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Abstract— This paper addresses the design of algorithms
for the collective optimization of a cost function defined over
average quantities in the presence of limited communication.
We argue that several meaningful collective optimization prob-
lems can be formulated in this way. As an application of
the proposed approach, we propose a novel algorithm that
achieves synchronization or balancing in phase models of
coupled oscillators under mild connectedness assumptions on
the (possibly time-varying and unidirectional) communication
graphs.

I. I NTRODUCTION

Collective design problems have received considerable
attention in the recent years. Applications include formation
control of autonomous vehicles [1], [2] and sensor networks
[3], [4]. In those applications, the collective design can be
formalized as the design of decentralized algorithms for the
collective minimization of a suitable cost function character-
izing a common objective. The natural –e.g. gradient-based
– optimization algorithms require all-to-all communication
because the cost function depends on the entire state. In the
present paper we call such algorithmsglobal information
algorithms. However the communication constraints restrict
the information available to a given agent at a given instant
of time. In the present paper we call the algorithms that
fulfill the communication constraintslocal information algo-
rithms. The optimization based design of local information
algorithms either requires to constrain the cost function in
accordance with the communication constraints or to ap-
proximate the global information algorithm with a local one.
The first solution –adapting the cost function – is systematic
but challenging when the communication constraints are
uncertain and might change over time, which is the typical
situation encountered in practice. The present paper focuses
on the second solution, which consists in approximating the
global information algorithm.

More specifically, we assume in this paper that the cost
function is defined overaverage quantities. This situation
is frequent in applications and we provide two meaningful
examples: a synchronization problem, where the average
quantity is a measure of synchrony between the agents, and
an optimal experiment design, where the average quantity is
the Fisher Information Matrix, which plays a fundamental
role in information measures.
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When the cost function is defined over average quantities,
the evaluation of its partial derivatives (e.g. its gradient)
requires a same average quantity as the sole global infor-
mation. This suggests a simple (local) approximation of
the (global) partial derivatives, in which theglobal average
quantities are replaced bylocal estimates. The vast literature
on consensus algorithms provide a good source oflocal
estimators ofglobal averages. The basic idea in this paper
is thus very simple: starting from a global information
optimization algorithm, one constructs a local information
algorithm which replaces the global average information by
local estimates provided by consensus algorithms.

In this approximation process, the dynamics of the opti-
mization algorithm become coupled with the dynamics of
the estimation (consensus) algorithm. As a consequence, the
convergence of the approximated algorithm cannot be guar-
anteed a priori and must be studied in specific situations. In
this paper, we successfully apply the general approximation
idea to a specific problem where the convergence properties
of the global information algorithm are recovered with a
local one. We propose a local information algorithms that
minimizes or maximizes the synchronization in phase models
of coupled oscillators. The proposed algorithm recovers the
global properties of the global one from which it is derived.
This is in contrast with recent results in the literature which
have focused on local information algorithms withlocal
convergence properties for phase models of oscillators [5],
[6].

The paper is organized as follows. In the next section, we
define the problem ofcollective optimization over average
quantitiesand we illustrate two meaningful problems that
fit the proposed framework. In Section III we review the
problem of estimating an average quantity in a limited com-
munication setting. Subsequently, in Section IV, our local
information optimization scheme is presented. Section V and
Section VI, present a nontrivial example in which a global
convergence analysis of the proposed local information algo-
rithm can be established. Finally, in Section VII, we conclude
with some technical observations about the proposed scheme.

II. COLLECTIVE PROBLEMS INVOLVING AVERAGES

A collective optimizationproblem is a problem where a
group of N autonomous agents act together to optimize a
common objective. We assume that each agent has a state
xk ∈ X, k = 1, . . . , N, whereX is a smooth manifold,
and that the cost function is a continuously differentiable and
lower bounded functionV (x) with x , col(x1, . . . , xN ) ∈
X × · · · ×X.



The distinct feature of acollectiveoptimization problem
with respect to a standard optimization problem is that the
available information to agentk is not the entire statex but
rather the statexl of a few ‘neighbors’. The optimization
algorithm must take into account the limited communication
between agents, which could moreover change over time.

In this paper, we assume that the cost function is a cost
over average quantities, that is,

V (x) = Ṽ (z̄(x)), (1)

where
z̄(x) =

1
N

∑

k

z(xk),

and wherez is the (arithmetic) mean over all the agents of
the continuously differentiable function fromX to Rq. In
general, descent algorithms that minimize the cost function
V will depend on the entire statex. For instance, a gradient-
based algorithm will require for agentk the partial derivative

∂V

∂xk
=

∂Ṽ

∂z̄
(z̄(x)) · ∂z̄

∂xk
(xk) (2)

which depends on the entire statex through the average
quantity z̄(x). A local information optimization algorithm
must replace this global information by local information.
This suggests to equip each agent with an estimator of the
average quantitȳz(x) and to update this estimator with the
locally available information. Before proceeding with this
idea, we illustrate two collective optimization problems that
fit the proposed framework.

A. Synchronization in phase models of oscillators

The problem of phase synchronization in large ensembles
of oscillators has been extensively studied in the literature
[7], [8], [9]. Phase models are popular in this context:
each oscillator is modeled by a phase variableθk ∈ S1

that, in the absence of coupling, obeys the trivial dynamics
θ̇k = ωk whereωk is the natural frequency of oscillatork.
In the present paper, we consider a population of identical
oscillators, that is,ωk = ω for all k. The centroid ofN
oscillators is defined as

pθ =
1
N

N∑

k=1

eiθk = |pθ|eiψ. (3)

The parameter|pθ| is a measure of synchrony of the phase
variablesθ. It is maximal when all phases are synchronized
(identical). It is minimal when the phases balance to result in
a vanishing centroid. Hence synchronization and balancing
correspond to maximizing or minimizing the cost function

V (θ) =
N

2
|pθ|2. (4)

This is an example of a cost function defined over averages,
with xk = θk ∈ S1 and z(xk) = eiθk ∈ C. Its gradient is
computed as

∂V

∂θk
=< pθ, ie

iθk >=
1
N

N∑

j=1

sin(θj − θk) , (5)

where the inner product< ·, · > is defined by< z1, z2 >=
Re{z̄1z2} for z1, z2 ∈ C ≈ R2. A continuous-time gradient
algorithm associated to the cost function (4) is

θ̇k = ω − K

N

N∑

j=1

sin(θj − θk) = ω −K < pθ, ie
iθk >, (6)

for k = 1, . . . , N , where the sign of the parameterK
determines a descent or ascent algorithm for the cost (4). This
all-to-all sinusoidal coupling is the most frequently studied
coupling in the literature of coupled oscillators [7], [9]. Its
application in the context of collective stabilization of steered
particles in the plane is discussed in [10].

Recently, phase synchronization or phase balancing in the
context of local information algorithms has been an active
research area [2], [6], [5]. In those algorithms, one needs to
replace the global informationpθ that appears in the gradient
(5) by a local information that might change over time. The
approach proposed in the present paper is to augment the
state of each oscillator with an estimator of the centroidpθ.

B. Collective Optimal Experiment Design

Consider a collective Optimal Experiment Design Problem
whereN Decision Makers can acquire information about an
unknown quantity by means of a noisy measurement process.
A typical setting for this problem is as follows: one considers
the measurement equation

qk = H(xk)w + ηk, k = 1, . . . , N , (7)

where w is the vector of parameters to estimate,qk is a
the measurement vector,ηk is an i.i.d. Gaussian noise vector
with zero mean and diagonal covariance matrix with all equal
elementsσ2, andH(·) is a matrix that is a function of the
state of the Decision Makerk. The objective is to optimize
the measurements intake such that the information about the
unknown parametersw is maximized. By rewriting (7) in a
vector form we obtain

q = H̃(x)w + η, k = 1, . . . , N , (8)

where
H̃(x) = [HT (x1), . . . , HT (xN )]T .

Standard information measures (both in the bayesian setting
and in the classical one) are scalar functions of the Fisher
Information Matrix [11]:

M(x)
4
=

1
σ2

H̃T (x) H̃(x) =
1
σ2

∑

k

HT (xk)H(xk). (9)

For instance, the so-called D-optimal criterion aims at min-
imizing the cost

V1(x) = log det M−1(x),

while the so-called A-optimal experiment design aims at
minimizing the cost

V2(x) = Trace
(
M−1(x)

)
.

Because (9) is an average quantity, the two cost functions
V1 andV2, as well as any other scalar function of the Fisher



information matrix, fit the framework of the present paper.
When the communication among the experimenters is limited
and is constrained by some communication topology, opti-
mization algorithms must rely on local information, which
requires to replace the Fisher Information Matrix by a local
estimate. In sensor networks the problem of moving sensors
to acquire information about a dynamic or static process is
particularly in vogue [4], [12], [3]. Applications in under-
water robotics and environment exploration are particularly
interesting [3]. It is not hard to imagine that in such situations
the communication topology can be time variant and not
all-to-all. The technique proposed in this paper opens new
directions to address these problems under mild assumptions
on the communication topology.

III. D ECENTRALIZED ESTIMATION OF AVERAGES

In this section we review the problem of estimating
an average quantity with local information. This problem,
known as theConsensus Problem, has received considerable
attention in the recent years, see for instance [13], [5], [14].

Let G = (V, E , A) be a weighted digraph (directed graph)
whereV = {v1, . . . , vN} is the set of nodes,E ⊆ V × V is
the set of edges, andA is a weighted adjacency matrix with
nonnegative elementsakj . The node indices belong to the set
of positive integersI , {1, . . . , N}. Assume that there are
no self-cycles i.e.akk = 0, ∀ k ∈ I. The graph Laplacian
L associated to the graphG is defined as

Lkj =
{ ∑

i aki, j = k
−akj , j 6= k.

The k-th row of L is defined byLk. The in-degree (respec-
tively out-degree) of nodevk is defined asdin

k =
∑N

j=1 akj

(respectivelydout
k =

∑N
j=1 ajk). The digraphG is said to be

balancedif the in-degree and the out-degree of each node
are equal, that is,

∑

j

akj =
∑

j

ajk, ∀ k ∈ I.

It is both of theoretical and practical interest to consider
time-varying communication topologies. For example, in a
network of moving agents, some of the existing links can
fail and new links can appear when other agents enter an
effective range of detection. In the following we assume that
the communication topology is described by a time-varying
graph G(t) = (V, E(t), A(t)), where A(t) is piece-wise
continuous and bounded andakj(t) ∈ {0} ∪ [β, γ],∀ k, j,
for some finite scalars0 < β ≤ γ and for all t ≥ 0.
The set of neighbors of nodevk at time t is denoted by
Nk(t) , {vj ∈ V : akj(t) ≥ β}. We recall two definitions
that characterize the concept of uniform connectivity for
time-varying graphs.

Definition 1: Consider a graphG(t) = (V, E(t), A(t)). A
nodevk is said to be connected to nodevj (vj 6= vi) in the
interval I = [ta, tb] if there is a path fromvk to vj which
respects the orientation of the edges for the directed graph
(N ,∪t∈IE(t),

∫
I
A(τ)dτ).

Definition 2: G(t) is said to be uniformly connected if
there existsT > 0 such that for all t there is one node
connected with all the other nodes across[t, t + T ].

Consider a group ofN agents with stateyk ∈ Y , where
Y is an Euclidean space. The communication between the
N -agents is defined by the graphG: each agent can sense
only the neighboring agents, i.e. agentj receives information
from agenti iff i ∈ Nj(t). We use the notationk ∼ j to
indicate the presence of a communication link from agentj
to agentk, i.e. k ∼ j iff vj ∈ Nk.

The following proposition follows directly from the results
of [13],[15] and [5]:

Proposition 1: LetY be a finite-dimensional Euclidean
space. LetG(t) be a uniformly connected digraph andL(t)
the corresponding Laplacian matrix bounded and piecewise
continuous in time. Then the solutions of

ẏ = −L(t) (y), (10)

asymptotically converge to a consensus valueα1 for some
α ∈ Y . Furthermore ifG(t) is balanced for allt, thenα =
1
N

∑
i∈I yi(0).

A general proof for Theorem 1 is based on the property
that the convex hull of vectorsyk ∈ X is non expanding
along the solutions. For this reason, the assumption thatY
is an Euclidean space is essential (see e.g. [5]). Under the
additional balancing assumption onG(t), the normyT y is
non increasing. Moreover, the balancing assumption implies
1T L(t) = 0, which implies that the average1N

∑
j∈I yj is

an invariant quantity along the solutions.

Remark 1: For the sake of simplicity, we have considered
scalar valuedyk. The extension to vector or matrix valued
quantities is straightforward and can be done by substituting

L with L̂
4
= L ⊗ Ib where b = dim(yk) (in the case of

matrix valuedyk, it is sufficient to vectorize the matrix and
to proceed in the same way). The results presented in the
paper can be easily extended to these cases by relying on
the properties of the Laplacian matrix and the Kronecker
product.

In the following Section we will see that this filter plays a
central role in collective optimization problems.

IV. COLLECTIVE OPTIMIZATION

We now return to the problem of designing local informa-
tion algorithms to optimize the cost functionV (z̄(x)). The
main idea is to estimate the average quantityz̄(x) with a
(local information) consensus filter and to substitute the local
estimate in the expression of the gradient (2). In other words,
using a certainty equivalence principle, one can useyk as a
local estimate of the average quantityz̄ in order to transform
a global information algorithm into a local one. For instance,
one can replace the (global information) continuous-time



gradient algorithm

ẋk =
∂Ṽ

∂z̄
(z̄(x)) · ∂z̄

∂xk
(xk) =: F (z̄) · ∂z̄

∂xk
(xk), (11)

for k = 1, . . . , N, with the (local information) algorithm

ẋk = F (yk) · ∂z̄

∂xk
(xk), ∀ k ∈ I (12)

Whereyk is a local estimate provided by the consensus filter.
The algorithm (12) is “local” because each agent uses its own
estimateyk of the averagēz. The limited communication
between agents is used to asymptotically reach a consensus
between the local estimators.

There is of course no guarantee that the local information
algorithm (12) will asymptotically behave as the global
information algorithm (11). This is because the dynamic
coupling between the gradient-like dynamics and the esti-
mation dynamics may destroy the convergence properties of
both subsystems. Simulations indicate that this will indeed
occur in general. A natural way to recover the convergence
properties of the consensus filter and of the gradient system
is to enforce a time-scale separation between the estimation
process and the minimization process. This is nevertheless
of limited interest in practice because the time-scale of the
estimation process is graph-dependent and therefore uncer-
tain, leading to conservative bounds on the allowable time-
scale for the minimization process. The next section presents
a nontrivial situation in which convergence of the local
information algorithm can be established without assuming
time-scale separation between the estimation process and the
optimization process.

V. GLOBAL SYNCHRONIZATION IN PHASE MODELS

As a first illustration of the proposed approach, we apply
the local information algorithm (12) to the global synchro-
nization of the phase model discussed in Section II-A. By
expressing the dynamics in a rotating frame, without loss
of generality, we can set the natural frequenciesω equal to
zero. Synchronized states coincide with the global maxima
of the cost functionV = N

2 | pθ |2. We seek to replace the
(global information) gradient algorithm

θ̇k =
1
N

N∑

j=1

sin(θj − θk) =< pθ, ie
iθk > (13)

by the local information algorithm

θ̇k = < yk, ieiθk >, ∀ k ∈ I,
ẏk = −Lk(t)(y), y(0) = eiθ(0).

(14)

In this particular situation, convergence of the local infor-
mation algorithm can be guaranteed because the estimation
(consensus) algorithm is decoupled from the optimization
algorithm.

Theorem 1: Suppose that the communication graphG(t)
is uniformly connected and thatL(t) is bounded and piece-
wise continuous. Then all the solutions of the algorithm
(14) asymptotically converge to an equilibrium. Moreover,

the only stable equilibrium in the shape spaceTN/S1 is
the synchronized state characterized byN identical phases.
Furthermore, ifG(t) is balanced for allt, then the asymp-
totic consensus value foreiθk is α = ( 1

N

∑
i∈I eiθi(0)), that

is the centroidpθ(0) of the initial condition.

Proof: Proposition 1 guarantees that each local estimate
yk converges to a consensus valueα =:| α | eiφ. As
a consequence, the optimization algorithm asymptotically
converges to

θ̇k =
1
N

< α, ieiθk >=| α | sin(θk − φ), (15)

for k = 1, . . . , N .
Since the consensus dynamics fory(t) are invariant with

respect to translations in the plane, for any particular graph
sequence,α has an equal probability to take any value in the
complex plane if the initial conditionseiθ(0) are randomly
chosen (in the complex plane). This is sufficient to conclude
that α 6= 0 with probability 1.

Solutions of the complete system (14) are known to
converge to a chain recurrent set of the limiting (autonomous)
system (15) [17]. The limiting system is decoupled intoN
identical scalar systems whose only chain recurrent sets are
the two equilibria of (15) (one stable node and one unstable
node). Then the only limit sets of the local information
algorithm (14) are equilibria that satisfyθk = φ modπ for
all k. The synchronized equilibriumθ = 1φ is exponentially
stable while all other equilibria are exponentially unstable.
If G(t) is balanced, it follows from Proposition 1 thatα =
1
N

∑
i∈I eiθi(0) = pθ(0).

We conclude that synchronization on the circle can be
achieved with a local information algorithm whose ex-
changed information is not the relative phase but rather the
(relative) estimate of a vector that serves as a consensus ref-
erence direction. The global convergence analysis obtained
in this way is in contrast with the local one proposed in [5],
[6], for the (local information) algorithm

θ̇k =
1
N

< Lk(t)eiθ, ieiθk >=
1
N

∑

k∼j

akl sin(θl − θk),

(16)
for k = 1, . . . , N . The local information algorithm (16) can
be considered as an approximation of the global information
algorithm (13), in which the averagepθ is estimated by a
local average

∑
k∼l e

iθl .
Convergence to the synchronized state in the system (16)

can be guaranteed only if the maximal initial difference
between any two phases does not exceedπ, that is, if all
phases initially lie on the same half-circle. The numerical
simulation in Fig.1 illustrates a situation where the (dynamic)
algorithm (14) achieves synchronization while the (static)
algorithm (16) converges to a balanced state wherepθ = 0.
In this example, the communication is a fixed ring topology
(see Fig. 3) and the initial phase distribution spreads over
more than half a circle (see Fig. 2).
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Fig. 1. Comparison of the behavior of the synchronization parameter
|pθ| for two different local information algorithms: the (dynamic) algorithm
(14) with the initial conditions randomly selected (solid line); the (static)
algorithm (16) (dash line). Only the first algorithm achieves synchronization.

Fig. 2. Initial positions of the particles on the circle for the simulation in
Fig 1.

Fig. 3. Ring-directed communication topology used in the simulation in
Fig 1.

Remark 2: The local information algorithm (14) extends
in a straightforward way the global convergence properties
of the global information algorithm (13). This extension is
not restricted to the phase model discussed in the present
paper. For instance, the paper [10] proposes a gradient-
based approach to stabilize various collectives motions in
the plane. All collectives in that paper are specified as
extrema of cost functions over averages. The resulting global
information algorithms can be extended to the local ones
using the approach of the present paper.

VI. GLOBAL BALANCING IN PHASE MODELS

Balanced states of the phase model discussed in Section
II-A coincide with the global minima of the cost function
V = N

2 | pθ |2. Similarly to the synchronization algorithm
discussed in the previous section, we replace the (local
information) gradient algorithm

θ̇k = − 1
N

N∑

j=1

sin(θj − θk) = − < pθ, ie
iθk >, (17)

for k = 1, . . . , N, by the local information algorithm

θ̇k = − < yk, ieiθk >, ∀ k ∈ I,
ẏk = −Lk(t)y + d

dte
iθk , y(0) = eiθ(0).

(18)

In contrast to the synchronization algorithm (14) the gradient
dynamics are here decoupled with the consensus dynamics.
However the next result shows that the consensus filter
asymptotically estimates the centroid and provides a glob-
ally convergent algorithm without any time-scale separation
between the estimation algorithm and the optimization algo-
rithm.

Theorem 2: Suppose that the communication graphG(t)
is uniformly connected and balanced for allt ≥ 0 and that
L(t) is bounded and piecewise continuous. Then all the solu-
tions of the local information algorithm (18) asymptotically
converge to an equilibrium. Moreover, the only stable limit
set is the set of balanced states characterized bypθ = 0.

Proof: The convergence analysis uses the Lyapunov function

W (y) =
1
2

< y, y > .

Because the graph is balanced,L(t) is a positive semi-
definite matrix [16]. As consequence the time derivative
along the solutions of (18) is non increasing:

Ẇ = − < L(t)y, y > −∑N
k=1 < yk, ieiθk >2

= − < L(t)y, y > −∑N
k=1 θ̇2

k ≤ 0.
(19)

We deduce from (19) thaṫθ is a function inL2(0,∞) and
that y is uniformly bounded. To prove thaṫθ asymptotically
converges to zero observe that

θ̈k =< Lk(t) y, ieiθk > +(< yk, eiθk > −1)θ̇k

is uniformly bounded, which implies thaṫθ is Lipschitz
continuous. We conclude thaṫθ is uniformly continuous.



Then θ̇ is a uniformly continuous function inL2(0,∞) and
from Barbalat’s Lemma we obtain thatθ̇ → 0 as t → ∞
[18].

Thanks to the balancing assumption on the graph,1 is a
left eigenvector ofL(t), and we obtain from (18) that

1
N

< 1, ẋ >=
1
N

< 1,
d

dt
eiθ > . (20)

Integrating both sides of (20), and using the fact that
yk(0) = eiθk(0), one concludes that1N

∑
i yi(t) = pθ for all

t ≥ 0. Becausey(t) converges to a consensus equilibrium,
each componentyk must asymptotically converge topθ.
As a consequence, the dynamicsθ̇k = − < yk, eiθk >
asymptotically converge to the time-invariant dynamics

θ̇k = − < pθ, ie
iθk >, ∀ k ∈ I. (21)

Since θ̇ is asymptotically convergent to zero, the solutions
asymptotically converge to a set of equilibria of (21). We
conclude thatθ(t) asymptotically converges to the critical set
of V and that only the set of balanced states is asymptotically
stable.

VII. F ORMULATION IN SHAPE COORDINATES

The closed loop vector field associated to the feedback
control proposed in the previous section, is not invariant
under the action of the symmetry groupS1. One of the
consequences is that the agents must rely on a common
coordinate frame (global information is needed). To recover
the rotational invariance we must express our decentralized
scheme inshape coordinates. Defining

rk = (yk)e−i θk , ∀ k ∈ I.

We rewrite (14) as

θ̇k = < rk, i >, ∀ k ∈ I,

ṙk = −irkθ̇k −
∑N

j=1 Lkj rj ei(θj−θk),
(22)

where rk(0), ∀ k ∈ I is randomly chosen inC. Likewise
we rewrite (18) as

θ̇k = − < rk, i >, ∀ k ∈ I,

ṙk = i(1− rk)θ̇k −
∑N

j=1 Lkj rj ei(θj−θk),
(23)

where rk(0) = 1, ∀ k ∈ I .
Now the vector field is invariant to the action of the

symmetry groupS1 and the closed-loop dynamics evolve on
a reduced quotient manifold. This(N−1)-dimensional man-
ifold is called the shape space and corresponds to the space
of all relative orientations. Since only a change of variable
has been introduced, the convergence analysis performed in
the previous sections is still valid (see [19] for more details).

VIII. C ONCLUSION

In this paper, we have argued that several collective
optimization problems can be formulated as the design
of local information algorithms for the minimization of a
cost function defined over average quantities. Classical –
e.g. gradient-based– algorithms associated to such cost func-
tions require all-to-all communication because the gradient-
based update of each agent uses average quantities. This

observation suggests to define a local information algorithm
by substituting local estimates of the average quantities
in the global information algorithm. The vast literature on
consensus algorithms provides the local estimators of average
quantities. The remaining challenge is to obtain convergence
proofs in local information algorithms that couple the esti-
mation algorithm with the optimization algorithm. Such a
global convergence analysis is provided in the present paper
for the meaningful application of maximizing or minimizing
the synchronization of a population of oscillators described
by phase models.
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