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Abstract— This paper presents a unifying framework in
which to carry out the hybrid geometric reduction of hybrid
systems, generalizing classical reduction to a hybrid setting.

I. INTRODUCTION

The reduction of mechanical systems with symmetries

plays a fundamental role in understanding the many im-

portant and interesting properties of these systems. Given a

Hamiltonian on a symplectic manifold (the phase space) on

which a Lie group acts symplectically, the main geometric re-

duction theorem [10] states that under certain conditions one

can reduce the phase space to another symplectic manifold by

“dividing out” by the symmetries. In addition, trajectories of

the Hamiltonian on the phase space determine corresponding

trajectories on the reduced space.

The goal of this paper is to generalize this result to a

hybrid setting—a formidable obstacle to which is the copi-

ous mathematical framework needed to perform reduction.

Such a generalization of reduction, therefore, requires a

new method for viewing “hybrid objects,” one that allows

classical mathematical objects and morphisms between these

objects to be easily “hybridized.” The framework in which

we propose to carry out this generalization is that of category

theory, and specifically through the notion of a hybrid object

over a category (cf. [2], [3], [4]).

The objects of study in geometry display the fundamental

property of being categorical, i.e., they reside in certain cat-

egories. Collections of geometric objects in a category relate

to one another naturally, i.e., morphisms between geometric

objects in two diagrams extend naturally to morphisms

between diagrams. The relationship between different classes

of geometric objects is functorial, i.e. one can translate from

one class of geometric objects to another through the use

of functors. Therefore, using the categorical, natural and

functorial nature of geometric objects, one can hybridize

these objects. Specifically, given a category C consisting of

the geometric objects of interest, e.g., manifolds, Lie groups,

Lie algebras, etc., one can form the “hybrid version” of

these geometric objects by considering hybrid objects over
C consisting of pairs (D,A) where D is a small category

of a specific form, termed a D-category, which encodes the

discrete structure of the hybrid object and A : D → C is a

functor encoding its continuous structure.
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Utilizing hybrid objects over a general category, all of the

major ingredients necessary for classical reduction can be

hybridized. By leveraging the results of [10], we are able

to show that when there is a hybrid symplectic manifold

(the hybrid phase space) on which a hybrid Lie group acts

symplectically, we can reduce the hybrid phase space to

another hybrid symplectic manifold in which the hybrid

symmetries are “divided out.” In addition, hybrid trajectories

of a hybrid Hamiltonian on the hybrid phase space determine

corresponding hybrid trajectories on the reduced hybrid

space. Thus, we generalize geometric reduction to a hybrid

setting.

This paper draws heavily from two well-established areas

of mathematics: classical mechanics (cf. [1], [6], [8], [9],

[10]) and category theory (cf. [5]). All terms that are not

defined in this paper can be found in these references.

Much to the authors’ regret, space constraints prevent us

from including proofs and examples; these can be found

in [2] (specifically, Chapters 1,2 and 4) along with detailed

explanations of the concepts involved.

II. HYBRID OBJECTS

Hybrid objects provide a general framework in which

to consider hybrid phenomena. This section introduces the

foundations of this theory.

D-categories. Fundamental to the study of hybrid objects

is the notion of D-categories. These categories define the

“discrete” structure of a hybrid object—the “D” stands for

discrete—and dictate how the “continuous components” of

a hybrid object interact.

Let D be a small category with Ob(D) the set of objects

of D and HomD(a, b) the set of morphisms α : a → b. We

use Mor(D) to denote the morphisms of D, i.e.,

Mor(D) =
⋃

(a,b)∈Ob(D)×Ob(D)

HomD(a, b),

and Morid� (D) to denote the set of non-identity morphisms

of D, i.e.,

Morid� (D) = {α ∈ Mor(D) : α �= id}.
For a morphism α : a → b in D, its domain is denoted by

dom(α) = a and its codomain is denoted by cod(α) = b.

Definition 2.1: A D-category is a small category D such

that:

• There exist two subsets of Ob(D), E(D) and V(D),
termed the edge set and vertex set, satisfying:

E(D) ∩ V(D) = ∅,
E(D) ∪ V(D) = Ob(D).
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• There exists a pair of functions:

E(D)
s�

t
� Morid� (D),

such that:

s(E(D)) ∩ t(E(D)) = ∅,
s(E(D)) ∪ t(E(D)) = Morid� (D).

The pair (s, t) is termed an orientation of D.

• The following diagram:

E(D)

E(D)
s�

t
�

id �

Morid� (D)

dom�

V(D)

cod
�

commutes.

The definition of a D-category implies that, for every a ∈
E(D), there is a diagram in D:

b �sa
a

ta� c

where b, c ∈ V(D). Diagrams of this form can be thought of

as the “canonical” D-categories.

D-categories and graphs. Define the category of D-

categories, Dcat, to have as objects D-categories. A mor-

phism between two D-categories, D and D′ (with orienta-

tions (s, t) and (s′, t′), respectively), is a functor �F : D → D′

such that

�F (V(D)) ⊆ �F (V(D′)), �F (E(D)) ⊆ �F (E(D′)),

and
�F (sa) = s′�F (a)

, �F (ta) = t′�F (a)
,

for every a ∈ E(D). That is, a morphism of D-categories is a

functor that preserves vertex sets, edge sets and orientations.

To every D-category, there is an associated oriented graph

and, conversely, to every oriented graph there is an associated

D-category. In fact, there is an isomorphism of categories:

Dcat ∼= Grph, with Grph the category of oriented graphs. For

a detailed discussion on D-categories, including numerous

examples, we refer the reader to [2].

With the notion of a D-category in hand, we can define

hybrid objects over a category C. Note that from this point

on, we will denote D-categories by calligraphic symbols: A,

B, C, D, et cetera.

Definition 2.2: Let C be a category. A hybrid object over
C is a pair (A,A), where A is a D-category and

A : A → C

is a covariant functor. A cohybrid object over C is a pair

(A,A) where A : A → C is a contravariant functor.

We are interested in considering the category of all hybrid

(cohybrid) objects over a category C. First, some notation is

needed. Let CA denote the category with objects covariant

functors A : A → C and morphisms natural transformations.

Similarly, let BC denote the category of contravariant func-

tors B : B → C. Finally, Cop denotes the opposite category

to C given by “reversing” the morphisms.

Definition 2.3: Let C be a category. The category of
hybrid objects over the category C, denoted by Hy(C), has

as

Objects: Hybrid objects over C.

Morphisms: Pairs (�F , �f) : (A,A) → (B,B) where

�F is a morphism in Dcat and �f : A �→ B ◦ �F
is a morphism in CA.

The category of cohybrid objects over the category C,

denoted by CoHy(C), has as

Objects: Cohybrid objects over C.

Morphisms: Pairs (�F op, �f) : (A,A) → (B,B)
where �F op : A → B is the morphism in Dcatop

corresponding to the morphism �F : B → A in

Dcat and �f : A ◦ �F
�→ B in BC.

Note 2.1: We often will be interested in only a single

hybrid object and its relation to hybrid objects with the

same D-category, i.e., hybrid objects with the same discrete

structure. In this case, we will denote such a hybrid object

by A and a morphism between it and another hybrid object,

A′, by �f ; that is, A represents the hybrid object (A,A),
A′ represents the hybrid object (A,A′) and �f represents the

hybrid morphism (�IdA, �f), where �IdA is the identity functor.

Elements of hybrid and cohybrid objects. Central to many

of the constructions that will be introduced is the notion of an

element of a hybrid (cohybrid) object. To discuss elements,

we suppose that C is a category such that there is a forgetful

functor U : C → Set with Set the category of sets, i.e., the

objects of C have the underlying structure of a set.

An element of a hybrid object (A,A), denoted by �e ∈
(A,A) (or just �e ∈ A when the D-category is clear from

context), is a set �e = {�ea}a∈Ob(A) that must satisfy the

following properties:

• �ea ∈ Aa for all a ∈ Ob(A),
• �eb = Aα(�ea) for all α ∈ HomA(a, b).

Similarly, an element of a cohybrid object (A,A), denoted

by �ω ∈ (A,A), is a set �ω = {�ωa}a∈Ob(A) that must satisfy

the following properties:

• �ωa ∈ Aa for all a ∈ Ob(A),
• Aα(�ωb) = �ωa for all α ∈ HomA(a, b).

Note that for �f : A �→ A′, if �ω ∈ (A,A) then �f(�ω) =
{�fa(�ωa)}a∈Ob(A) ∈ (A,A′).

Functors between categories of hybrid objects. Consider

a covariant functor G : C → D between two categories.

This functor induces a functor, termed the pushforward, G∗ :
CD → DD between functor categories, i.e., G∗(A) = G◦A.

This functor, in turn, induces a functor:

Hy(G) : Hy(C) → Hy(D)
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between categories of hybrid objects. On objects (A,A) and

morphisms (�F , �f) : (A,A) → (B,B) of Hy(C), the functor

Hy(G) is given by:

Hy(G)(A,A) := (A, G∗(A)),

Hy(G)(�F , �f) := (�F , G∗(�f)).

If G : C → D is a contravariant functor then its

pushfoward is a functor G∗ : CA → AD, which thus induces

a contravariant functor

Hy(G) : Hy(C) → CoHy(D)

given on objects and morphisms of Hy(C) by:

Hy(G)(A,A) := (A, G∗(A)),

Hy(G)(�F , �f) := (�F op, G∗(�f)),

where �F op : B → A is the morphism in Dcatop correspond-

ing to the morphism �F : A → B in Dcat.

III. HYBRID SYMPLECTIC MANIFOLDS

To illustrate the descriptive power of hybrid objects, we

introduce hybrid symplectic manifolds utilizing this frame-

work.

Hybrid tangent bundles. We begin by discussing how one

associates to a hybrid manifold its hybrid tangent bundle.

This will be useful for understanding later constructions.

The process of associating a tangent bundle to a manifold

defines a functor:

T : Man → VectBundR,

where Man is the category of manifolds (the objects of

this category are smooth manifolds and the morphisms are

smooth maps between manifolds) and VectBundR is the cate-

gory of (real) vector bundles. Specifically, we have T (M) =
TM , where TM is the tangent bundle of M ; implicit in

this notation is the canonical projection π : TM → M that

makes TM into a vector bundle. In addition, for a morphism

f of manifolds Tf is the pushfoward of this function.

The functor T induces a functor:

Hy(T ) : Hy(Man) → Hy(VectBundR).

That is, for a hybrid manifold (M,M), i.e., M : M → Man,

we can associate to this hybrid manifold its hybrid tangent
bundle

(M, T∗(M)) = Hy(T )(M,M).

Hybrid differential forms. Let M be a manifold and

let Ωk(M) be the vector space of differential k-forms. The

process of associating to a manifold its differential k-forms

induces a contravariant functor:

Ωk : Man → VectR,

where for f : M → N , Ωk(f) : Ωk(N) → Ωk(M) is the

pullback of f .

The contravariant functor Ωk induces a contravariant func-

tor:

Hy(Ωk) : Hy(Man) → CoHy(VectR),

where, for a hybrid manifold (M,M),

Hy(Ωk)(M,M) = (M, Ωk
∗(M)),

with Ωk
∗(M) : M → VectR a contravariant functor.

We are especially interested in elements of the cohybrid

object (M, Ωk
∗(M)).

Definition 3.1: Let (M,M) be a hybrid manifold. A

hybrid differential k-form, �ω, is an element of the cohybrid

object (M, Ωk
∗(M)). Therefore, a hybrid differential k-form

must satisfy:

• �ωa ∈ Ωk(Ma), i.e, �ωa is a differential k-form, for all

a ∈ Ob(M),
• Ωk(Mα)(�ωb) = �ωa for all α ∈ HomM(a, b).

Hybrid symplectic manifolds. The formulation of hybrid

differential forms allows us to define hybrid symplectic

manifolds. Note that the definition of a hybrid symplectic

manifold is not the most obvious one—we do not require

a hybrid differential 2-form to be objectwise a symplectic

form.

Definition 3.2: A hybrid symplectic manifold is a hybrid

manifold (M,M) together with a hybrid 2-form �ω ∈ Ω2
∗(M)

such that �ωb is a symplectic form for all b ∈ V(M).

IV. HYBRID LIE GROUPS AND ALGEBRAS

Symmetries lie at the heart of classical reduction. This

also will be the case with hybrid reduction, so we must

necessarily consider hybrid symmetries. These take the form

of hybrid Lie groups, which we introduce in this section

along with the corresponding notion of a hybrid Lie algebra.

Hybrid Lie groups. A hybrid Lie group is a hybrid object

over the category of Lie groups, LieGrp, i.e., a pair (G,G)
where

G : G → LieGrp .

An element of a hybrid Lie group, �g ∈ G, must satisfy the

following properties:

• �ga ∈ Ga for all a ∈ Ob(G),
• �gb = Gα(�ga) for all α ∈ HomG(a, b).

In particular, every element of (G,G) has an inverse, �g−1,

defined objectwise to be the inverse of �ga.

The Lie functor. The Lie functor is the functor:

Lie : LieGrp → LieAlg,

with LieAlg the category of Lie algebras. This functor is

given on objects by associating to a Lie group G its Lie

algebra:

Lie(G) = TeG
G,

where TeG
G is the tangent space at the identity element of

G. For a morphism f : G → H of Lie groups,

Lie(f) := TeG
f : Lie(G) → Lie(H).

Note that Lie(G) is typically denoted by g.

The Lie functor yields a functor between categories of

hybrid objects:

Hy(Lie) : Hy(LieGrp) → Hy(LieAlg).
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For a hybrid Lie group (G,G), we will denote its corre-

sponding hybrid Lie algebra by

(G, g) := Hy(Lie)(G,G),

where g : G → LieAlg. We know that a hybrid Lie algebra

is also a hybrid vector space, g : G → VectR, since the

category of Lie algebras is a subcategory of the category of

vector spaces. Therefore, an element of (G, g), which we

denote by �ξ ∈ (G, g) (or just �ξ ∈ g), is a hybrid vector and

so must satisfy:

• �ξa ∈ ga for all a ∈ Ob(G), i.e., �ξa is a vector,

• �ξb = gα(�ξa) for all α ∈ HomG(a, b).

The dual to a hybrid Lie algebra. The contravariant

functor that associates to a vector space its dual:

( − )� : VectR → VectR,

induces a functor between categories of hybrid and cohybrid

objects:

Hy(( − )�) : Hy(VectR) → CoHy(VectR).

Through this functor we obtain the dual to a hybrid Lie

algebra (G, g), which is the cohybrid object:

(G, g�) := Hy(( − )�)(G, g).

An element of the cohybrid object (G, g�), �µ ∈ (G, g�) (or

just �µ ∈ g�), is a hybrid covector and thus must satisfy:

• �µa ∈ g�
a for all a ∈ Ob(G), i.e., �µa : ga → R is a

covector,

• g�
α(�µb) = �µa for all α ∈ HomG(a, b), i.e., �µb◦gα = �µa.

This implies that �µ corresponds to a natural transformation

�µ : G �→ ∆G(R), with ∆G the constant functor.

The hybrid adjoint action. Let G be a Lie group and g ∈
G. The conjunction map is defined to be a map Ig : G → G
with Ig(h) = ghg−1 for h ∈ G. Utilizing the Lie functor,

we obtain a Lie algebra homomorphism:

Adg := Lie(Ig) : g → g,

which is termed the adjoint action. Applying the functor

( − )� yields a morphism of vector spaces:

Ad�
g : g� → g�

termed the coadjoint action.

The framework of hybrid objects allows coadjoint actions

to be easily generalized to a hybrid setting. Given an element

�g ∈ (G,G), we obtain a morphism of hybrid objects:

(�IdG , �I�g) : (G,G) → (G,G),

with �I�g defined objectwise by (�I�g)a = I�ga
. Utilizing the

functors Hy(Lie) and Hy(( − )�), we obtain the hybrid
coadjoint action, i.e., the morphism of cohybrid objects:

(�IdG , �Ad
�

�g) := Hy(( − )�)(Hy(Lie)((�IdG , �I�g))).

That is, �Ad
�

�g : g� �→ g� and it follows that ( �Ad
�

�g)a = Ad�
�ga

.

Hybrid isotropy subgroups. For a Lie group G, the

isotropy subgroup under the coadjoint action is given by,

for µ ∈ g�,

Gµ = {g ∈ G : Ad�
g−1(µ) = µ}.

For �µ ∈ (G, g�), define the hybrid isotropy group as the

hybrid Lie group

G�µ : G → LieGrp

defined on objects and morphisms of G by (G�µ)a = (Ga)�µa

and (G�µ)α = (Gα)|(G�µ)a
.

V. HYBRID MOMENTUM MAPS

Momentum maps make explicit the conserved quantities

of a Hamiltonian system. Hybrid momentum maps serve the

same function except that they define a set of conserved

quantities. In order to introduce hybrid momentum maps, it is

first necessary to introduce the notion of hybrid symmetries,

i.e., a hybrid action of a hybrid Lie group on a hybrid

manifold. When such hybrid symmetries exists, along with

a momentum map, we are able to “divide out” by these

symmetries to obtain the reduced hybrid phase space.

Hybrid group actions. For G : M → LieGrp and M :
M → Man, define the hybrid manifold G×M : M → Man
as the product of G and M in ManM, i.e., on objects and

morphisms:

(G × M)a := Ga × Ma, (G × M)α := (Gα,Mα).

A hybrid group action or hybrid action is a natural transfor-

mation
�Φ : G × M �→ M

that is objectwise a group action:

• For all p ∈ Ma, �Φa(eGa , p) = p,

• For every g, h ∈ Ga, �Φa(g, �Φa(h, p)) = �Φa(gh, p).
We say that a hybrid group action is free if �Φ is objectwise

free, and it is proper if it is objectwise proper.

For �g ∈ G, we can associate to this action a hybrid

diffeomorphism (a natural isomorphism)

�Φ�g : M �→ M

defined objectwise, for p ∈ Ma, by (�Φ�g)a(p) := �Φa(�ga, p).
Definition 5.1: Let (M, �ω) be a hybrid symplectic mani-

fold. A hybrid action �Φ : G×M �→ M is a symplectic hybrid
action if for the hybrid diffeomorphism �Φ�g : M �→ M,

Ω2
∗(�Φ�g)(�ω) = �ω

for each �g ∈ G.

Hybrid orbit spaces. For a hybrid manifold M with a

hybrid group G acting on it, let Ma/Ga be the orbit space

of the action �Φa of Ga on Ma; if p ∈ Ma, we denote the

elements of this space by [p]. Define the hybrid topological

space

M/G : M → Top,
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with Top the category of topological spaces, on ob-

jects and morphisms of M by M/Ga := Ma/Ga and

M/Gα([p]) := [Mα(p)].

Proposition 5.1: If �Φ : G×M �→ M is a free and proper
hybrid action, then M/G is a hybrid manifold, i.e., M/G :
M → Man. Moreover, there is a hybrid submersion:

�π : M �→ M/G.

That is, �π is a natural transformation that is objectwise a
submersion.

Hybrid infinitesimal generators. Suppose there is a hybrid

action �Φ : G×M �→ M. Define the infinitesimal generator
of the hybrid action �Φ corresponding to �ξ ∈ g by

�ξM : M �→ T∗(M)

which is given objectwise by

(�ξM)a(p) :=
d
dt

�Φa(exp(t�ξa), p)
∣∣∣∣
t=0

for p ∈ Ma.

Hybrid regular values. Consider a natural transformation
�J : M �→ g�; since M is covariant and g� is contravariant,

this implies that the following diagram

Ma

�Ja� g�
a

Mb

Mα
� �Jb� g�

b

g�
α

�

must commute for all α ∈ HomM(a, b).
Definition 5.2: We say that �µ ∈ g� is a hybrid regular

value of �J if

1) �µa ∈ g�
a is a regular value of �Ja : Ma → g�

a for all

a ∈ Ob(M),
2) �µb = �Jb◦Mα(p) for all α ∈ HomM(a, b) and p ∈ Ma

such that �Ja(p) = �µa.

The hybrid manifold J−1(�µ). Given a hybrid regular value

�µ ∈ g�, define a hybrid manifold

J−1(�µ) : M → Man

given on objects and morphisms of M by J−1(�µ)a :=
�J−1
a (�µa) and J−1(�µ)α := Mα|J−1(�µ)a

. Note that there is a

hybrid inclusion (a natural transformation that is objectwise

an inclusion),
�i�µ : J−1(�µ) �→ M.

Induced natural transformations. Given a natural trans-

formation �J : M �→ g�, for all �ξ ∈ g we can define a natural

transformation:
�Jξ : M �→ ∆M(R)

given objectwise by �Jξ
a(p) := 〈 �Ja(p), �ξa〉 = �Ja(p)(�ξa), for

p ∈ Ma.

Definition 5.3: Let (M, �ω) be a hybrid symplectic mani-

fold and let �Φ : G × M �→ M be a hybrid action. Define a

hybrid momentum map as a natural transformation

�J : M �→ g�

such that for every �ξ ∈ g,

d( �Jξ
a) = ι(�ξM)a

(�ωa)

for all a ∈ Ob(M), where �ξM is the hybrid infinitesimal

generator of the hybrid action corresponding to �ξ.

Definition 5.4: Let �Φ : G × M �→ M be a hybrid action

of G on M. A hybrid momentum map is said to be �Ad
�
-

equivariant under this action if for every �g ∈ G the following

diagram of natural transformations commutes:

M
�Φ�g� M

g�

�J
� �Ad

�

�g−1� g�

�J
�

The reduced hybrid phase space. Suppose that G acts

on M through the hybrid action �Φ, and let �J : M �→ g�

be an �Ad
�
-equivariant hybrid momentum map. Assume that

�µ ∈ g� is a hybrid regular value of �J ; therefore, J−1(�µ) :
M → Man is a hybrid manifold. The restriction of the hybrid

action �Φ�g to J−1(�µ) and G�µ (also denoted by �Φ�g):

�Φ�g : J−1(�µ) �→ J−1(�µ), �g ∈ G�µ,

is a hybrid action. In other words, if G acts on M, then G�µ

acts on J−1(�µ).

If G�µ acts freely and properly on J−1(�µ), then

M�µ := J−1(�µ)/G�µ : M → Man

is a hybrid manifold and the canonical hybrid projection

�π�µ : J−1(�µ) �→ M�µ = J−1(�µ)/G�µ

is a hybrid submersion by Proposition 5.1. The hybrid

manifold M�µ is called the reduced hybrid phase space.

VI. HYBRID GEOMETRIC REDUCTION

We now introduce the main theorem on reducing a hybrid

symplectic manifold. We begin by reviewing the classic non-

hybrid version of this theorem, originally proven by Marsden

and Weinstien [10] (also see [1], [8], [9] for a more thorough

account of classical reduction), followed by a statement of

the hybrid version of this theorem.

Classical reduction. The starting point for classical reduc-

tion is a Hamiltonian G-space,

(M, ω, Φ, J),

where

• (M, ω) is a symplectic manifold,

• Φ : G×M → M is a symplectic action of a Lie group

on M ,

• J is an Ad�-equivariant momentum map for this action.
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With this notation, the classical reduction theorem reads:

Theorem 1: Let (M, ω, Φ, J) be a Hamiltonian G-space
and µ ∈ g� be a regular value of J . If the action of Gµ on
J−1(µ) is free and proper, then Mµ = J−1(µ)/Gµ has a
unique symplectic form ωµ with the property:

Ω2(πµ)(ωµ) = Ω2(iµ)(ω),

where πµ : J−1(µ) → Mµ is the canonical projection and
iµ : J−1(µ) → M is the inclusion.

The hybrid reduction theorem will nicely mirror and utilize

this theorem. There also is an intriguing connection be-

tween the classical reduction theorem and hybrid symplectic

manifolds; this theorem implies that the following hybrid

manifold

M � iµ ⊃ J−1(µ)
πµ � Mµ

is a hybrid symplectic manifold.

Hybrid Hamiltonian G-spaces. The necessary information

needed in order to generalize this Theorem 1 is a hybrid
Hamiltonian G-space, i.e., a tuple

(M,M, �ω, �Φ, �J),

where

• (M,M, �ω) is a hybrid symplectic manifold,

• �Φ : G × M �→ M is a symplectic hybrid action of a

Lie group on M,

• �J is an �Ad
�
-equivariant hybrid momentum map for this

hybrid action.

For such a hybrid Hamiltonian G-space, we can reduce the

dimensionality of M through hybrid reduction.

Theorem 2: Let (M,M, �ω, �Φ, �J) be a hybrid Hamil-
tonian G-space. Assume �µ ∈ g� is a hybrid regular value
of �J and that the hybrid action of G�µ on J−1(�µ) is free
and proper. Then M�µ has a unique hybrid symplectic form
�ω�µ with the property:

Ω2
∗(�π�µ)(�ω�µ) = Ω2

∗(�i�µ)(�ω).

VII. HYBRID HAMILTONIAN REDUCTION

The hybrid reduction theorem (Theorem 2) only gave

conditions on when the phase space of a hybrid system can

be reduced. In practice, we are interested in reducing the

dynamics of a hybrid system. That is, we want to understand

how to reduce hybrid Hamiltonians. This yields a method for

reducing hybrid systems.

Dynamical systems. Consider the category of dynamical

systems, Dyn, which has as

Objects: Dynamical systems, i.e., pairs (M, X)
where M is a manifold and X : M → TM
is a vector field on that manifold.

Morphisms: Smooth maps of manifolds f : N →
M such that there is a commuting diagram:

TN
Tf� TM

N

Y
�

f� M

X
�

One of the motivations for considering this category is that it

allows for a nice representation of trajectories of dynamical

systems. That is, let Interval(Dyn) be the full subcategory

of Dyn consisting of all dynamical systems of the form

(I, d/dt) with I = [t0, t1], [t0, t1), {t0} for t0, t1 ∈ R∪{∞},

t0 ≤ t1. A trajectory of a dynamical system (M, X) is just

a morphism in Dyn:

c : (I, d/dt) → (M, X),

where (I, d/dt) is an object of Interval(Dyn); this implies

that ċ(t) = X(c(t)) as desired. The initial condition of such

a trajectory is c(t0), with t0 the left endpoint of I .

Classical Hamiltonian reduction. Before discussing how

to reduce hybrid Hamiltonians, we review the classical

Hamiltonian reduction theorem (cf. [1]). The setup for this

theorem is a Hamiltonian G-space (M, ω, Φ, J) satisfying

the assumptions given in Theorem 1.

A Hamiltonian system is a tuple (M, ω, H), where (M, ω)
is a symplectic manifold and H : M → R is a Hamil-

tonian. From the Hamiltonian H , we obtain a vector field

XH defined by d(H) = ιXH
(ω). That is, associated to

the Hamiltonian system (M, ω, H) is a dynamical system

(M, XH), or an object of Dyn.

A Hamiltonian H : M → R is said to be G-invariant if

for the action Φ : G × M → M ,

H ◦ Φ(g, − ) = H

for all g ∈ G. From a G-invariant Hamiltonian, we obtain a

Hamiltonian Hµ on Mµ defined by the requirement that:

H ◦ iµ = Hµ ◦ πµ.

The end result is a reduced Hamiltonian system

(Mµ, ωµ, Hµ), for which we have an associated dynamical

system (Mµ, XHµ).
The classical Hamiltonian reduction theorem relates trajec-

tories of (M, XH) and trajectories of (Mµ, XHµ). We state

this result in a slightly different formulism, although it is

equivalent to the standard result.

Theorem 3: Let (M, ω, Φ, J) be a Hamiltonian G-space
satisfying the assumptions given in Theorem 1. If H is a
G-invariant Hamiltonian and c : (I, d/dt) → (M, XH) is a
trajectory of (M, XH) with c(t0) ∈ J−1(µ), then

c : (I, d/dt) → (J−1(µ), XH),

and there exists a trajectory cµ : (I, d/dt) → (Mµ, XHµ
) of

(Mµ, XHµ
) defined by the factorization:

(I, d/dt)
cµ � (Mµ, XHµ

)

(J−1(µ), XH)
πµ

�
c �

We now introduce the necessary groundwork needed in

order to establish the hybrid analogue of Theorem 3.

Hybrid systems. A hybrid system is a tuple:

(M,M,X),
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where

• (M,M) is a hybrid manifold,

• X = {Xb}b∈V(M) is a collection of vector fields with

Xb : Mb → TMb a vector field on Mb, i.e., (Mb,Xb)
is an object of Dyn, for all b ∈ V(M).

This formulation of hybrid systems (which includes most

“standard” definitions, see [7]) allows us to define the cate-

gory of hybrid systems, HySys, which has as objects hybrid

systems and as morphisms pairs:

(�F , �f) : (N ,N,Y) → (M,M,X),

where (�F , �f) : (N ,N) → (M,M) is a morphism in

Hy(Man) such that for all b ∈ V(N ),

�fb : (Nb,Yb) → (M�F (b),X�F (b))

is a morphism in Dyn.

The importance of considering the category of hybrid

systems is that, in analogy with dynamical systems, one can

define the interval subcategory of HySys, Interval(HySys);
the details of this construction are, unfortunately, rather

involved so we refer the reader to [2] (Chapter 2, page 62)

for the specifics. The essential observation is that a trajectory

of a hybrid system (M,M,X) is a morphism in HySys:

(�C,�c) : (I, I,d/dt) → (M,M,X),

where (I, I,d/dt) is an object of Interval(HySys). The

initial condition of such a trajectory is (�C(0),�c0(τ0)) with

�c0(τ0) ∈ M�C(0).

In the context of reduction, we are interested in studying

hybrid systems obtained from hybrid Hamiltonians.

Definition 7.1: A hybrid Hamiltonian H on a hybrid

manifold (M,M) is defined to be a set of maps:

H = {Hb : Mb → R}b∈V(M).

A hybrid Hamiltonian system is a tuple (M,M, �ω,H),
where (M,M, �ω) is a hybrid symplectic manifold and H
is a hybrid Hamiltonian.

G-Invariant hybrid Hamiltonians. Let (M,G) be a

hybrid Lie group acting on the hybrid manifold (M,M)
through the hybrid action:

(�IdM, �Φ) : (M,G × M) → (M,M).

A hybrid Hamiltonian H is said to be G-invariant if

Hb ◦ �Φb(g,−) = Hb

for all g ∈ Gb and b ∈ V(M), i.e., Hb is Gb-invariant for

all b ∈ V(M).
Under the assumptions of Theorem 2, if H is a G-

invariant hybrid Hamiltonian on (M,M), then there is a

hybrid Hamiltonian

H�µ = {(H�µ)b : (M�µ)b → R}b∈V(M)

on M�µ defined by requiring that:

Hb ◦ (�i�µ)b = (H�µ)b ◦ (�π�µ)b

for all b ∈ V(M). This defines a hybrid Hamiltonian system

(M,M�µ, �ω�µ,H�µ).
Hybrid Hamiltonian systems. From a hybrid Hamil-

tonian system (M,M, �ω,H) we obtain a hybrid system

(M,M,XH), where XH is the collection of vector fields

given by XH = {(XH)b}b∈V(M), with (XH)b defined by the

requirement that d(Hb) = ι(XH)b
(�ωb). Similarly, we obtain a

hybrid system (M,M�µ,XH�µ
) from the hybrid Hamiltonian

system (M,M�µ, �ω�µ,H�µ).
We now demonstrate that the “dynamics” of H determine

the corresponding “dynamics” of H�µ in the hybrid analogue

to Theorem 3.

Theorem 4: Let (M,M, �ω, �Φ, �J) be a hybrid Hamil-
tonian G-space satisfying the assumptions of Theorem 2. If
H is a G-invariant Hamiltonian and (�C,�c) : (I, I,d/dt) →
(M,M,XH) is a trajectory of (M,M,XH) with �c0(τ0) ∈
J−1(�µ)�C(0), then

(�C,�c) : (I, I,d/dt) → (M,J−1(�µ),XH),

and there exists a trajectory (�C,�c�µ) : (I, I,d/dt) →
(M,M�µ,XH�µ

) of (M,M�µ,XH�µ
) defined by the factor-

ization:

(I, I,d/dt)
(�C,�c�µ) � (M,M�µ,XH�µ

)

(M,J−1(�µ),XH)

(�IdM, �π�µ)

�

(�C,�c) �
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