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Abstract—Given a transfer function H(s) of order important results of modern control. They allow to
n, the celebrated bounded real lemma characterises the express a computationally untractable SIP constraint of
U”traCtaQbk? gem"'”f'“'te programming (SIP) condition 3 transfer functior (s) by a computationally tractable
LH(yw)| < gl Vw € Edo?fu.nctlon bounded regg‘SSSS(BR) SDPs for its state-space realization. For instance, the

y a tractable semi-definite programming (SDP). Some ., qay req) (BR) conditiohH (jw)|> < 7? Vw € R
recent results generalise this result for the SIP condition . : .
of n—order transfer functiott/ (s) is characterised by a

|H(jw)|? < v*V|w| < © of frequency-selective bounded _ S .
realness (FSBR). The SDP characterisations are given at SPP involving its state-space realizatiod, B, C, D)

the expense of an introduced Lyapunov matrix variable and the Lyapunov matrix function variable of dimen-
of dimension n x n. As a result, the dimension of the Sionn x n [1], [14]. As it can be seen, the variable
resultant SDPs grows so quickly in respect to the function dimensionn x n of the Lyapunov variable, which is
order, making them much less computationally tractable equivalent tan(n+1)/2 scalar variables, increases very
and pra_cticable. Moreover, they do not allow to formulate quickly as the function orden increases moderately.
synthesis problems as SDPs. ____ As a consequence, the resultant SDPs are large di-
In this paper, & completely new SDP characterizations mensional and hardly solved by the presently available

for general FSBR for all-pole transfer functions is pro- . .
posed. Our motivation is the design of infinite-impulse- SDP solvers such as [16]. For instance, a function

response(lIR) filters involving a few of simutaneous FS- ordgrn = 100 already requi.res .the Lyapunov variable
BRs. Our SDP characterizations are of moderate size and Of dimension100 x 100, which is equivalent t&000
free from Lyapunov variables and thus allow to address scalar variables. The generalised results (see e.g. [3],
problems involving transfer functions of arbitrary order.  [7]) for the FSBR|H(jw)|? < 7?2 V |w| < @ also
Examples are also provided to validate the effectiveness experience a similar drawback. The SDP formulation
of the resulting SDP design formulation. _ of [7] also does not allow to formulate a synthesis
Finallly we ‘also raise some issues arising with prac- o.,piem a5 a SDP. More exactly, it leads to a bilinear
ticability of SDP for multi-dimensional filter design matrix inequality (BMI) formulation for the problem
problems. In particular, any bilinear matrix inequality In [17], we have obtained a new SDP characterisation
(BMI) optimization is shown to be solved by a SDP with ' X ) s . e
any prescribed tolerance but the issue is dimensionality for the FRPR of discrete-time functiat (e’) Of_f'n't?
of this SDP. impulse response (FIR). Our SDP formulation is of
substantially reduced order and its dual formulation
does not involve any additional variables and thus open
a new way for effective solution of large dimensional
The positive real lemma and its variations suchigital (discrete) systems. We have implemented in [17]
as Kalman-Popov-Yakubovich lemma, bounded re@omputational examples involving the designiafo-
lemmas (see e.g. [1], [14]) are certainly among mosgfrder system arising from digital filter design.
. . . Jn this paper, we obtain a new FSBR lemma for
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. INTRODUCTION



cient SDP based solution to the proposed formulation igith "
given in Section 3. An extension to multi-dimensional P(?) = Zpiw% P> 0 (5)
filters is provided in Section 4 and conclusions are =0 ’ ’

drawn in Section 5. h B T ¢ 7 and of
Notations.For symmetric matrixX, X >0 or X <0 Vherep = (Po, P1: P2, -+, Pn) 26 and of course,
for any w, the inequalityl + P(w®) > 0 must hold.

meansX is semi-positive definite or semi-negative def—Th flter desi bl f =00l log filter i
inite, respectively. Also, as usulsymbolizes the ma- € tl ?_r deﬂs]lgn p:o etm Qr.a'-potﬁ angogt' ! erl 1S
trix transposition operator and if matricgsand Z are now to find the vectop to minimise the objective (1)

. - - bject to constraints (2) and (3).
of appropriate dimensions thely, Z) = TracdY 7). su o ;
The convex hull coniC’) (conic hull conéC’), respec- To begin with, the FSBR constraints (2) and (3) for the

tively) of a setC C R" is the smallest convex Se,[all-pole transfer function/'(yw) are equivalent to the
: : following FSBR for the polynomialP(w?)
(smallest convex cone, respectively) containingThe

polar coneC* of C is defined as the sdixr € R" : App < P(w?) < Apy, Yw € [0,1] (6)

(x,c) > 0, Yc € C}. We refer the reader to [15] for )

the background of convex analysis. Al§o/2] is the As < P(w7), Vw > wg, (7)

largest integer not exceeding/’2 for an integern. where
) ) 1-90

[I. MOTIVATION: ALL-POLE ANALOG FILTER App = —17137 Apy =P, Ag= 5
+dp 1-4p ds
DESIGN (8)
The reader is referred to [5] for a brief introductionln view of (6),
for the state of art of analog filter design. 1 L, 1 p2(,?)
In its plain form, the problem is to design a filter (1+APU)2/0 (w)dw < ; 7(1+P(w2))2 w

that matches as smoothly as possible an ideal non- 1 Lo,

implementable filter of the frequency response 1 at a (1+APL)2/0 P (w?)dw,

given passband and zero at a given stopband. Thus the 9)

ripple constraints on the passband and stopband, whialhere Ap;, and Apy are small as defined by (6).

are in fact particular FSBR, are introduced to attain thelence, an adequate approximation3df in (1) is the

smooth filter performance and also high signal-to-noiseonvex quadratic function

(SNR) performance in its implementation at the noisy 1

environment. / P%(w?)dw = pTQp, (10)

Thus, the following criteria are set for designing a 0

normalized low pass filter of orden with transfer With Q defined as

function F'(s): 1 117

(i) Least aggregate squared error over the pass band /1 w? w? o —
0

_1
2n+1
1

Wl =
- OYwl

2n+3
> 0.
2n+41 2n—+3 4dn+1

[

1 2 . .
Sp = / (IFGw)? =1) dw—min (1) W] Lw
0

To sum up, our filter design problem is reduced to
Sthe following quadratic objective minimisation under
ESBR constraints

(73) Given a peak errof < ép < 1, FSBR constraint
of magnitude error or ripple constraint over the pa

band

—Sp < |[F(w)[2—1<dp, Vwe[0,1].  (2) Jmin, prQp - (6), (7). (11)
(ZZ’L) Given the Stopband boundS’ and a peak error In what follows we define the sets of FSBR constraints
dg, FSBR constraints of magnitude error constraint or _ n ;
ripple constraint over the stop band P(a,b) ={p € R™": ) pit' >0, Vt € [a,b]},

i=0
N2 n )
0 <[F(w)” < s, Yw > ws (3) Pla) = {p € R*": Zpit’ZO, vVt € [a, +ool}.
For an all-pole analog filter of ordem, its transfer =0 (12)
function F(s) is Then the optimisation problem (11) is just
. : . 1 .
|F(jw)? = F(ju)F(—jw) = —5—5 (4 min p'Qp: p—Aprer € P(0,1), (13)

- 1+ P(w?) pER"H!



Apper —p € P(0,1), p— Age; € P(w?), (14) Define also

wheree; =[1 0 --- 0]F e R*, Muk(t) = tM(1) (19)
Note that the stable transfer functidfi(s) is found anq accordingly

from the optimal solution of the above problem (13)-

(14) through spectral factorisation for the function [11] Mk (y) = M (Yo, Y1, - Y2k+1)

= 1 = 1 is created fromM . (t) by the variable change (17) for
14+ P(—s?)

= n
1"’2]91'(—52)1 h:.(),l,...,Qk.—i- 1. .
e For instance, it can be easily checked that
(15)

F(s)F(—s)

0
Mo () = [Texs omwmn[ “ﬂ € Rhxk

[Il. FSBRLEMMA AND POLYNOMIAL CURVES Tiexk

We have seen that FSBR constraints (2) and (3) fdhe role of moment matrices is shortly clarified in the
the all-pole transfer functiof'(s) are in fact equivalent following theorem.
to FSBR ones (6) and (7) for the polynomi(w?) = Markov-Lucacs theoremOne hasp € P(a,b) if
1/|F(yw)|?>—1. As both (6) and (7) are particular casesind only if there are matrices{ > 0 and Z > 0 of
of FSBRs (12), we now derive SDP characterisation faize ([n/2] 4+ 1) x ([n/2] 4+ 1) such that
(12). n
There are two !nterpretations for (12). The_ first moszpiti = (t—a)(X, My, 9 )+ (b—1t)(Z, M, 9 (1))
natural one is its ailppeared form (12) saying mereh=o (20)

that the ponnomiaEpiti is positive on the segment Also, p € P(a) if and only if

[a,b]. As firstly shéT/\(/)n in [10], it is equivalent to a .

SDP constraint through the Markov-Lukacs theoremzpitl = (t=a)(X, My (1)) +(Z, Mpp2) (1)), (21)

on positive polynomials. However, as we will see in =0

Subsection 3.1, the resulting SDP is of potentialljor someX > 0, Z > 0 of size([n/2]+1) x ([n/2]+1).
high dimension. The second less visible one is that

p belongs to the polar cone of the polynomial curve The above theorem follows from the so called snake
{(1,t,...t"T . t € [a,b]}. As it will be seen in the theorem [8] with a quite complex and long proof
Subsection 3.2, it will lead to a SDP description ofnvolving many mathematical constructs. Actually, the
substantially reduced dimension and result in a vemyhole chapter 7 of [8] is devoted to its proof! A short
robust numerical algorithm. Let us describe them iand elementary proof for the above version of this
order. famous theorem is provided in the appendix I.

A. Markov-Lukacs theorem as a primal FSBR lemma Based on (20) and (21jhe primal FSBR lemma
The k—th order moment matrix i¢k -+ 1) x (k+ 1)- for the transfer function F'(s) can be easily stated by

positive semi-definite and defined as [8] obtaining the linear constraints i and X, Z derived
T . by comparison of terms with the same powerof

rt Lot r ¢ in both sides of (20) and (21). As indicated in the
Mot =15 =t & 0 BT |, statement of the Markov-Lucacs Theoredi, and Z

must also satisfy the SDP constrainks > 0 and

Z > 0, so each constraint in (14) ip is in fact
equivalently expressed by a LMI constraint gnand
additional variablesX, Z. As a result, for instance
(13)-(14) is reduced to a SDP ip and 6 additional

th —yn, h=0,1,2, ---,2k (17) matrix variables of dimension$n/2]+1) x ([n/2]+1),

i.e. the number of variables increases substantially in

(16)
and accordingly, the matrix\(y) is created from
My(t) by the variable change

L.e. Mi(y) is such a SDP formulation. In the next subsection, we use
Yo Y1 o Yk the polar cone interpretation for the constraint (12) to
Y1 Y2 o Yk41 rovide a novel technique, which allows us to solve
Mk(y07y17 ---:Z/2k> - . . . (18) p q

: : (13)-(14) by a SDP with a much smaller number of
Yo Yk+1 o Y2k variables.



B. The convex hull of polynomial curves and dual

FSBR lemma

TABLE |
DESIGN SPECIFICATIONS AND AGGREGATE SQUARED ERROR
PERFORMANCES OF THE FREQUENCY NORMALIZED FILTERS

The dual FSBR lemma is based on the following

LMI characterizations of the convex hull of (noncon-

vex) polynomial curve (inR"*1).

Theorem 1:The conic hull of the polynomial curve

C,y defined as

Cop={[1 t "1 t € [a,b]} (22)

is fully characterised by LMIsy € congC,;) if and
only and it satisfies the LMIs

bM i 2(y) = Mg (y) = aMiy, 2(y)
The conic hull of the polynomial curv€, defined as

sz = {[1 3 (24)

(23)

"7 : t € [a, +00]}
is fully characterised by LMIsy € condC,) if and
only if it satisfies the LMIs

Mins(y) > 0, Myp2(y) > aMi(y) (25)

Proof: See the appendix II. 0

Remark. For n even, by the definitionM,y, 9 is a
matrix function of(yo, y1, ..., Yn, Yn+1) @nd accordingly
LMIs (23), (25) are understood for somg ;.

As a further step, from the definition @*(a,b) and
P(a), it is clear that

P(a,b) = (Cap)* = (cONV(Cyp))*
P(a) = (Co)" = (cONUC,))*

so (13)-(14) can be written as

mginQp : p—Apres € Gy, Apy —p € Cpy,

p— Qe €C

(26)

where for simplicity of notations we usgj, andC;.
to refer (coneCy 1)* and (cone’,:)*, respectively.

The dual problem of (26) is the SDP problem

AprelyV —Apyely® +Agely® v :
(27)

| =0

max
yD) 4y 4y

1% (_y(l) + y(2) — y(g))T
—yD) 4y — ) 4Q
23) with y(),y@ for 0 — a, 1 — b,
vy
(25) with y®) for w? — a,

Furthermore, the optimal solutiop of (26) can be
directly retrieved from the optimal solutiafi”) of (27)

Specification details
Filters ws | ds [ op ] Xp
4% order filter | 1.6 | 0.015 [ 0.03 [ 1.09 x 10~ %
5" order filter | 1.5 | 0.001 | 0.02 | 4.75 x 10~°
6" order filter | 1.4 | 0.004 | 0.014 | 6.53 x 10~ °
7t order filter | 1.35| 0.003 | 0.010 | 6.09 x 10—~
8" order filter | 1.3 | 0.0022| 0.008 | 8.06 x 10~"
9*" order filter | 1.25 | 0.0017 | 0.006 | 1.06 x 10~°
10" order filter | 1.22 | 0.0012| 0.005 | 2.87 x 10—~

Let us emphasise the advantage of the analytical dual
SDP formulation (27). Unlike the primal SDP (26), the
dual SDP (27) involves variables of dimension 1 and

of moderate dimension so it can be effectively solved
by any existing SDP software no matter hawcan be
large.

The below theorem is now at hand.

Theorem 2:Given the design specifications: stop
frequencywg, pass band and stop band ripple con-
straintsdop anddg, the optimal filter of orderm in the
sense of least aggregate squared error over the pass
bandX g in (1) has the transfer functiof(s) resulting
from spectral factorization for the function (15), where
the coefficientspg, p1, ---, p, are derived from the
optimal solutiony® i = 1, 2, 3 of SDP (27) from the
linear equations (28).

C. Numerical lllustration

We examine our design formulation via the designs
of a number of analog filters using SDP (27). Design
parameters are given in Table 1 where the resultant
design objectives are written in boldface. Magnitude
responses of designed” order filters is depicted in
Figures 1. By the table 2, we can see that reduction in
the number of scalar variables achieved by (27) gets
better fast as the order of the desired filter increases.

Table 3 (with the objective performances of filters
stressed in boldface) gives performances of the pro-
posed filters and the Chebysev ones. In the case of
the 4" order filter, gain 0f0.004/0.030 = 13.3% in
ripple constraint made by the Chebyshev filter results
in 0.002/0.015 = 13.3% loss in aggregate error. For
the 5t* and 6" filters, that is 15% versus 36.5%
and 36.4% versus51.4%. Thus, in all the three cases
our proposed formulation offers considerable aggregate

by the unique solution of the linear equation system error reduction over the pass band. The sacrifice of the

1

Qp =5y +y® -y, (28)

error peak trades off well with the improvement of pass
band aggregate error. This subsection together with the



TABLE I
NUMBER OF SCALAR VARIABLES OF DIFFERENT DESIGN
FORMULATIONS

Number of scalar variables
Filters @n | (13)-(14)
5t order filter [ 19 43
6°" order filter | 22 56 .
7" order filter | 25 69 2
&7 order filter | 28 85
9*% order filter | 31 101
10%" order filter | 34 120

Specification details
Designed Filters | ws | ds | dp [ X
Prop. 4-order filter| 1.6 | 0.03 | 0.034 | 0.013
Cheb. 4-order filterf 1.6 | 0.03 | 0.030 | 0.015
Prop. 5-order filter| 1.5 | 0.015| 0.020 | 0.0063 Fig. 1.
Cheb. 5-order filterj 1.5 | 0.015| 0.0174 | 0.0086
Prop. 6-order filter| 1.41 | 0.01 | 0.015 | 0.0035
Cheb. 6-order filter] 1.41 | 0.01 | 0.011 | 0.0053

4]

Maghnitude response of the desigrigd” order filter

TABLE Il Thus a natural question is whether we can describe
AGGREGATE ERROR OVER THE PASS BAND VERSUBASS BAND  the convex hull of the set

RIPPLE PERFORMANCES

C={[1 x .. x, 23 x9220 .. 22 .. xﬁ]T :

. L . ) >0, £=1,2,..,L} C RN

last one consolidate our motivation and validate of our 9e(@) 20, - (33)
design formulations. where g, are polynomials int = (1,22, ..., 2,)" €

7.

V. EXTENSIONS TO MULTI-DIMENSIONAL FILTER
DESIGN: POTENTIAL DIFFICULTIES
As we can easily see, the key step for converting the a L« o
' T)= o, 27 = x, ', a; < +o0.
optimization problem (11) to the SDP problem (27) 9e() %gfa 1:[ ’ ; ‘
is the exact LMI description (23) for the convex hull (34)
of the nonconvex sef’, ;. Particularly, it also implies In what follows we use the following variable changes
that the following univariate polynomial optimization
problem of nonconvex optimization
n ) T = qu'i < Ya = Yayon..a, VO (35)
min z:citz (29) i

which is the same as

T T The n-dimensional moment matrices are defined as
¢y, c=(co,C1y.yCn) (30)

4eCOMC, follows
and thus according to Theorem 1 is solved by SDP
min ¢’y : (23),y0 =1 (31) r11r117
yeER+1
This fact has been mentioned in [9] ferodd in a quite Mi(z) = ! !
different setting.
On the other hand, it can be shown that the problem -l Ldn
of multi-dimensional filter design will involve semi- 1 Z1 T2 . Tn
infinite constraints like T 23 mTe ... T1T,
— 2

pe RN ZpaHa:f‘ >0V z; €la, b, i=1,2,...,n. B T2 L1l L2 e @22y |(36)

’ z (32) Lz, z1%n ToXy ... T2




T 17 17
T z1
Tn Tn
i o
12 12
Mg(l‘): =
T1Tp, T1Tp,
3 73
T2x3 I2T3
1 T Tn e -
€1 x% T1Tny x‘% J:lx%
x% 9511:% x% x%x% xfb

and so all. Clearly, all moment matrice®t;(x) are
positive semi-definite.
Accordingly, one can define

Mii(z) = gr(x)M;(x) (37)

and M,,(y) are created fromM,,(z) through the
variable change (35).

Theorem 3:Suppose that the sét defined by (33)
is compact.
Then the convex hull corf¢) of C can be analytically
described by LMIs with any prescribed tolerancé.e.
one can show a convex set cofiwdefined analytically
by LMIs and satisfying

conC) C conv.C C conMC) +€eOpn,  (38)

whereOy is the unit ball inRY. One of such convex
set conyC is described by

My (y) =0, Myx_1)(y) =0,

(=1,2,..,L}
(39)

conv.C = Profy :

for someN.

Proof: See the appendix Ill.

a

An immediate consequence of the above theorem is

the following result on solvability of BMIs, which

Then the convex hull corf¢) of C can be analytically
described by SDPs with any prescribed tolerandee.
one can show a convex set cofwefined analytically
by SDPs and satisfying (38). Consequently, any BMI
optimization problem

Go(z) >0, £=1,2,...L  (42)

H%}H(C,:@ :
can be solved by an SDP with any prescribed tolerance.

Proof: By the Sylvester’s criterion, the matri%,(x)
is positive-semidefinite if and only if its determinant
and principle minors are nonnegative. Obviously, these
are polynomials inc and thus the constraidt,(z) > 0
are equivalent to an analytically described polynomial
constraints and the above proposition is a direct conse-
guence of Theorem 3. -
However, in sharp contrast to the one-dimensional
case, there is no closed form for predicting of the
highest orderN of the moment matrices. Actuallyy
is very potentially high. Even for moderafé (so we
would have a relaxed problem) the resultant SDPs are
already very high dimensional and unlikely solved by
the existing SDP solvers. Some techniques handling
this issue has been initialled in [6].

V. CONCLUSIONS

The paper has cast a new design of all-pole analog
filter into a convex optimization problem, which is
based on a new version of FSBR lemmas. Our proposed
design is really practical and can be a more appropriate
alternative to the classical filters in some actual analog
filtering contexts. We have also developed a general
framework for SDP applications to multi-dimensional
problems and analysed some potential difficulties with
their practicability.

APPENDIX|: AN ELEMENTARY PROOF OF
MARKOV-LUCACS THEOREM
For convenlence we deal with polynomials that are non-negative

[0, 00). One can turnf(t) non-negative ora, b] into f(t) non-
negative on[0 oo) with the so-calledSoursat transform

frequently arise in control synthesis (see e.g. [2]), by

SDPs.
Proposition 1: Suppose that the set
C={z= [m ZTn]:

Gux) >0, (=1,2,...0} c g 40

is compact, wheré7,(z) > 0 are BMIs inz, i.e. Gy
admits the form

Go(z) = G + Y 232G

.3

(41)

Definition 1: Given a polynomial f(¢t) of degreen and an
interval [a,b], the Goursat transform of on [a,b] is defined as
follows.

b+at) (43)

fit)=(1+t)"

o =+oms (5
Lemma 1: (Variation of Goursat's LemmajJ(t) is non-negative

on [a, b] if and only if f(¢) is non-negative of0, co).

Proof. Note thatt € [0, c0) implies 4t € [a, b], hence the non-

negativity of f on [a, b] implies the non-negativity of on [0, co).



Conversely, supposgis non-negative offd, oo). For anyt € (a, b] APPENDIXII: THE PROOF OFTHEOREM 1
we can write - First, using the variable change (17) at both sides of (20), (21)
b+al=t = leads to the next lemma.
f(t) = f b—t = b—t\" 2 0
1+ = (1 + E) Lemma 4:If P(t Zplt admits the representation (20)

; L i bt
sincet € (a, b] implies = € [0, c0). for some matrices X >7°0,Z > 0 then for everyy —

Lastly, f(a) > 0 by continuity. O [yo y1 - yn] c RnJrl
Lemma 2: Any f(t), which is nonnegative irf0, o), can be Py = (X, Mipng(y) — aMp/2(y)) @7)
written in the form +(Z,bM 21 (y) — Mipny21(v))
F@)(t) = p*(t) + ta* (1), (44) n
wherep(t) and () are polynomials such that the degree of eachf P(t Zplt admits the representation (20) for some matrices
of p?(t) andtq?(t) is of the degree of (¢) at most. X027 ;% then for everyy — [0 1 -y " € B,

F;]roof: Supposefi(t) = pi(t)+tqi (t), andfa(t) = p3 () +a3(t),  p"y = (X, Mg (y) — aMns2)(y)) + (Z, Minya) (y)). (48)
then

[ f2(t) = () + tgi (1) (p3(t) +t‘21§(t)) Proof of Theorem 1. For the first part, the conic hull o€, ,
= (p1()p2(t) + tqr(t)g2(t)) ) is obviously characterised by LMIs (23) if we can show that the
+t(q1(t)p2(t) — p1(t)a2(t))". convex hull ofC, , is characterized by LMIs (23) angh = 1.

Thus, if we can writef(t) as a product of non-trivial factors each In what follows, setc = [n/2]. o
of which has the desired form, thehitself has the desired form Suppose cort, ; is the set ofy with yo = 1 satisfying LMIs (23),

by induction. which is obviously convex. Thed', , € conC, ;, because each
Sincef(t) is non-negative ofi0, oc), every positive root of must ¥ =[1 ¢ --- t"]7 € Cu, satisfies LMIs (23):
have even multiplicity. Hence, the factors corresponding to positive Mi(y) = My(t) >
2 . . 2 o .
roots have the formt=(¢) for some polynomiak(t). Sincek*(t) = bMi(y) — Mux(y) = (b — t)Mk( ) >0

E2(t) +t x 0%, these factors have the right format.
- =(t— >0

The factors correspondlng to non-positive roots have also the right Marly) = aMily = (t = ) Me(t) =

form: (t +¢) = \f +t x 12. Also, the factors corresponding to From the definition of the convex hull,

complex roots in conjugate pairs:

(t—cid)(t—ctid) = (/@ + 2402+ 2/ + & ~20° 10w,

have the desired form. O It remains to show

con(C,p) C cONVCly p

. " . . convClyp, C con(Caqp).
We are now in position to prove the following version of the

original Markov-Lukacs theorem [8]. For that, let the support function [15] for any ¢ R be defined
as
Lemma 3: Let f(¢) be a polynomial of degree which is non- s(A,p) = sup(y,p) Vp € R*1".
negative onfa, b]. Then, f(¢) admits the following representation: yeA
F(8) = (¢t = a)(pi(t) + p3(1)) + (b= )(gi () + g3(t))  (45) SO n
wherep;(t) andg;(t) are polynomials, and each of the four terms $(Cap,P) — Zpitl >0VtE|a,b
(t —a)pZ(t), (b — t)g? (t) has degreen at most. i=0
and according to Markov Lukacs theorem for egshthere are
Proof We have Xp > 0 andZ, > 0 such that
f) = G=f ()
= Ll 2 () 4+ detg? (=2)] CasP) Zm = (t—a)(Xp, Mi()) + (b—1){Zp, Mi(2)).
which leads to the format
b p2(t) + (b—t)(t — a)g®(t) nis even 46 By Lemma 4, it is then true that whenevgr= (1,y1,...,yn)" €
@) = (t —a)p?(t) + (b—t)¢*(t) nis odd (46) convCy» (i.e. y satisfies LMIs (23))
Clearly, forn odd, the format (46) is a particular case of (46).
But for n even, like [4, proof of Lemma 1] it can be immediately ~ 5(Cab,P) — Zyipi = (Xp, Mux(y) — aMi(y))

checked that (46) gives

(b—a)f(t) _ (t—a) +<vaka(y) 7M1k(y)>

()+(b ) f(t) > 0
= (t—a)p’ ( )+ (b—1)2¢* (1)) -
+(b—t)(P*(t) + (t — a)’d>(t)) O implying s(Cus, p) > s(conCa s, p) V p € R**! or equivalently
i.e. the format (45) again. conCy, C con(Cy p) [15].

The proof for the second part is similar.
Proof of Markov Lukacs theorem: Clearly, (45) is a particular
case of (20). On the other hand, the RHS of (20) is a polynomial in Remark. As mentioned in the Remark after Theorem 1, when
t, which is nonnegative ofu, b] so it must admit the representationsn is even, M, 5(y) depends on(yo,yi,...,yn+1) and the
like (45). Therefore, (20) is equivalent to (45). representation (20) implies (47) for dlyo, y1, ..., Yn+1)-
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For any+oo > |Ci| := maxzec, ||Z]], it is obvious thatC}, C
|Ck|.On. ‘ ‘ _
Take 11 := €/4|Cy| and let{p” : p® e RN, |]pW| =1, i =

1,2,

..., N'} be anyu-net of the unit ball inR™, i.e. for any||p|| = 1

there isp® such that

llp — p™|| < p. (49)

It follows from [13] that there ard/) > 0 and V) > 0 such

that

L
(U, My (@) + Y (VO Mgy (@), (50)
=1 [10]
where My(x_1)(x) = ge(x) My _, for someN < +oc.
Therefore, for{p(?), ) defined from(p“), Z) by the variable change [11]
(35) one has
: — 12
(b)) + /2 - 12
- [13]

$(Cr, pV) = (0, 7) + /2

(U, My () + > (VO My 1) ().

=1

Now, for

one has

(6]

(7]

(8]

&)

[15]

conv.Cy := ProjRN {y: Mﬁ(y) >0, MZ(I\?—I)(?/) > O}Q‘Ck‘ON [16]
(51)

[17]

VY g € conv.Cy.
(52)

Then for eachp € Oy there isp® e Oy satisfying (49), so
whenevery € conv.Cy,

5(Cx + ¢On,p) — (p, 7)
S(Ck,p) - <p7 g) +e€

(s(Ck,p) — 5(Cr, ') + (s(Cr, p) — (0, 7))

—2u|C| + ¢(Cr, p) — (B, 7) + €
(Cr, pV) — (0, 7) +¢/2

implying conv.Cj, C con(C}) + €.0n, showing (38).

(1]

(2]

(3]

(4]

(5]
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