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A dual frequency-selective bounded real lemma and its applications to
IIR filter design∗

H.D. Tuan1, N.T. Hoang2, H.Q. Ngo3, H. Tuy4 and B. Vo2

Abstract— Given a transfer function H(s) of order
n, the celebrated bounded real lemma characterises the
untractable semi-infinite programming (SIP) condition
|H(ω)|2 ≤ γ2∀ω ∈ R of function bounded realness (BR)
by a tractable semi-definite programming (SDP). Some
recent results generalise this result for the SIP condition
|H(ω)|2 ≤ γ2∀|ω| ≤ ω̄ of frequency-selective bounded
realness (FSBR). The SDP characterisations are given at
the expense of an introduced Lyapunov matrix variable
of dimension n × n. As a result, the dimension of the
resultant SDPs grows so quickly in respect to the function
order, making them much less computationally tractable
and practicable. Moreover, they do not allow to formulate
synthesis problems as SDPs.
In this paper, a completely new SDP characterizations
for general FSBR for all-pole transfer functions is pro-
posed. Our motivation is the design of infinite-impulse-
response(IIR) filters involving a few of simutaneous FS-
BRs. Our SDP characterizations are of moderate size and
free from Lyapunov variables and thus allow to address
problems involving transfer functions of arbitrary order.
Examples are also provided to validate the effectiveness
of the resulting SDP design formulation.
Finallly we also raise some issues arising with prac-
ticability of SDP for multi-dimensional filter design
problems. In particular, any bilinear matrix inequality
(BMI) optimization is shown to be solved by a SDP with
any prescribed tolerance but the issue is dimensionality
of this SDP.

I. I NTRODUCTION

The positive real lemma and its variations such
as Kalman-Popov-Yakubovich lemma, bounded real
lemmas (see e.g. [1], [14]) are certainly among most
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important results of modern control. They allow to
express a computationally untractable SIP constraint of
a transfer functionH(s) by a computationally tractable
SDPs for its state-space realization. For instance, the
bounded real (BR) condition|H(ω)|2 ≤ γ2 ∀ω ∈ R
of n−order transfer functionH(s) is characterised by a
SDP involving its state-space realization(A,B,C, D)
and the Lyapunov matrix function variable of dimen-
sion n × n [1], [14]. As it can be seen, the variable
dimensionn × n of the Lyapunov variable, which is
equivalent ton(n+1)/2 scalar variables, increases very
quickly as the function ordern increases moderately.
As a consequence, the resultant SDPs are large di-
mensional and hardly solved by the presently available
SDP solvers such as [16]. For instance, a function
ordern = 100 already requires the Lyapunov variable
of dimension100 × 100, which is equivalent to5000
scalar variables. The generalised results (see e.g. [3],
[7]) for the FSBR |H(ω)|2 ≤ γ2 ∀ |ω| ≤ ω̄ also
experience a similar drawback. The SDP formulation
of [7] also does not allow to formulate a synthesis
problem as a SDP. More exactly, it leads to a bilinear
matrix inequality (BMI) formulation for the problem.
In [17], we have obtained a new SDP characterisation
for the FRPR of discrete-time functionH(eω) of finite
impulse response (FIR). Our SDP formulation is of
substantially reduced order and its dual formulation
does not involve any additional variables and thus open
a new way for effective solution of large dimensional
digital (discrete) systems. We have implemented in [17]
computational examples involving the design of1200-
order system arising from digital filter design.
In this paper, we obtain a new FSBR lemma for
all-pole functions. They are among the most popular
classes in IIR analog filter design, which is the most
fundamental problem of signal processing [12]. Like
our previous results for discrete-time case, our new
SDP characterization is moderate side and its dual
formulation is free from slack variables and leads to
a very robustly numerical algorithm.
The paper is organised as follows. A new optimisation-
based design formulation for the class of all-pole filter
is presented next in Section 2. FSBR lemmas and effi-



2

cient SDP based solution to the proposed formulation is
given in Section 3. An extension to multi-dimensional
filters is provided in Section 4 and conclusions are
drawn in Section 5.
Notations.For symmetric matrixX, X ≥ 0 or X ≤ 0
meansX is semi-positive definite or semi-negative def-
inite, respectively. Also, as usualT symbolizes the ma-
trix transposition operator and if matricesY andZ are
of appropriate dimensions then〈Y,Z〉 = Trace(Y Z).
The convex hull conv(C) (conic hull cone(C), respec-
tively) of a setC ⊂ Rn is the smallest convex set
(smallest convex cone, respectively) containingC. The
polar coneC∗ of C is defined as the set{x ∈ Rn :
〈x, c〉 ≥ 0, ∀c ∈ C}. We refer the reader to [15] for
the background of convex analysis. Also[n/2] is the
largest integer not exceedingn/2 for an integern.

II. M OTIVATION : ALL -POLE ANALOG FILTER

DESIGN

The reader is referred to [5] for a brief introduction
for the state of art of analog filter design.
In its plain form, the problem is to design a filter
that matches as smoothly as possible an ideal non-
implementable filter of the frequency response 1 at a
given passband and zero at a given stopband. Thus the
ripple constraints on the passband and stopband, which
are in fact particular FSBR, are introduced to attain the
smooth filter performance and also high signal-to-noise
(SNR) performance in its implementation at the noisy
environment.
Thus, the following criteria are set for designing a
normalized low pass filter of ordern with transfer
function F (s):
(i) Least aggregate squared error over the pass band

ΣE =
∫ 1

0

(
|F (jω)|2 − 1

)2
dω → min (1)

(ii) Given a peak error0 < δP < 1, FSBR constraint
of magnitude error or ripple constraint over the pass
band

−δP ≤ |F (jω)|2 − 1 ≤ δP , ∀ω ∈ [0, 1]. (2)

(iii) Given the stopband boundωS , and a peak error
δS , FSBR constraints of magnitude error constraint or
ripple constraint over the stop band

0 ≤ |F (jω)|2 ≤ δS , ∀ω ≥ ωS (3)

For an all-pole analog filter of ordern, its transfer
function F (s) is

|F (jω)|2 = F (jω)F (−jω) =
1

1 + P (ω2)
(4)

with

P (ω2) =
n∑

i=0

piω
2i, pn > 0, (5)

wherep = (p0, p1, p2, · · · , pn)T ∈ Rn and of course,
for any ω, the inequality1 + P (ω2) > 0 must hold.
The filter design problem for all-pole analog filter is
now to find the vectorp to minimise the objective (1)
subject to constraints (2) and (3).
To begin with, the FSBR constraints (2) and (3) for the
all-pole transfer functionF (ω) are equivalent to the
following FSBR for the polynomialP (ω2)

∆PL ≤ P (ω2) ≤ ∆PU , ∀ω ∈ [0, 1] (6)

∆S ≤ P (ω2), ∀ω ≥ ωS , (7)

where

∆PL = − δP

1 + δP
, ∆PU =

δP

1− δP
, ∆S =

1− δS

δS
.

(8)
In view of (6),

1
(1 + ∆PU )2

∫ 1

0
P 2(ω2)dω ≤

∫ 1

0

P 2(ω2)
(1 + P (ω2))2

dω

≤ 1
(1 + ∆PL)2

∫ 1

0
P 2(ω2)dω,

(9)
where ∆PL and ∆PU are small as defined by (6).
Hence, an adequate approximation ofΣE in (1) is the
convex quadratic function

∫ 1

0
P 2(ω2)dω = pTQp, (10)

with Q defined as

∫ 1

0




1
ω2

...
ω2n







1
ω2

...
ω2n




T

dω =




1 1
3

· · · 1
2n+1

1
3

1
5

· · · 1
2n+3

...
... · · ·

...
1

2n+1
1

2n+3
· · · 1

4n+1


 > 0.

To sum up, our filter design problem is reduced to
the following quadratic objective minimisation under
FSBR constraints

min
p∈Rn+1

pT Qp : (6), (7). (11)

In what follows we define the sets of FSBR constraints

P(a, b) = {p ∈ Rn+1 :
n∑

i=0

pit
i ≥ 0, ∀t ∈ [a, b]},

P(a) = {p ∈ Rn+1 :
n∑

i=0

pit
i ≥ 0, ∀t ∈ [a,+∞]}.

(12)
Then the optimisation problem (11) is just

min
p∈Rn+1

pT Qp : p−∆PLe1 ∈ P(0, 1), (13)
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∆PUe1 − p ∈ P(0, 1), p−∆Se1 ∈ P(ω2
S), (14)

wheree1 = [ 1 0 · · · 0 ]T ∈ Rn+1.
Note that the stable transfer functionF (s) is found
from the optimal solution of the above problem (13)-
(14) through spectral factorisation for the function [11]

F (s)F (−s) =
1

1 + P (−s2)
=

1

1 +
n∑

i=0

pi(−s2)i

.

(15)

III. FSBR LEMMA AND POLYNOMIAL CURVES

We have seen that FSBR constraints (2) and (3) for
the all-pole transfer functionF (s) are in fact equivalent
to FSBR ones (6) and (7) for the polynomialP (ω2) =
1/|F (ω)|2−1. As both (6) and (7) are particular cases
of FSBRs (12), we now derive SDP characterisation for
(12).
There are two interpretations for (12). The first most
natural one is its appeared form (12) saying merely

that the polynomial
n∑

i=0

pit
i is positive on the segment

[a, b]. As firstly shown in [10], it is equivalent to a
SDP constraint through the Markov-Lukacs theorem
on positive polynomials. However, as we will see in
Subsection 3.1, the resulting SDP is of potentially
high dimension. The second less visible one is that
p belongs to the polar cone of the polynomial curve
{(1, t, ..., tn)T : t ∈ [a, b]}. As it will be seen in the
Subsection 3.2, it will lead to a SDP description of
substantially reduced dimension and result in a very
robust numerical algorithm. Let us describe them in
order.

A. Markov-Lukacs theorem as a primal FSBR lemma

Thek−th order moment matrix is(k +1)× (k +1)-
positive semi-definite and defined as [8]

Mk(t) =




1
t
...
tk







1
t
...
tk




T

=




1 t · · · tk

t t2 · · · tk+1

...
... · · · ...

tk tk+1 · · · t2k


 ,

(16)
and accordingly, the matrixMk(y) is created from
Mk(t) by the variable change

th ← yh, h = 0, 1, 2, · · · , 2k (17)

i.e.Mk(y) is

Mk(y0, y1, ..., y2k) =




y0 y1 · · · yk

y1 y2 · · · yk+1
...

... · · · ...
yk yk+1 · · · y2k


 . (18)

Define also
M1k(t) = tMk(t) (19)

and accordingly

M1k(y) ≡M`k(y0, y1, ..., y2k+1)

is created fromM`k(t) by the variable change (17) for
h = 0, 1, ..., 2k + 1.
For instance, it can be easily checked that

M1(k−1)(y) = [ Ik×k 0k×1 ]Mk(y)
[
01×k

Ik×k

]
∈ Rk×k

The role of moment matrices is shortly clarified in the
following theorem.

Markov-Lucacs theorem.One hasp ∈ P(a, b) if
and only if there are matricesX ≥ 0 and Z ≥ 0 of
size([n/2] + 1)× ([n/2] + 1) such that

n∑

i=0

pit
i = (t−a)〈X,M[n/2](t)〉+(b− t)〈Z,M[n/2](t)〉

(20)
Also,p ∈ P(a) if and only if

n∑

i=0

pit
i = (t−a)〈X,M[n/2](t)〉+〈Z, M[n/2](t)〉, (21)

for someX ≥ 0, Z ≥ 0 of size([n/2]+1)×([n/2]+1).

The above theorem follows from the so called snake
theorem [8] with a quite complex and long proof
involving many mathematical constructs. Actually, the
whole chapter 7 of [8] is devoted to its proof! A short
and elementary proof for the above version of this
famous theorem is provided in the appendix I.

Based on (20) and (21),the primal FSBR lemma
for the transfer function F (s) can be easily stated by
obtaining the linear constraints inp andX, Z derived
by comparison of terms with the same powerti of
t in both sides of (20) and (21). As indicated in the
statement of the Markov-Lucacs Theorem,X and Z
must also satisfy the SDP constraintsX ≥ 0 and
Z ≥ 0, so each constraint in (14) inp is in fact
equivalently expressed by a LMI constraint inp and
additional variablesX, Z. As a result, for instance
(13)-(14) is reduced to a SDP inp and 6 additional
matrix variables of dimensions([n/2]+1)×([n/2]+1),
i.e. the number of variables increases substantially in
such a SDP formulation. In the next subsection, we use
the polar cone interpretation for the constraint (12) to
provide a novel technique, which allows us to solve
(13)-(14) by a SDP with a much smaller number of
variables.
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B. The convex hull of polynomial curves and dual
FSBR lemma

The dual FSBR lemma is based on the following
LMI characterizations of the convex hull of (noncon-
vex) polynomial curve (inRn+1).

Theorem 1:The conic hull of the polynomial curve
Ca,b defined as

Ca,b = {[ 1 t · · · tn ]T : t ∈ [a, b]} (22)

is fully characterised by LMIs:y ∈ cone(Ca,b) if and
only and it satisfies the LMIs

bM[n/2](y) ≥M1[n/2](y) ≥ aM[n/2](y) (23)

The conic hull of the polynomial curveCa defined as

Ca = {[ 1 t · · · tn ]T : t ∈ [a,+∞]} (24)

is fully characterised by LMIs:y ∈ cone(Ca) if and
only if it satisfies the LMIs

M[n/2](y) ≥ 0, M1[n/2](y) ≥ aMk(y) (25)

Proof: See the appendix II.
2

Remark. For n even, by the definition,M1[n/2] is a
matrix function of(y0, y1, ..., yn, yn+1) and accordingly
LMIs (23), (25) are understood for someyn+1.

As a further step, from the definition ofP(a, b) and
P(a), it is clear that

P(a, b) = (Ca,b)∗ = (conv(Ca,b))∗

P(a) = (Ca)∗ = (conv(Ca))∗

so (13)-(14) can be written as

min
p

pT Qp : p−∆PLe1 ∈ C∗
0,1, ∆PU − p ∈ C∗

0,1,

p−∆se1 ∈ C∗
ω2

s

(26)
where for simplicity of notations we useC∗

0,1 andC∗
ω2

s

to refer (coneC0,1)∗ and (coneCω2
s
)∗, respectively.

The dual problem of (26) is the SDP problem

max
y(1),y(2),y(3),ν

∆PLeT
1 y(1)−∆PUeT

1 y(2)+∆SeT
1 y(3)−ν :

(27)[
ν (−y(1) + y(2) − y(3))T

−y(1) + y(2) − y(3) 4Q

]
≥ 0,

(23) with y(1), y(2) for 0 → a, 1 → b,

(25) with y(3) for ω2
S → a,

Furthermore, the optimal solutionp of (26) can be
directly retrieved from the optimal solutiony(i) of (27)
by the unique solution of the linear equation system

Qp = −1
2
(−y(1) + y(2) − y(3)). (28)

TABLE I

DESIGN SPECIFICATIONS AND AGGREGATE SQUARED ERROR

PERFORMANCES OF THE FREQUENCY NORMALIZED FILTERS

Specification details
Filters ωS δS δP ΣE

4th order filter 1.6 0.015 0.03 1.09× 10−4

5th order filter 1.5 0.001 0.02 4.75× 10−5

6th order filter 1.4 0.004 0.014 6.53× 10−6

7th order filter 1.35 0.003 0.010 6.09× 10−7

8th order filter 1.3 0.0022 0.008 8.06× 10−7

9th order filter 1.25 0.0017 0.006 1.06× 10−6

10th order filter 1.22 0.0012 0.005 2.87× 10−7

Let us emphasise the advantage of the analytical dual
SDP formulation (27). Unlike the primal SDP (26), the
dual SDP (27) involves variables of dimensionn+1 and
of moderate dimension so it can be effectively solved
by any existing SDP software no matter hown can be
large.
The below theorem is now at hand.

Theorem 2:Given the design specifications: stop
frequencyωS , pass band and stop band ripple con-
straintsδP and δS , the optimal filter of ordern in the
sense of least aggregate squared error over the pass
bandΣE in (1) has the transfer functionF (s) resulting
from spectral factorization for the function (15), where
the coefficientsp0, p1, · · · , pn are derived from the
optimal solutiony(i), i = 1, 2, 3 of SDP (27) from the
linear equations (28).

C. Numerical Illustration

We examine our design formulation via the designs
of a number of analog filters using SDP (27). Design
parameters are given in Table 1 where the resultant
design objectives are written in boldface. Magnitude
responses of designed10th order filters is depicted in
Figures 1. By the table 2, we can see that reduction in
the number of scalar variables achieved by (27) gets
better fast as the order of the desired filter increases.

Table 3 (with the objective performances of filters
stressed in boldface) gives performances of the pro-
posed filters and the Chebysev ones. In the case of
the 4th order filter, gain of0.004/0.030 = 13.3% in
ripple constraint made by the Chebyshev filter results
in 0.002/0.015 = 13.3% loss in aggregate error. For
the 5th and 6th filters, that is 15% versus 36.5%
and 36.4% versus51.4%. Thus, in all the three cases
our proposed formulation offers considerable aggregate
error reduction over the pass band. The sacrifice of the
error peak trades off well with the improvement of pass
band aggregate error. This subsection together with the
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TABLE II

NUMBER OF SCALAR VARIABLES OF DIFFERENT DESIGN

FORMULATIONS

Number of scalar variables
Filters (27) (13)-(14)

5th order filter 19 43
6th order filter 22 56
7th order filter 25 69
8th order filter 28 85
9th order filter 31 101
10th order filter 34 120

Specification details
Designed Filters ωS δS δP Σe

Prop. 4-order filter 1.6 0.03 0.034 0.013
Cheb. 4-order filter 1.6 0.03 0.030 0.015
Prop. 5-order filter 1.5 0.015 0.020 0.0063
Cheb. 5-order filter 1.5 0.015 0.0174 0.0086
Prop. 6-order filter 1.41 0.01 0.015 0.0035
Cheb. 6-order filter 1.41 0.01 0.011 0.0053

TABLE III

AGGREGATE ERROR OVER THE PASS BAND VERSUSPASS BAND

RIPPLE PERFORMANCES

last one consolidate our motivation and validate of our
design formulations.

IV. EXTENSIONS TO MULTI-DIMENSIONAL FILTER

DESIGN: POTENTIAL DIFFICULTIES

As we can easily see, the key step for converting the
optimization problem (11) to the SDP problem (27)
is the exact LMI description (23) for the convex hull
of the nonconvex setCa,b. Particularly, it also implies
that the following univariate polynomial optimization
problem of nonconvex optimization

min
t∈[a,b]

n∑

i=0

cit
i (29)

which is the same as

min
y∈convCa,b

cT y, c = (c0, c1, ..., cn)T (30)

and thus according to Theorem 1 is solved by SDP

min
y∈Rn+1

cT y : (23), y0 = 1 (31)

This fact has been mentioned in [9] forn odd in a quite
different setting.
On the other hand, it can be shown that the problem
of multi-dimensional filter design will involve semi-
infinite constraints like

p ∈ RN :
∑
α

pα

∏

i

xαi
i ≥ 0 ∀ xi ∈ [ai, bi], i = 1, 2, ..., n.

(32)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

|F
(j
ω

)|
2

ω

Fig. 1. Magnitude response of the designed10th order filter

Thus a natural question is whether we can describe
the convex hull of the set

C = {[ 1 x1 ... xn x2
1 x1x2 ... x2

n ... xk
n ]T :

g`(x) ≥ 0, ` = 1, 2, ..., L} ⊂ RN

(33)
whereg` are polynomials inx = (x1, x2, ..., xn)T ∈

Rn:

g`(x) =
∑
α

g`αxα, xα =
∏

i

xαi

i ,
∑

i

αi < +∞.

(34)
In what follows we use the following variable changes

xα =
∏

i

xαi

i ↔ yα = yα1α2...αn
∀α (35)

The n-dimensional moment matrices are defined as
follows

M1(x) =




1
x1

...
xn







1
x1

...
xn




T

=




1 x1 x2 ... xn

x1 x2
1 x1x2 ... x1xn

x2 x1x2 x2
2 ... x2xn

... ... .... ... ....
xn x1xn x2xn .... x2

n



(36)
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M2(x) =




1
x1

...
xn

x2
1

x1x2

...
x1xn

x2
2

x2x3

...
x2

n







1
x1

...
xn

x2
1

x1x2

...
x1xn

x2
2

x2x3

...
x2

n




=




1 x1 .... xn x2
1 ... x2

n

x1 x2
1 .... x1xn x3

1 .... x1x
2
n

... ... ... ... ... ... ...
x2

n x1x
2
n ... x3

n x2
1x

2
n ... x4

n




and so all. Clearly, all moment matricesMi(x) are
positive semi-definite.
Accordingly, one can define

Mki(x) = gk(x)Mi(x) (37)

and Mki(y) are created fromMki(x) through the
variable change (35).

Theorem 3:Suppose that the setC defined by (33)
is compact.
Then the convex hull conv(C) of C can be analytically
described by LMIs with any prescribed toleranceε, i.e.
one can show a convex set convεC defined analytically
by LMIs and satisfying

conv(C) ⊂ convεC ⊂ conv(C) + εON , (38)

whereON is the unit ball inRN . One of such convex
set convεC is described by

convεC = Proj{y : MN̄ (y) ≥ 0, M`(N̄−1)(y) ≥ 0,

` = 1, 2, ..., L}
(39)

for someN̄ .

Proof: See the appendix III.
2

An immediate consequence of the above theorem is
the following result on solvability of BMIs, which
frequently arise in control synthesis (see e.g. [2]), by
SDPs.

Proposition 1: Suppose that the set

C = {x̃ = [x1 ... xn ] :
G`(x) ≥ 0, ` = 1, 2, ..., L} ⊂ Rn (40)

is compact, whereG`(x) ≥ 0 are BMIs in x, i.e. G`

admits the form

G`(x) = G`0 +
∑

i,j

xixjG`ij . (41)

Then the convex hull conv(C) of C can be analytically
described by SDPs with any prescribed toleranceε, i.e.
one can show a convex set convεC defined analytically
by SDPs and satisfying (38). Consequently, any BMI
optimization problem

min
x
〈c, x〉 : G`(x) ≥ 0, ` = 1, 2, ..., L (42)

can be solved by an SDP with any prescribed tolerance.

Proof: By the Sylvester’s criterion, the matrixG`(x)
is positive-semidefinite if and only if its determinant
and principle minors are nonnegative. Obviously, these
are polynomials inx and thus the constraintG`(x) ≥ 0
are equivalent to an analytically described polynomial
constraints and the above proposition is a direct conse-
quence of Theorem 3.

2

However, in sharp contrast to the one-dimensional
case, there is no closed form for predicting of the
highest orderN̄ of the moment matrices. Actually,̄N
is very potentially high. Even for moderatēN (so we
would have a relaxed problem) the resultant SDPs are
already very high dimensional and unlikely solved by
the existing SDP solvers. Some techniques handling
this issue has been initialled in [6].

V. CONCLUSIONS

The paper has cast a new design of all-pole analog
filter into a convex optimization problem, which is
based on a new version of FSBR lemmas. Our proposed
design is really practical and can be a more appropriate
alternative to the classical filters in some actual analog
filtering contexts. We have also developed a general
framework for SDP applications to multi-dimensional
problems and analysed some potential difficulties with
their practicability.

APPENDIX I: A N ELEMENTARY PROOF OF

MARKOV-LUCACS THEOREM

For convenience, we deal with polynomials that are non-negative
on [0,∞). One can turnf(t) non-negative on[a, b] into f̄(t) non-
negative on[0,∞) with the so-calledGoursat transform.

Definition 1: Given a polynomialf(t) of degreen and an
interval [a, b], the Goursat transform off on [a, b] is defined as
follows.

f̄(t) = (1 + t)nf
(

b + at

1 + t

)
. (43)

Lemma 1: (Variation of Goursat’s Lemma)f(t) is non-negative
on [a, b] if and only if f̄(t) is non-negative on[0,∞).

Proof. Note thatt ∈ [0,∞) implies b+at
1+t

∈ [a, b], hence the non-
negativity off on [a, b] implies the non-negativity of̄f on [0,∞).
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Conversely, supposēf is non-negative on[0,∞). For anyt ∈ (a, b]
we can write

f(t) = f

(
b + a b−t

t−a

1 + b−t
t−a

)
=

f̄
(

b−t
t−a

)
(
1 + b−t

t−a

)n ≥ 0

sincet ∈ (a, b] implies b−t
t−a

∈ [0,∞).
Lastly, f(a) ≥ 0 by continuity.2

Lemma 2: Any f̄(t), which is nonnegative in[0,∞), can be
written in the form

f̄(t)(t) = p2(t) + tq2(t), (44)

wherep(t) and q(t) are polynomials such that the degree of each
of p2(t) and tq2(t) is of the degree of̄f(t) at most.

Proof: Supposef1(t) = p2
1(t)+tq2

1(t), andf2(t) = p2
2(t)+tq2

2(t),
then

f1(t)f2(t) = (p2
1(t) + tq2

1(t))(p2
2(t) + tq2

2(t))
= (p1(t)p2(t) + tq1(t)q2(t))

2

+t(q1(t)p2(t)− p1(t)q2(t))
2.

Thus, if we can writef̄(t) as a product of non-trivial factors each
of which has the desired form, then̄f itself has the desired form
by induction.
Sincef̄(t) is non-negative on[0,∞), every positive root of̄f must
have even multiplicity. Hence, the factors corresponding to positive
roots have the formk2(t) for some polynomialk(t). Sincek2(t) =
k2(t) + t× 02, these factors have the right format.
The factors corresponding to non-positive roots have also the right
form: (t + c) =

√
c
2

+ t × 12. Also, the factors corresponding to
complex roots in conjugate pairs:

(t−c−id)(t−c+id) = (−
√

c2 + d2+t)2+t(

√
2
√

c2 + d2 − 2c)2

have the desired form. 2

We are now in position to prove the following version of the
original Markov-Lukacs theorem [8].

Lemma 3: Let f(t) be a polynomial of degreen which is non-
negative on[a, b]. Then,f(t) admits the following representation:

f(t) = (t− a)(p2
1(t) + p2

2(t)) + (b− t)(q2
1(t) + q2

2(t)) (45)

wherepi(t) andqi(t) are polynomials, and each of the four terms
(t− a)p2

i (t), (b− t)q2
i (t) has degreen at most.

Proof We have

f(t) = (t−a)n

(b−a)n f̄
(

b−t
t−a

)

= (t−a)n

(b−a)n

[
p2

(
b−t
t−a

)
+ b−t

t−a
q2

(
b−t
t−a

)]

which leads to the format

f(t) =

{
p2(t) + (b− t)(t− a)q2(t) n is even
(t− a)p2(t) + (b− t)q2(t) n is odd,

(46)

Clearly, for n odd, the format (46) is a particular case of (46).
But for n even, like [4, proof of Lemma 1] it can be immediately
checked that (46) gives

(b− a)f(t) = (t− a)f(t) + (b− t)f(t)
= (t− a)(p2(t) + (b− t)2q2(t))

+(b− t)(p2(t) + (t− a)2q2(t))

i.e. the format (45) again.
2

Proof of Markov Lukacs theorem: Clearly, (45) is a particular
case of (20). On the other hand, the RHS of (20) is a polynomial in
t, which is nonnegative on[a, b] so it must admit the representations
like (45). Therefore, (20) is equivalent to (45).

APPENDIX II: T HE PROOF OFTHEOREM 1
First, using the variable change (17) at both sides of (20), (21)

leads to the next lemma.

Lemma 4: If P (t) =

n∑
i=0

pit
i admits the representation (20)

for some matricesX ≥ 0, Z ≥ 0 then for every y =
[ y0 y1 · · · yn ]T ∈ Rn+1,

pT y = 〈X,M1[n/2](y)− aM[n/2](y)〉
+〈Z, bM[n/2](y)−M1[n/2](y)〉. (47)

If P (t) =

n∑
i=0

pit
i admits the representation (20) for some matrices

X ≥ 0, Z ≥ 0 then for everyy = [ y0 y1 · · · yn ]T ∈ Rn+1,

pT y = 〈X,M1[n/2](y)− aM[n/2](y)〉+ 〈Z,M[n/2](y)〉. (48)

Proof of Theorem 1. For the first part, the conic hull ofCa,b

is obviously characterised by LMIs (23) if we can show that the
convex hull ofCa,b is characterized by LMIs (23) andy0 = 1.
In what follows, setk = [n/2].
Suppose convCa,b is the set ofy with y0 = 1 satisfying LMIs (23),
which is obviously convex. ThenCa,b ⊂ convCa,b because each
y = [ 1 t · · · tn ]T ∈ Ca,b satisfies LMIs (23):

Mk(y) = Mk(t) ≥ 0,
bMk(y)−M1k(y) = (b− t)Mk(t) ≥ 0,
M1k(y)− aMk(y = (t− a)Mk(t) ≥ 0.

From the definition of the convex hull,

conv(Ca,b) ⊂ convCa,b

follows.
It remains to show

convCa,b ⊂ conv(Ca,b).

For that, let the support function [15] for anyA ⊂ Rn+1 be defined
as

s(A,p) = sup
y∈A

〈y,p〉 ∀p ∈ Rn+1.

So

s(Ca,b,p)−
n∑

i=0

pit
i ≥ 0 ∀ t ∈ [a, b]

and according to Markov Lukacs theorem for eachp there are
Xp ≥ 0 andZp ≥ 0 such that

s(Ca,b,p)−
n∑

i=0

pit
i = (t−a)〈Xp, Mk(t)〉+(b− t)〈Zp, Mk(t)〉.

By Lemma 4, it is then true that whenevery = (1, y1, ..., yn)T ∈
convCa,b (i.e. y satisfies LMIs (23))

s(Ca,b,p)−
n∑

i=0

yipi = 〈Xp,M1k(y)− aMk(y)〉

+〈Zp, bMk(y)−M1k(y)〉
≥ 0

implying s(Ca,b,p) ≥ s(convCa,b,p) ∀ p ∈ Rn+1 or equivalently
convCa,b ⊂ conv(Ca,b) [15].
The proof for the second part is similar.

Remark. As mentioned in the Remark after Theorem 1, when
n is even, M1[n/2](y) depends on(y0, y1, ..., yn+1) and the
representation (20) implies (47) for all(y0, y1, ..., yn+1).



8

APPENDIX III: THE PROOF FORTHEOREM 3

For any+∞ > |Ck| := maxx̃∈Ck ||x̃||, it is obvious thatCk ⊂
|Ck|.ON .
Take µ := ε/4|Ck| and let{p(i) : p(i) ∈ RN , ||p(i)|| = 1, i =
1, 2, ..., N̄} be anyµ-net of the unit ball inRN , i.e. for any||p|| = 1
there ispi such that

||p− p(i)|| ≤ µ. (49)

It follows from [13] that there areU (i) ≥ 0 and V (i`) ≥ 0 such
that

s(Ck, p(i))− 〈p(i), x̃〉+ ε/2 =

〈U (i), MN̄ (x)〉+

L∑
`=1

〈V (i`), M`(N̄−1)(x)〉, (50)

whereM`(N̄−1)(x) = g`(x)MN̄−1 for someN̄ < +∞.
Therefore, for〈p(i), y〉 defined from〈p(i), x̃〉 by the variable change
(35) one has

s(Ck, p(i))− 〈p(i), y〉+ ε/2 =

〈U (i), MN̄ (y)〉+

L∑
`=1

〈V (i`), M`(N̄−1)(y)〉.

Now, for

convεCk := ProjRN {y : MN̄ (y) ≥ 0, M`(N̄−1)(y) ≥ 0}∩|Ck|.ON

(51)
one has

s(Ck, p(i))− 〈p(i), ȳ〉+ ε/2 = s(Ck, p(i))− 〈p(i), y〉+ ε/2 ≥ 0
∀ ȳ ∈ convεCk.

(52)
Then for eachp ∈ ON there isp(i) ∈ ON satisfying (49), so
wheneverȳ ∈ convεCk,

s(Ck + εON , p)− 〈p, ȳ〉 =

s(Ck, p)− 〈p, ȳ〉+ ε =

(s(Ck, p)− s(Ck, p(i))) + (s(Ck, p(i))− 〈p(i), ȳ〉)
+(〈p(i), ȳ〉 − 〈p, ȳ〉) + ε ≥

−2µ|Ck|+ c(Ck, p(i))− 〈p(i), ȳ〉+ ε =

c(Ck, p(i))− 〈p(i), ȳ〉+ ε/2 ≥ 0

implying convεCk ⊂ conv(Ck) + ε.ON , showing (38).
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