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A stable recursive state estimation filter for models with

nonlinear dynamics subject to bounded disturbances

Y. Becis-Aubry, M. Boutayeb and M. Darouach

Abstract

This contribution proposes a recursive and easily implementable online algorithm for state estimation of multi-output discrete-time
systems with nonlinear dynamics and linear measurements in presence of unknown but bounded disturbances corrupting both the state and
measurement equations. The proposed algorithm is based on state bounding techniques and is decomposed into two steps : time update and
observation update that uses a switching estimation Kalman-like gain matrix. Particular emphasis is given to the design of a weighting factor
that ensures consistency of the estimated state vectors with the input-output data and the noise constraints and that guarantees the stability
of the algorithm.

Introduction

State estimation of stochastic dynamical systems has been extensively studied during the last decades and the problem
is usually solved by assuming white and Gaussian noises on model and measurements (Kalman filter). However, when
the statistical properties of the noises are unknown or not satisfied, an alternative approach consists in considering that
only bounds on the possible magnitude of the disturbances are available, the so-called set-membership estimation was
first introduced by Schweppe [1] using ellipsoidal bounding techniques. The aim is to determine a set of state estimate
vectors compatible with the bounds on the process disturbance and measurement noise. Since these pioneer works, a
vast literature is dedicated to this subject in the context of state estimation of linear systems [2], [3], [4], [5], [6]. Some
interesting algorithms have been developed for nonlinear models like most of real-life problems : [7], [8], [9] [10], but
very few in the ellipsoidal context. The technique used here has also been developed for the identification of nonlinear
MIMO models [11] and the state estimation of linear models [12].

The goal of this paper is to outline a recursive algorithm for state estimation of discrete-time systems with nonlinear
dynamics and linear measurements in presence of unknown but bounded disturbances corrupting both the state and
measurement vectors.

The paper is organized as follows. In the first section, the problem is formulated and the aims of the designed
algorithm are set out. Then the two stages of the algorithm are detailed successively : the second section presents the
time update step that computes the predicted estimate and the predicted ellipsoid containing all possible values of the
state ; the third section details the observation update step which uses a switching estimation Kalman-like gain matrix
with a weighting parameter that ensures consistency of the estimated state vectors with the input-output data and the
noise constraints. In the forth section, some properties of the algorithm are established, especially, those expressed in
the aims and the Input to State stability is proved. Finally, the effectiveness of the developed algorithm is demonstrated
through a numerical example.determine a progression law for the ellipsoid Ek := E(x̂k, σ2

kPk)
Notations : (i) For a square matrix M , M ≻ 0s×n (resp. M � 0s×n) means that M ∈ IRs×n is symmetric and positive
definite (resp. semidefinite) ; (ii) E(c, P ):={x ∈ IRs|(x − c)T P−1(x − c) ≤ 1} is an ellipsoid in IRs (s ∈ IN∗), where
c ∈ IRs is its center and P ∈ IRs×s is a symmetric positive definite matrix that defines its shape, size and orientation
in the IRs space ; (iii) ‖x‖ = (xT x)

1
2 is the Euclidean norm of the vector x and ‖x‖W = (xT Wx)

1
2 is its weighted

Euclidean norm (W ≻ 0 of appropriate dimension) ; (iv) 0n×m denotes a zero matrix of IRn×m and 0 denotes a zero
vector of appropriate dimension ; (v) λi(M) denotes the itheigenvalue of a square matrix M , tr(M) =

∑
i λi(M) is its

trace and det(M) =
∏

i λi(M) is its determinant ; (vi) the symbol := means that the RHS is defined to be equal to the
LHS.

I. Problem formulation

Let us consider the following discrete-time system written in the state space :

x∗

k = ϕ(x∗

k−1
,uk−1) + wk−1 (1a)

yk = Fkx∗

k + vk (1b)

where x∗

k ∈ IRn is the unknown state vector to be estimated ; uk ∈ IRm is the control input vector ; yk ∈ IRp (p < n) is
a measurable system output vector ; Fk ∈ IRp×n is the output matrix of full row rank and wk ∈ IRn and vk ∈ IRp are
unobservable bounded noise vectors with unknown statistical characteristics that may include modeling inaccuracies,

Y. Becis-Aubry is with Université d’Orléans, LVR UPRES-A 7038. 63 av. de Lattre de Tassigny 18000 Bourges, FRANCE.
Yasmina.Becis@bourges.univ-orleans.fr

M. Boutayeb is with Université Louis Pasteur - Strasbourg 1, LSIIT - CNRS. Bd Sébastien Brant Illkirch, 67400 Strasbourg FRANCE.
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discretization errors or computer round-off errors. vk can represent the measurement noise and wk−1 can be viewed as
unknown but bounded inputs. The only properties verified by vk and wk−1 are

wk ∈ E(0,Wk) ⇔ wk
T W−1

k wk ≤ 1,∀k ∈ IN∗ (2a)

vk ∈ E(0, Vk) ⇔ vk
T V −1

k vk ≤ 1,∀k ∈ IN∗.r (2b)

The function ϕk : IRn −→ IRn, x 7−→ ϕk(x) := ϕ(x,uk) is bijective, of class C1 and, for all k ∈ IN∗ and for all admissible
input vector uk, its Jacobian matrix is bounded on E(x̂k, σ2

kPk), the ellipsoid containing all presumed values of the true
state vector x∗

k, where the center of the ellipsoid x̂k ∈ IRn is the estimate of x∗

k, σk > 0, Pk ≻ 0n×n.
Our aim in the sequel is to design an estimation algorithm for the system (1), that is a progression law for the ellipsoid

Ek := E(x̂k, σ2
kPk), in light of the current measurements and noise constraints, such that

(i) a set that contains all possible values of the true state vector x∗

k is quantified at each time step k ;
(ii) the (a posteriori) output error vector yk − Fkx̂k is acceptable, i.e., it remains in the interior of the ellipsoid (2b)
enclosing all possible values of the disturbance vectors vk, i.e.

(yk − Fkx̂k)T V −1
k (yk − Fkx̂k) ≤ 1, ∀k ∈ IN∗ ; (3)

(iii) the estimator is input-to-sate stable (ISS).
Since there is not any information about the measurement noise vector vk, except the fact that (vk = yk − Fkx∗

k) ∈
E(0, Vk), the best state estimate is each one for which the output error is acceptable, that is, (yk − Fkx̂k) ∈ E(0, Vk).

It is assumed that the state vector x∗

k belongs to a known ellipsoid E(x̂0, σ2
0P0), where x̂0 is the initial estimate of

x∗

0
, P0 ≻ 0 and σ0 > 0.

II. Time update

At this stage, we compute, at each time step k, the ellipsoid Ek/k−1 containing the “reach set” from Ek−1 of the current
state vector x∗

k, that evolves obeying to the plant dynamics described by (1a) and affected by the unknown noise vector
wk−1 : Ek/k−1 ⊇ {z ∈ IRn| z = ϕk−1(x) + w,x ∈ Ek−1, w ∈ E(0,Wk−1)}.This is done by performing the vector sum
of the ellipsoid E(0,Wk−1) and a linear transformation of Ek−1.

Lemma 1: Let x∗

k−1
∈ Ek−1 obeying to (1a) and (2a) ; if

x̂k/k−1 = ϕk−1(x̂k−1), (4a)

Pk/k−1 =
1

1 − ρ
(Φ̂k−1 + ∆k−1)

T Pk−1(Φ̂k−1 + ∆k−1 +
1

ρσ2
k−1

Wk−1, (4b)

σ2
k/k−1 = σ2

k−1 ; (4c)

where ∀ξ ∈ IRn,Φk(ξ) := Φ(ξ,uk) =
∂ϕ(x,uk)

∂x

∣∣∣∣
x=ξ

and Φ̂k := Φk(x̂k) and where ∆k ∈ IRn×n is such that

∆k + Φ̂k − Φk(ξ) � 0n×n, ∀ξ ∈ Ek−1 (5)

then

∀ρ ∈]0, 1[, x∗

k ∈ E(x̂k/k−1, σ
2
k/k−1Pk/k−1) =: Ek/k−1. (6)

❑
Proof. cf. the appendix. ■

The optimal value of ρ is the one that minimizes, at each step k, either the squared volume of the ellipsoid Ek/k−1,
i.e.,ρ = ρ⋆

k = arg min(σ2n
k−1 det Pk/k−1) or the sum of the squared lengths of its axes, i.e., ρ = ρ⋄k = arg min(σk−1 trPk/k−1).

These values and the methods of their obtention are given in details in [5].

III. Observation update

The observation equation (1b) and the inequality (2b) define an other bounding set for the vector x∗

k
1. Indeed,

it is clear that x∗

k ∈ Sk, where Sk :=
{
x ∈ IRn| (yk − Fkx)T V −1

k (yk − Fkx) ≤ 1
}
. Thus, it remains to perform, at

each iteration, the intersection between the ellipsoid Ek/k−1 (obtained in the previous section) and the set Sk. This
intersection does not result, in general, in an ellipsoid and has to be circumscribed by an ellipsoid :

Lemma 2: If

x̂k = x̂k/k−1 + Kkδk, (7a)

Pk = (In − KkFk) Pk/k−1, (7b)

σ2
k = σ2

k/k−1 + ω
(
1−δT

k (ωFkPk/k−1F
T
k + Vk)−1δk

)
(7c)

where the gain matrix and the innovation are given by :

1The observation update stage of this algorithm is identical to that of the state estimation algorithm for linear systems [12].



Kk = ωPk/k−1F
T
k

(
ωFkPk/k−1F

T
k + Vk

)−1
, (7d)

δk = yk − Fkx̂k/k−1 ; (7e)

then ∀ω ∈ IR+,
(
Ek/k−1 ∩ Sk

)
⊆ E(x̂k, σ2

kPk) = Ek. ❑
Now, we are interested in the derivation of the “optimal” value of ω with respect to a criterion to be chosen. Contrary

to some algorithms of the literature [5], [6] that minimize the size of the ellipsoid E(x̂k, σ2
kPk), the optimal value of ω

chosen here is the one that guarantees the stability of the algorithm given by the equations (4) and (7).
Lemma 3: The solution of min

ω∈IR+

max
vk∈E(0,Vk)

V
∗−V

∗
− , where V ∗

k = (x∗

k−x̂k)T P−1
k (x∗

k−x̂k), is the solution of min
ω∈IR+

σ2
k,

which is ω∗
k =

{
0 if ‖δk‖V −1

k

≤ 1,

̟k otherwise ;
where (the statements i and ii are equivalent)

i. ̟k is the unique real positive solution of the equation β

p∑

i=1

α2
i

(γiω + 1)
2 = 1 in the unknown ω,

where αi = αki
=

uki

T V̄kδk

‖δk‖V −1

k

, β = βk = ‖δk‖
2
V −1

k

, γi = γki
∈ IR+, satisfying det

(
FkPk/k−1F

T
k − γki

Vk

)
= 0, uki

∈ IRp

are such that V̄kFkPk/k−1F
T
k V̄ T

k uki
= γiuki

(i ∈ {1, 2, . . . , p}) and where V̄k satisfies V̄ T
k V̄k = V −1

k (e.g . V̄k = V
− 1

2

k ).

ii. ̟k is the unique real positive eigenvalue of the matrix Ξk ∈ IR2p×2p :

Ξk =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−

ξk0

ξk2p

−
ξk1

ξk2p

−
ξk2

ξk2p

· · · −
ξk2p−1

ξk2p




(8)

where ξki
, i ∈ {0, . . . , 2p}, are the components of the row-vector ξk =

p∑

i=1

α2
ki

qk1
∗ (qk2

· · · ∗ (qki−1
∗ ((qki

− dk)

∗(qki+1
· · · ∗ (qkp−1

∗ qkp
))))), qki

= (γki
1) ∗ (γki

1) =
(
γ2

ki
2γki

1
)
, dk = (0 0 βk), ∗ is the convolution operator2.❑

IV. Algorithm’s properties and stability analysis

In this section, we show that the proposed algorithm with ω = ω∗
k computed by the aid of Lemma 3 fulfills the

expectations i–iii expressed in the section I.
Definition 1 ([13]) The system zk = f(zk−1,uk−1) is input-to-state stable (ISS) if there exist a K L -function3µ :

IR+ × IR+ −→ IR+ and a K -function χ : IR+ −→ IR+ such that, for each bounded input uk, it holds that
‖zk‖ ≤ µ(‖z0‖ , k) + χ(‖u‖).

Theorem 1: Consider the state estimation algorithm (4) (where ρ = ρk−1) and (7) for the model (1a). The following
propositions are true for all k ∈ IN∗ and for all 0 < ρ < 1
i. if x∗

0
∈ E0 then x∗

k ∈ Ek for all ω ∈ IR+ ;
Furthermore, if ω = ω∗

k, we have the following properties
ii. the sequence (σk)k∈IN∗ – which represents an upper bound on the weighted norm of the estimation error vector∥∥x∗

k − x̂k

∥∥
P−1

k

– is decreasing and convergent on IR+ ;

iii. the a posteriori output error vector is always acceptable, i.e., ‖yk − Fkx̂k‖V −1

k

≤ 1.

Moreover, if there exists positive reals a1, a2, b1 and b2 such that the following inequalities hold for a finite m ∈ IN∗ and
for all k ∈ IN :

a1In ≥
∑k+m−1

i=k Φ̃k+m,i+1WiΦ̃
T
k+m,i+1 ≥ a2In (9)

b1In ≤
∑k+sk(m)

i=k Φ̃T
i,k+sk(m)F

T
i ViFiΦ̃i,k+sk(m) ≤ b2In (10)

where

Φ̃k+j,k = Φ̃k+j,k+j−1Φ̃k+j−1,k+j−2 · · · Φ̃k+1,k, (11)

Φ̃k+1,k = Φ̂k, Φ̃k,k+j = Φ̃−1
k+j,k, and Φ̃k,k = In (12)

2If x = (xr · · ·x0) and y = (ys · · · y0), then (assuming that r ≤ s) z = x ∗ y = (zr+s zr+s−1 · · · z0) where zj =
Pj

i=0 xiyj−i if
j ≤ min(r, s) = r and zj =

Pr
i=0 xiyj−i otherwise

3a function χ IR+ −→ IR+: is a K -function if it is continuous, strictly increasing and χ(0) = 0; a function µ : IR+ × IR+ −→ IR+ is a
K L -function if, for each fixed t0 ≥ 0, the function µ(s, t0) is a K -function, and for each fixed s0 ≥ 0, the function µ(s0, t) is decreasing and
µ(s, t) → 0 as t → 1.



and sk(m) is such that4

CardN (ω∗
k, ω∗

k+1, . . . , ω
∗
k+sk(m)−1) = m ∀k, s ∈ IN∗,N (ω∗

k, . . . , ω∗
k+s−1) := {i ∈ IN∗|k ≤ i < k + s, ω∗

i > 0} (13)

then
iv. the sequences (ω∗

k)k∈IN∗ ,
(
x̂k − x̂k/k−1

)
k∈IN∗

and
(
Pk − Pk/k−1

)
k∈IN∗

are convergent in IR+, IRn and IRn×n respec-

tively, with lim
k−→∞

ω∗
k = 0, lim

k→∞
x̂k − x̂k/k−1 = 0 and lim

k→∞
Pk − Pk/k−1 = 0n×n ;

v. the innovation vector tends to the interior of the ellipsoid E(0, Vk), i.e., ∀ε > 0,∃k∞ ∈ IN∗,∀k > k∞, δT
k V −1

k δk < 1+ε ;
vi. the volume and all the axes’ lengths of E(x̂k, σ2

kPk) are bounded for all k ∈ IN∗ ;
vii. the estimation error dynamic system of state vector x̃k = x∗

k − x̂k is ISS. ❑
Remark 1: It is worth to mention that if wk = 0, the ISS-Lyapunov function becomes a decreasing Lyapunov function

for the estimation error, and the presented algorithm (in which Pk/k−1 = Φ̂T
k Pk−1Φ̂k) is an asymptotic state estimator

for the system (1a) (with wk=0) and this in spite of the presence of measurement noise vk and the nonlinearity.

V. Application to an induction motor

The presented algorithm is applied to a fifth-order two-phase nonlinear model of an induction motor which was already
the subject of a large number of applications, especially in control designs (see [14]).

Using an Euler discretization of step size h and adding the disturbance vectors wk and vk, the complete discrete-time
model in stator fixed (a, b) reference frame is given by :

x∗
1k+1

= x∗
1k

+ h(−gx∗
1k

+
K

Tr
x∗

3k
+ Kpx∗

5k
x∗

4k
+

1

sLs
u1k

) + w1k

x∗
2k+1

= x∗
2k

+ h(−gx∗
2k

− Kpx∗
5k

x∗
3k

+
K

Tr
x∗

4k
+

1

sLs
u2k

) + w2k

x∗
3k+1

= x∗
3k

+ h(
M

Tr
x∗

1k
−

1

Tr
x∗

3k
− px∗

5k
x∗

4k
) + w3k

x∗
4k+1

= x∗
4k

+ h(
M

Tr
x∗

2k
+ px∗

5k
x∗

3k
−

1

Tr
x∗

4k
) + w4k

x∗
5k+1

= x∗
5k

+ h(
pM

JLr
(x∗

3k
x∗

2k
− x∗

4k
x∗

1k
) −

TL

J
) + w5k

y1k
= x∗

1k
+ v1k

, y2k
= x∗

2k
+ v2k

Simulations are performed using the same numerical values as in [14]. The input signals are : u1k
= 325 cos(0.03k)

and u2k
= 325 sin(0.003k). The noises vectors wk−1 and vk verify (2), where Wk−1 = 0.052 diag

i∈{1,...,5}

(x2
ik−1

) and

Vk = 0.052 diag
j∈{1,2}

(y2
jk

). The parameter ρk is chosen such that the trace of the matrix σ2
k/k−1Pk/k−1 is minimized at each

iteration ; and the weighting matrix ∆k is chosen as follows :

∆k =





10−3
(
‖δk‖V −1

k

− 1
)

‖δk‖V −1

k

I5, if ‖δk‖V −1

k

> 1,

∆k−1, otherwise.

,

where δk = yk − Fkx̂k/k−1 and ∆0 = 10−3I5. The initial conditions are : x̂0 = (200 200 50 50 300)
T
, P0 = 7 · 106I5

and σ2
0 = 0.1 while the true initial state vector is : x∗

0 = 10−3(1 1 1 1 1)T . Because of important initial errors, and with
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Fig. 1. Simulation results : estimated and true state components and error norm.

a view of precision, the first 5 samples were skipped from all the figures. This fact demonstrates that the estimation
error decreases sharply soon after the first iterations.

4In the sequence
n

ω∗

k
, ω∗

k+1, . . . , ω∗

i , . . . , ω∗

k+sk(m)−1

o

of length sk(m), there must be exactly m times ω∗

i 6= 0 (i.e. ‖δi‖V
−1

k

> 1) and the

rest sk(m) − m of ω∗

i are zero.
Card S is the cardinal of the set S = {s1, . . . , sm} and is equal to the finite number m of its elements.
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Fig. 2. Simulation results : measures of E(x̂k , σ2
k
Pk) and weighted output and estimation error norms.

The figures show the satisfying performances of the proposed observer to track the true state with unknown bounded
noises, without the need for rotor speed measurement and even with bad initialisations. Indeed,

• the assertion
(
x∗

k − x̂k

)T (
σ2

kPk

)−1 (
x∗

k − x̂k

)
< 1 shown in the figure 2(d) guarantees that the statement

x∗

k ∈ E(x̂k, σ2
kPk) is always verified : the aim i of Section I is fulfilled ;

• the (a posteriori) output error is always in the interior of the noise ellipsoid E(0, Vk) : the aim ii is fulfilled (cf. fig.
2(c)) ;
• the estimation error norm is significantly decreasing in the first samplings and remains small during all the simulation
horizon ;
• the volume and the sum of the squared axes’ lengths are roughly decreasing ;
• the observation updating is performed in 53% of samples, i.e., among the 2500 samples of the simulation, ωk = 0 for
1173 of them ; this is why this algorithm is fast.

VI. Conclusion

A recursive state bounding technique for systems with nonlinear dynamics has been presented. An ellipsoid that
encloses all the possible values of the state vector and which is compatible with the bounds of the noises and the
linearization errors was determined at each sampling time. As the Kalman filter, the algorithm has been decomposed
into time update and observation update steps. During the time update stage, an ellipsoid that encloses the vector sum
of two ellipsoids, one containing the “predicted” state vector x̂k/k−1 of the previous sampling time and the other, the
process noises. During the observation update step the set of state vector compatible with the current measure and the
noise bound is isolated. The observation update stage may seem to entail heavy computations, but these operations are
skipped as soon as the a priori output error is acceptable, that is, when (yk − Fkx̂k/k−1) ∈ E(0, Vk), which happens
often and which makes the algorithm faster.

Appendix

I. Proofs

Proof of the lemma 1. First, the following proposition is proved :
Proposition 1: There exists a bounded matrix ∆k ∈ IRn×n satisfying (5) such that for all x ∈ Ek,

ϕk(x) ∈ E
(
ϕk(x̂k), σ2

k(Φ̂k + ∆k)Pk(Φ̂k + ∆k)T
)
. ❑

The existence of such a bounded matrix ∆k is guaranteed by the boundedness of the ellipsoid Ek (and thus of Pk) which
will be proved later.

Let φ : [0, 1] −→ IRn, τ 7−→ φ(τ) = ϕk(x̂k + τ(x − x̂k)) ; when τ ∈ [0, 1], x̂k + τ(x − x̂k) ∈ [x, x̂k]5. its derivative :
φ̇(τ) = Φk(x̂k + τ(x − x̂k)) · (x − x̂k).

∃θ ∈]0, 1[, φ(1) − φ(0) =

∫ 1

0

φ̇(τ) dτ = φ̇(θ), so for this θ, ϕk(x) = ϕk(x̂k) + Φk(x̂k + θ(x − x̂k))(x − x̂k). Let

ξ := x̂k + θ(x − x̂k), the latest can be rewritten as :

∃ξ ∈]x, x̂k[, ϕk(x) = ϕk(x̂k) + Φk(ξ)(x − x̂k). (14)

Since x̂k ∈ Ek and an ellipsoid is a convex set,

x ∈ Ek ⇒]x, x̂k[⊂ Ek ⇒ ξ ∈ Ek. (15)

As ϕk is bijective, Φk(ξ) is invertible ; then, using (14), it comes that

x ∈ Ek⇔(x−x̂k)TΦk(ξ)T
(
Φk(ξ)TPkΦk(ξ)

)−1
Φk(ξ)(x−x̂k)≤σ2

k

⇔ (ϕk(x) − ϕk(x̂k))T
(
Φ̂k(ξ)T PkΦ̂k(ξ)

)−1

(ϕk(x) − ϕk(x̂k)) ≤ σ2
k. (16)

5a vector interval [a, b] is defined as follows[a, b] := {c ∈ IRn| c = (1 − θ)a + θb, θ ∈ [0, 1]}



The inequality (5) means that ∀ξ ∈ Ek,
(
(∆k + Φ̂k)T Pk(∆k + Φ̂k)

)−1

�
(
Φk(ξ)T PkΦk(ξ)

)−1
; thus (15), (16) and the

latest inequality lead to

x ∈ Ek ⇒ (ϕk(x)−ϕk(x̂k))T
(
(Φ̂k+∆k)TPk(Φ̂k+∆k)

)−1

(ϕk(x) − ϕk(x̂k)) ≤ σ2
k, (17)

this proves the Proposition 1. Now, it only remains to determine the ellipsoid that contains the sum of two ellipsoids :
Proposition 2 ([15]) Let P1, P2 ∈ IRs×s P1, P2 ≻ 0 and let c1, c2 ∈ IRs be two vectors ; let

E(c1, P1)⊕E(c2, P2) := {x ∈ IRs|x = x1+x2,x1 ∈ E(c1, P1), x2 ∈ E(c2, P2)} and let c∗ = c1+c2 and P ∗ = 1
µP1+ 1

1−µP2

(for any given 0 < µ < 1) ; then ∀µ ∈]0, 1[, E(c1, P1) ⊕ E(c2, P2) ⊆ E(c∗, P ∗). ❑
This proposition is applied to the ellipsoids (17) and E(0,Wk), it can be deduced that for all

ρ ∈]0, 1[, (ϕk(x)−ϕk(x̂k) + wk)T
(

σ2
k

1−ρ (Φ̂k + ∆k)T Pk(Φ̂k + ∆k) + 1
ρWk

)
(ϕk(x)−ϕk(x̂k) + wk) ≤ 1 and the Lemma

1 is proved.

Proof of the lemma 2. Using (7b) and (7d) and after some linear manipulations, we obtain :

Kk = ωPkFT
k V −1

k (18)

P−1
k = P−1

k/k−1 + ωFT
k V −1

k Fk (19)

(19) shows that Pk ≻ 0n×n (since Pk/k−1 ≻ 0n×n). Substituting (18) in (7a) yields x̂k = x̂k/k−1 + ωPkFT
k V −1

k δk.

Letting Vk := (x− x̂k)T P−1
k (x− x̂k) and Vk/k−1 := (x− x̂k/k−1)T P−1

k/k−1(x− x̂k/k−1), the use of (7a), (7b), (19) and

(7d) and some routine algebra leads to

Vk = Vk/k−1 − ωδk
T
(
ωFkPk/k−1F

T
k + Vk

)−1
δk + ω (yk − Fkx)

T
V −1

k (yk − Fkx) , ∀x ∈ IRn. (20)

By the aid of (7c) and (20), we can see that, for any ω ∈ IR+, on the one hand

x ∈ Ek ⇔ Vk/k−1 + ω (yk − Fkx)
T

V −1
k (yk − Fkx) ≤ σ2

k/k−1 + ω, On the other hand, it is obvious that

x ∈
(
Ek/k−1 ∩ Sk

)
⇒ Vk/k−1 + ω (yk − Fkx)

T
V −1

k (yk − Fkx) ≤ σ2
k/k−1 + ω, thus

∀x ∈ IR, x ∈
(
Ek/k−1 ∩ Sk

)
⇒ x ∈ Ek.

Proof of the lemma 3. To prove the first point of this lemma we need first to state the following proposition :

Proposition 3: The function Fα,β,γ : IR+ −→ IR, Fα,β,γ(ω) = ω − ωβ
∑

=

α

γω +
has a global minimum on IR+

for ω = ω∗ such that ω∗ =

{
̟ if β > 1,

0 otherwise ;
where α = (α1 α2 · · ·αp), αi ∈ IR such that

p∑

i=1

α2
i = 1; β ∈ IR+;

γ = (γ1 γ2 · · · γp), γi ∈ IR∗
+; and ̟ is the unique real positive solution of the equation β

p∑

i=1

α2
i

(γiω + 1)
2 = 1. ❑

Proof. (i) Ḟα,β,γ(ω) = 1 − β

p∑

i=1

α2
i

(γiω + 1)2
is strictly increasing on IR+. (ii)

p∑

i=1

α2
i

(γiω + 1)2
< 1 for all ω > 0.

(iii) From (i) and (ii), it comes that the equation Ḟα,β,γ(ω) = 0 has one and only one real strictly positive solution if

and only if β > 1 ; and if 0 < β ≤ 1, Ḟα,β,γ(ω) > 0 which means that Fα,β,γ is increasing.

(iv)
d2

dω2
Fα,β,γ(ω∗) = β

∑

=

γα

(γω + )
> , ∀ω ∈ IR∗

+. Finally, from (iii) and (iv), ω∗ = arg
(
minω∈IR+

Fα,β,γ(ω)
)

and

the result follows : β

p∑

i=1

α2
i

(γiω∗ + 1)
2 = 1, if β > 1, ω∗ = min

ω≥0
ω ⇔ ω∗ = 0, otherwise. ■

Proof of the Lemma 3. Using (20) and (1b), we can write

V
∗
k = V

∗
k/k−1 − ωδk

T
(
ωFkPk/k−1F

T
k + Vk

)−1
δk + ωvk

T V −1
k vk. (21)

Let Xk = V̄kFkPk−1F
T
k V̄ T

k and δ̄k = V̄kδk. By the aid of (2b) and (21) it holds that

max
vk∈E(0,Vk)

V
∗
k = V

∗
k/k−1 − ωδ̄k

T
(ωXk + Ip)

−1
δ̄k + ω. (22)

From (7c), we have

σ2
k − σ2

k−1 = ω − ωδ̄k
T

(ωXk + Ip)
−1

δ̄k (23)



Thus (22) and (23) lead to

arg min
ω>0

max
vk∈E(0,Vk)

(
V

∗ − V
∗
−

)
= arg min

ω>0
σ2

k. (24)

As Xk is symmetric, there exists Uk = (uk1
uk2

. . . ukp
) ∈ IRp×p such that UkUT

k = Ip, UT
k XkUk is diagonal and

Xkuki
= γki

uki
for all i ∈ {1, . . . , p}, where γki

and uki
are the ith eigenvalue and the associated eigenvector of Xk. It

is obvious that uki

T (ω∗
kXk + Ip)

−1
uki

=
1

(ω∗
kγki

+ 1)
, thus (23) becomes

σ2
k − σ2

k−1 = ω − ωδ̄k
T
UkUT

k (ωXk + Ip)
−1

UkUT
k δ̄k

= σ2
k−1 + ω

(
1 −

p∑

i=1

(
uki

T δ̄k

)2

ωγki
+ 1

)

= ω

(
1 − βk

p∑

i=1

α2
ki

ωγki
+ 1

)
. (25)

(i) as Pk−1 ≻ 0n×n, as V̄k is non singular and as Fk is a full row rank matrix, Xk ≻ 0p×p so γki
> 0, ∀i ∈ {1, . . . , p} ;

(ii) as

p∑

i=1

(
uki

T δ̄k

)2
= δ̄k

T
UkUT

k δ̄k =
∥∥δ̄k

∥∥2
, we have

p∑

i=1

α2
ki

=

∑p
i=1

(
uki

T δ̄k

)2
∥∥δ̄k

∥∥2 = 1 ; (iii) βk =
∥∥δ̄k

∥∥2
≥ 0.

Consequently, the function Fα,β,γ (cf. Proposition 3) can be used to rewrite (25) as σ2
k = σ2

k−1 + Fα,β,γ (ω) ; and it
is clear that

ω∗
k = arg

(
min
ω≥0

σ2
k

)
= arg

(
min
ω≥0

Fα,β,γ (ω)

)
.

Finally the Proposition 3 is used to deduce the value of ω∗
k and the point i is proved.

Now, the proof of the point ii is straightforward by considering the previous point and the fact that the roots of a
polynomial are the eigenvalues of its companion matrix.

Proof of the theorem 1.
i. Let x∗

k−1
∈ E(x̂k−1, σ2

k−1Pk−1). The use of the Lemma 1 gives(
x∗

k−1
∈ Ek−1 ⇔ V ∗

k−1 ≤ σ2
k−1

)
⇒
(
x∗

k ∈ Ek/k−1 ⇔ V ∗
k/k−1 ≤ σ2

k/k−1

)
;

recalling that Xk = V̄kFkPk−1F
T
k V̄ T

k , δ̄k = V̄kδk and V̄ T
k V̄k = V −1

k , (22) with (7c) yield to

V ∗
k ≤ σ2

k/k−1 − ωδ̄k
T

(ωXk + Ip)
−1

δ̄k + ω = σ2
k ⇔ x∗

k ∈ Ek.

Consequently
(
x∗

0
∈ E0 ⇔ V ∗

0 ≤ σ2
0

)
⇒
(
V ∗

1 ≤ σ2
1 ⇔ x∗

k ∈ E1

)
. . . ⇒

(
x∗

k−1
∈ Ek−1

)
⇒
(
x∗

k ∈ Ek

)
.

ii. Consider σ2
k defined in (7c) and (4c) with ω = ω∗

k given by the lemma 3. σ2
k = σ2

k−1, if ‖δk‖V −1

k

≤ 1 and

σ2
k = σ2

k−1 +̟k

(
1 − βk

p∑

i=1

α2
ki

̟kγki
+ 1

)
, otherwise ; where αki

, βk, γki
and ̟k are defined in Lemma 3. As γki

̟k > 0,

the following inequality is true : βk

p∑

i=1

α2
ki

̟kγki
+ 1

> βk

p∑

i=1

α2
ki

(̟kγki
+ 1)

2 = 1. Thus we obtain σ2
k = σ2

k−1 if ‖δk‖V −1

k

≤ 1

and σ2
k < σ2

k−1 otherwise ; this means that the sequence
(
σ2

k

)
k∈IN∗

is decreasing, and since it is bounded below by 0, it
is convergent on IR+. This proves the point ii. of the Theorem 1.
iii. The use of (7a), (7b), (7d), (7e) and after some manipulations, the a posteriori output error can be rewritten as

yk − Fkx̂k =
(
Ip + ω∗

kFkPk/k−1F
T
k V −1

k

)−1
δk, (26)

the weighted norm (by V −1
k ) of which becomes, via some transformations,

(yk − Fkx̂k)
T

V −1
k (yk − Fkx̂k) = δ̄k

T
(Ip + ω∗

kXk)
−2

δ̄k = βk

p∑

i=1

α2
ki

(ω∗
kγki

+ 1)
2 =

{
1 if ‖δk‖V −1

k

> 1,

‖δk‖
2
V −1

k

(≤ 1) otherwise ;

iv. Let ς̃k(ω) := σ2
k − σ2

k−1. Using the fact that δ̄k
T

(ω∗
kXk + Ip)

−1
δ̄k = βk

p∑

i=1

α2
ki

ω∗
kγki

+ 1
, the point ii. allows to write

ς̃k(ω∗
k) = ω∗

k

(
1 − δ̄k

T
(ω∗

kXk + Ip)
−1

δ̄k

)
. Since the sequence

(
σ2

k(ω∗
k)
)
k∈IN∗

is convergent (from ii.), lim
k−→∞

ς̃k(ω∗
k) = 0.

These relations require that at least one of the two following conditions holds : either (a) the sequence (ω∗
k)k∈IN∗ is

convergent with lim
k−→∞

ω∗
k = 0 ; or (b)

(
δ̄k

T
(ω∗

kXk + Ip)
−1

δ̄k

)

k∈IN∗

is convergent, with lim
k−→∞

δ̄k
T

(ω∗
kXk + Ip)

−1
δ̄k = 1 ;



or both. For all k ∈ IN∗ such that ω∗
k > 0, δ̄k

T
(ω∗

kXk + Ip)
−2

δ̄k = 1 and δ̄k
T

(ω∗
kXk + Ip)

−1
δ̄k > 1. Therefore, if

the condition (a) is not satisfied, i.e., ω∗
k 6= 0 when k 7→ ∞, then − assuming that the limit of δ̄k

T
(ω∗

kXk + Ip)
−1

δ̄k

exists − the condition (b) could be verified only if lim
k→∞

δ̄k
T

(ω∗
kXk + Ip)

−1
δ̄k = δ̄k

T
(ω∗

kXk + Ip)
−2

δ̄k ; and this is

true only if lim
k→∞

ω∗
kXk = 0p×p. Now, it is shown that the conditions (9) and (10) assure that the matrix Pk is

bounded above and below (the proof is inspired from that of [16] and is omitted here for lack of place). As Fk is a
full row rank matrix and V̄k is invertible, the boundedness of Pk implies that there exists a positive real c̄ such that
∀k ∈ IN∗, Xk = V̄kFkPk−1F

T
k V̄ T

k ≥ c̄Ip > 0 ; this shows that the condition (b) can not hold, what guarantees the
satisfaction of the condition (a) ; the next two limits are direct consequences of this one. Indeed, by the aid of (7a), (7d)
and (7b) we find lim

k−→∞
x̂k − x̂k/k−1 = lim

ω→0
ωPk/k−1F

T
k (ωFkPk/k−1F

T
k + Vk)−1δk = 0 ;

lim
k−→∞

Pk − Pk/k−1 = lim
ω→0

−ωPk/k−1F
T
k (ωFkPk/k−1F

T
k + Vk)−1FkPk/k−1 = 0n×n. This proves the point iv. of the

theorem.
v. Now, by the use of lim

k−→∞
x̂k − x̂k/k−1 and (7e) it is possible to write

lim
k→∞

δk − (yk − Fkx̂k) = lim
k→∞

Fk(x̂k − x̂k/k−1) = lim
k→∞

Fk lim
k→∞

(x̂k − x̂k/k−1) = 0,

thus, lim
k→∞

δk
T V −1

k δk − (yk − Fkx̂k)T V −1
k (yk − Fkx̂k) = 0

⇔ ∀ε > 0, ∃k∞ ∈ IN∗, ∀k > k∞, δk
T V −1

k δk < (yk − Fkx̂k)T V −1
k (yk − Fkx̂k) + ε and inserting the inequality

(yk − Fkx̂k)T V −1
k (yk − Fkx̂k) ≤ 1 (according to iii.) achieves the proof of the point v.

vi. The sequence (σ2
k)k∈IN∗ is decreasing (according to ii.) and, as mentioned above, the matrix Pk is bounded below

and above ; it is also the case for each of its eigenvalues. Consequently, all the products σ2
kλi(Pk) (i ∈ {1, 2, . . . , n})

corresponding to the squared semi-axes lengths of E(x̂k, σ2
kPk) are also bounded and so it is for its volume

vol E(x̂k, σ2
kPk) =

4

3
πσn

k

n∏

i=1

λ
1
2

i (Pk).

vii. To prove this point, the following proposition will be applied :
Proposition 4 ([13]) The system zk = f(zk−1,uk−1) is ISS if it admits a continuous ISS-Lyapunov function
V ∗ : IRn → IR+, that is, there exists K∞-functions6α1 and α2 such that for all z ∈ IRn,
α1(‖z‖) ≤ V ∗(z) ≤ α2(‖z‖) and there exists a K∞-function α3 and a K -function χ such that for all z ∈ IRn and all
u ∈ IRm, V ∗(f(z,u)) − V ∗(z) ≤ −α3(‖z‖) + χ(‖u‖). ❑

It suffices then to show that V ∗
k = x̃k

T
P−1

k x̃k is ISS-Lyapunov function for the error estimation system.

First, we have
‖x̃k‖

2

λmax(Pk)
≤ V ∗

k ≤
‖x̃k‖

2

λmin(Pk)
.

From the point ii. of the theorem, it is clear that −ωδ̄k
T

(ω∗
kXk + Ip)

−1
δ̄k + ω ≤ 0

Consequently, using (21) and (22), the following holds

V
∗
k − V

∗
k/k−1 ≤ ω(1 − δ̄k

T
(ω∗

kXk + Ip)
−1

δ̄k) ≤ 0

Now

V
∗
k − V

∗
k−1 ≤ V

∗
k/k−1 − V

∗
k−1 = −x̃k−1

T
P−1

k−1x̃k−1 + x̃k/k−1

T
P−1

k/k−1x̃k/k−1

where x̃k/k−1 := x∗

k − x̂k/k−1 = ϕk(x∗

k−1
) − ϕk(x̂k−1) + wk−1 and x̃k−1 = x∗

k−1
− x̂k−1.

By using the Proposition 2 the Lemma 1 it can be proved that

V
∗
k/k−1 ≤ (1 − ρ)(ϕk(x∗

k−1
) − ϕk(x̂k−1))T

(
(Φ̂k−1 + ∆k−1)

T Pk−1(Φ̂k−1 + ∆k−1)
)−1

× (ϕk(x∗

k−1
)−ϕk(x̂k−1))+ρσ2

k−1wk−1
T W−1

k−1wk−1

On the other hand, following the same reasoning that led to (16)–(17), it comes that

(ϕk(x∗

k−1
) − ϕk(x̂k−1))T

(
(Φ̂k−1 + ∆k−1)

T Pk−1(Φ̂k−1 + ∆k−1)
)−1

(ϕk(x∗

k−1
) − ϕk(x̂k−1)) ≤ x̃k−1

T
P−1

k−1x̃k−1

Thus

V
∗
k − V

∗
k−1 ≤ −ρV

∗
k−1 + ρσ2

k−1wk−1
T W−1

k−1wk−1 ≤ −
ρ ‖x̃k−1‖

2

λmin(Pk−1)
+

ρσ2
k−1 ‖wk−1‖

2

λmin(Wk−1)
.

This means that V ∗
k is an ISS-Lyapunov function for the system which state vector is estimation error x̃k. This

completes the proof of the theorem.

6α : IR+ → IR+ is K∞-function if it is a K -function and if α(s) → ∞ as s → ∞.
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