: iff i € A;(¢). We use the notatioi ~ j to
interesting [3]. It is not hard to imagine that in such situationindicate the presence of a communication link from agent
the communication topology can be time variant and ndb agentk, i.e. k ~ j iff v; € N.
all-to-all. The technique proposed in this paper opens new The following proposition follows directly from the results
directions to address these problems under mild assumptioofs[13],[15] and [5]:
on the communication topology.

Proposition 1: LetY be a finite-dimensional Euclidean
space. Let5(t) be a uniformly connected digraph arid(t)

In this section we review the problem of estimatingthe corresponding Laplacian matrix bounded and piecewise
an average quantity with local information. This problemcgntinuous in time. Then the solutions of

known as theConsensus Problenhas received considerable
attention in the recent years, see for instance [13], [5], [14]. y=—L(t) (), (20)
LetG = (V,&, A) be a weighted digraph (directed graph) i
whereV = {vy,...,uy} is the set of nodesS C V x V is asymptotically converge to_ a consensus valdefor some
the set of edges, and is a weighted adjacency matrix with ¢ < Y. Furthermore ifGi(2) is balanced for allt, thena =
nonnegative elements;;. The node indices belong to the set™ 2ier %i(0). =
of positive integersZ = {1,..., N}. Assume that there are )
no self-cycles i.eay, = 0, Vk € Z. The graph Laplacian A general proof for Theorem 1 is baged on the prc_»perty
L associated to the grapfi is defined as that the convex hull of vec.:torg;c € X is non expgndlng
. along the solutions. For this reason, the assumption Yhat
Ly = { i Oki )= k is an Euclidean space is essential (see e.g. [5]). Under the
! —agj, J#k additional balancing assumption @#(t), the normy®y is

The k-th row of L is defined byL,. The in-degree (respec- Non increasing. Moreover, the balancing assumption implies
! ) : , it e - ST .
tively out-degree) of node is defined asfj” = SN a; 17 L(t) = 0, which implies that the averagg 3=, y; is
(respectivelyd?t = Z;-Vd a;). The digraphG is said to be an invariant quantity along the solutions.
balancedif the in-degree and the out-degree of each node
are equal, that is,

Ill. DECENTRALIZED ESTIMATION OF AVERAGES

Remark 1: For the sake of simplicity, we have considered
scalar valuedy,. The extension to vector or matrix valued
Z ar; = Z ks Vkel. quantities is straightforward and can be done by substituting
j J Lwithl 2L @ I, whereb = dim(yg) (in the case of
It is both of theoretical and practical interest to considefatrix valuedyy, it is sufficient to vectorize the matrix and
time-varying communication topologies. For example, in 4 proceed in the same way). The results presented in the
network of moving agents, some of the existing links caaper can be easily extended to these cases by relying on
fail and new links can appear when other agents enter & properties of the Laplacian matrix and the Kronecker
effective range of detection. In the following we assume tharoduct.
the communication topology is described by a time-varying
graph G(t) = (V,E&(t), A(t)), where A(t) is piece-wise In the following Section we will see that this filter plays a
continuous and bounded amj(t) € {0} U [8,7],Vk, 7, central role in collective optimization problems.
for some finite scalar® < § < ~ and for all¢t > 0.
The set of neighbors of node, at timet is denoted by IV. COLLECTIVE OPTIMIZATION

Ni(t) 2 {v; €V ay;(t) > B}. We recall two definitions e now return to the problem of designing local informa-
that chargcterize the concept of uniform connectivity fofion algorithms to optimize the cost functidi(z(z)). The
time-varying graphs. main idea is to estimate the average quantiy) with a
(local information) consensus filter and to substitute the local
X - ! estimate in the expression of the gradient (2). In other words,
nodewvy, is said to be connected to nodg (v; # v;) in the using a certainty equivalence principle, one can ysas a
interval I = [ta, %] if there is a path fromu;. to v; which  |5c5) estimate of the average quantityn order to transform

respects the orientation of the edges for the directed grapfgjobal information algorithm into a local one. For instance,
(N, Uter€(t), [; A(r)dr). one can replace the (global information) continuous-time

Definition 1: Consider a grapliZ(¢t) = (V,£(t), A(t)). A



gradient algorithm the only stable equilibrium in the shape spaté/S! is
o 93 93 the synchronized state characterized Byidentical phases.
i = —(2(x)) - —(zx) = F(2) - —(xx), (11) Furthermore, ifG(t) is balanced for allz, then the asymp-

0z Oz Oz totic consensus value fef% is a = (4 >, .7 €"%(?), that

for k=1,..., N, with the (local information) algorithm s the centroidp,(0) of the initial condition. O
. 0z
Ty = F(yx) - %(Il& Vk eI (12)  Proof. Proposition 1 guarantees that each local estimate
g y, converges to a consensus value =:| a | €'®. As

Wherey; is a local estimate provided by the consensus filteg consequence, the optimization algorithm asymptotically
The algorithm (12) is “local” because each agent uses its OVynverges to

estimatey, of the averagez. The limited communication

between agents is used to asymptotically reach a consensus 0, = 1 < a,ie >=| a | sin(fy — ¢), (15)
between the local estimators. N
There is of course no guarantee that the local informatid®r ¥ =1,..., N.

algorithm (12) will asymptotically behave as the global Since the consensus dynamics idr) are invariant with
information algorithm (11). This is because the dynamié€SPect to translations in the plane, for any particular graph
coupling between the gradient-like dynamics and the eseduencey has an equal probability to take any value in the
mation dynamics may destroy the convergence properties é#mplex plane if the initial conditions™(® are randomly
both subsystems. Simulations indicate that this will indee@hosen (in the complex plane). This is sufficient to conclude
occur in general. A natural way to recover the convergenddata 7 0 with probability 1.

properties of the consensus filter and of the gradient systemSolutions of the complete system (14) are known to
is to enforce a time-scale separation between the estimati6@nverge to a chain recurrent set of the limiting (autonomous)
process and the minimization process. This is neverthele@¥¢stem (15) [17]. The limiting system is decoupled ito

of limited interest in practice because the time-scale of thiglentical scalar systems whose only chain recurrent sets are
estimation process is graph-dependent and therefore uncéie two equilibria of (15)_ (qne stable node and one unst'able
tain, leading to conservative bounds on the allowable timélode). Then the only limit sets of the local information
scale for the minimization process. The next section preser@§orithm (14) are equilibria that satisty, = ¢ modn for

a nontrivial situation in which convergence of the locafll - The synchronized equilibriur = 1¢ is exponentially
information algorithm can be established without assumingfable while all other equilibria are exponentially unstable.
time-scale separation between the estimation process and thé&”(t) is balanced, it follows from Proposition 1 that=

. 1 i0,(0) _
optimization process. ~ 2iez €7 = po(0). O

V. GLOBAL SYNCHRONIZATION IN PHASE MODELS We conclude that synchronization on the circle can be
As a first illustration of the proposed approach, we applchieved with a local information algorithm whose ex-
the local information algorithm (12) to the global synchro-changed information is not the relative phase but rather the
nization of the phase model discussed in Section II-A. Bfrelative) estimate of a vector that serves as a consensus ref-
expressing the dynamics in a rotating frame, without loserence direction. The global convergence analysis obtained
of generality, we can set the natural frequenciesqual to in this way is in contrast with the local one proposed in [3],

zero. Synchronized states coincide with the global maximi#], for the (local information) algorithm

of the cost functionl” = £ | py |2. We seek to replace the g 1

o 1
— 0 ;i < .
(global information) gradient algorithm FEN S Ly,(t)e, ie™ >= N ;akl sin(f; — O),
o~

. N _ (16)
O = %Zsin(ﬁj — k) =< pg,ie'’ > (13) for k=1,...,N. The local information algorithm (16) can
j=1 be considered as an approximation of the global information
by the local information algorithm algorithm (13), in which the averagey is estimated by a
_ o local average)_, , €' _ _
O = <uyp,ie”t >, Vk € _I» (14) Convergence to the synchronized state in the system (16)
g = —Li)(y), y(0)=e?0. can be guaranteed only if the maximal initial difference

In this particular situation, convergence of the local inforbeétween any two phases does not exceedhat is, if all
mation algorithm can be guaranteed because the estimatidfases initially lie on the same half-circle. The numerical

(consensus) algorithm is decoupled from the optimizatioimulation in Fig.1 illustrates a situation where the (dynamic)
algorithm. algorithm (14) achieves synchronization while the (static)

algorithm (16) converges to a balanced state whegre- 0.
Theorem 1: Suppose that the communication gréfgh)  In this example, the communication is a fixed ring topology
is uniformly connected and thdi(t) is bounded and piece- (see Fig. 3) and the initial phase distribution spreads over
wise continuous. Then all the solutions of the algorithninore than half a circle (see Fig. 2).
(14) asymptotically converge to an equilibrium. Moreover,



Remark 2: The local information algorithm (14) extends
in a straightforward way the global convergence properties
of the global information algorithm (13). This extension is
not restricted to the phase model discussed in the present
paper. For instance, the paper [10] proposes a gradient-
based approach to stabilize various collectives motions in
the plane. All collectives in that paper are specified as
extrema of cost functions over averages. The resulting global
information algorithms can be extended to the local ones
using the approach of the present paper.

V1. GLOBAL BALANCING IN PHASE MODELS

Balanced states of the phase model discussed in Section
[I-A coincide with the global minima of the cost function
. V = & | py |?. Similarly to the synchronization algorithm
80 100 discussed in the previous section, we replace the (local
information) gradient algorithm

Fig. 1. Comparison of the behavior of the synchronization parameter

N
|pg| for two different local information algorithms: the (dynamic) algorithm 5y _l . o _ . 0
(14) with the initial conditions randomly selected (solid line); the (static) O = N Z sin(; — Ox) = — < pg,ie™* >, A7)
algorithm (16) (dash line). Only the first algorithm achieves synchronization. j=1

for k=1,..., N, by the local information algorithm
ék = —< yk,iem’*‘ > Vk e, (18)
e = —Le(t)y+ Le,  y(0) =,

In contrast to the synchronization algorithm (14) the gradient
dynamics are here decoupled with the consensus dynamics.
However the next result shows that the consensus filter
asymptotically estimates the centroid and provides a glob-
ally convergent algorithm without any time-scale separation
between the estimation algorithm and the optimization algo-
rithm.

Theorem 2: Suppose that the communication gréigh)
is uniformly connected and balanced for alb> 0 and that
L(t) is bounded and piecewise continuous. Then all the solu-
tions of the local information algorithm (18) asymptotically
converge to an equilibrium. Moreover, the only stable limit
set is the set of balanced states characterizeghby: 0. O

Proof: The convergence analysis uses the Lyapunov function

Fig. 2. Initial positions of the particles on the circle for the simulation in W(y) = 5 <y,y>.
Fig 1. ) . N ]
Because the graph is balanceb(t) is a positive semi-

definite matrix [16]. As consequence the time derivative
along the solutions of (18) is non increasing:

W = —< L(t)yvy > = Z;cvzl < ykviewk >2 (19)
= —<Lty,y> —ZkN:l 67 <0.
We deduce from (19) that is a function inL2(0,00) and
thaty is uniformly bounded. To prove th&tasymptotically
converges to zero observe that

i . 0 05, )
Fig. 3. Ring-directed communication topology used in the simulation in Or =< Li(t) y,ie"™ > +(< yr, e > —=1)0

Fig 1. .
9 is uniformly bounded, which implies thai is Lipschitz
continuous. We conclude tha is uniformly continuous.



Then§ is a uniformly continuous function i, (0,00) and  observation suggests to define a local information algorithm
from Barbalat's Lemma we obtain thdt— 0 ast — oo by substituting local estimates of the average quantities

[18]. in the global information algorithm. The vast literature on
Thanks to the balancing assumption on the grdphs a consensus algorithms provides the local estimators of average
left eigenvector ofZ(t), and we obtain from (18) that guantities. The remaining challenge is to obtain convergence

1 . 1 d . proofs in local information algorithms that couple the esti-

N <L@>= 5 <1, ﬁel > (20)  mation algorithm with the optimization algorithm. Such a

lobal convergence analysis is provided in the present paper
or the meaningful application of maximizing or minimizing
the synchronization of a population of oscillators described
by phase models.

Integrating both sides of (20), and using the fact th
yi(0) = €+ one concludes that 3", y;(t) = pe for all
t > 0. Becausey(t) converges to a consensus equilibrium
each componeny;, must asymptotically converge tpy.
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