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Abstract— This paper treats the problem of the merging
of formations, where the underlying model of a formation is
graphical. We first analyze the persistence of meta-formations,
which are formations obtained by connecting several persistent
formations. Persistence is a generalization to directed graphs
of the undirected notion of rigidity. In the context of moving

autonomous agent formations, persistence characterizes the

efficacy of a directed structure of unilateral distance constraits
seeking to preserve a formation shape. We derive then, for
agents evolving in a two- or three-dimensional space, the
conditions under which a set of persistent formations can be
merged into a persistent meta-formation, and give the minimal
number of interconnections needed for such a merging. We
also give conditions for a meta-formation obtained by merging
several persistent formations to be persistent.

I. INTRODUCTION

Baris Fidan and Brian DADderson

notion was introduced in [5] to analyze the behavior
of autonomous agent formations governed by unilateral
distance constraints: Many applications require somea-inte
agent distances to be kept constant during a continuous move
in order to preserve the shape of a multi-agent formation.
In other words, when enough inter-agent distances are
explicitly maintained constant, all the inter-agent distes
remain constant. The information structure arising from
such a system can be efficiently modelled by a graph,
where agents are abstracted by vertices and actively
constrained inter-agent distances by edges. We assume
here that those constraints are unilateral, i.e., that the
responsibility for maintaining a distance is not shared by
the two concerned agents but relies on only one of them.

By autonomous agent, we mean here any humarDis can be a deliberate choice to improve the efficacy or
controlled or unmanned vehicle moving by itself and havin§® Stability of the formation, but also a consequence of

a local intelligence or computing capacity, such as grou

nepme technical constraints: Some UAV’'s can for instance

robots, air vehicles or underwater vehicles. SignificarfiOt Sense the objects located behind them. This asymmetry

interest has been shown on the behavior of autonomolfs Modelled using directed edges in the graph. Intuitively,
agent formations (groups of autonomous agents interactifj information structure is persistent if, provided thatlea

which each other) [2]-[5], [10], and more recently o

nagent is trying to satisfy all the distance constraints for

meta-formations, consisting of interconnected formationWhich it is responsible, all the inter-agent distances iama
[1], [14]. Many reasons such as obstacle avoidance af@nstant and as a result the formation shape is preserved.

dealing with a predator can indeed lead a (meta-)format

iy necessary but not sufficient condition for persistence

to be split into smaller formations which are later re-melge 'S 19idity, which “intuitively means that, provided that
Those smaller formations need to be organized in such @l the prescribed distance constraints are satisfied glurin
way that they can behave autonomously when the formatiéh continuous displacement, all the inter-agent distances

is split. Conversely, some formations may need to

pEEmain constant. The above notion of rigidity can also

temporarily merged into a meta-formation to accomplish he applied to structural frameworks where the vertices

certain task, this meta-formation being split afterwards.

The particular property of formations and meta-formatio
which we analyze here igersistenceThis graph-theoretical
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correspond to joints and the edges to bars. The main
difference between rigidity and persistence is that rigidi
nassumes all the constraints to be satisfied, as if they were
enforced by an external agency or through some mechanical
properties, while persistence considers each constraint t
4be the responsibility of a single agent. As explained in
?5], persistence implies rigidity, but it also implies the
responsibilities imposed on each agent are not inconsjsten
for there can indeed be situations where this is so, and they
must be avoided. Rigidity is thus an undirected notion (not
depending on the edge directions), while persistence is a
directed one. Both rigidity and persistence can be analyzed
from a graph-theoretical point of view, and it can be proved
:[5], [12], [17] that if a formation is rigid (resp. persistgn
- then almost all formations represented by the same graph
are rigid (resp. persistent).

As stated in [1], the problem of merging rigid formations
into a rigid meta-formation has been considered in a number
of places. In [9], [11], the rigidity of a multi-graph (a gitap



(@) (b) (@) (b)

Fig. 1. In®2, the graph represented in (a) is not rigid because it can bgig. 2. InR2, the graph represented in (a) is rigid but not persistent. Fo
deformed (dashed line), while the one in (b) is rigid. The brég) satisfies almost all uncoordinated displacements of 2, 3 and 4 (evereif #atisfy
the 3D condition analogous to Theorem 1 but is not rigidii: the two  their constraints), 4 is indeed unable to satisfy its threestraints. This
parts of the graph can rotate around the axis defined by 1 and 2. problem cannot happen for the graph represented in (b) higipersistent.

in which some vertices are abstractions of smaller graphgyaph evolve in two dimensions, there exists a combindtoria
is analyzed. The vertices of a multi-graph can be thought &siterion to check if a given graph is rigid:
two dimensional solid bodies at the surface of which some Theorem 1 (Laman [8], [13]):A graphG = (V, E), with
bars can be attached; two vertices are then connected [3y| > 1, is rigid in %2 if and only if there is a sub-sdt’ C £
an edge if the corresponding bodies are attached to a sagieh that
bar. Operational ways to merge two rigid formations into a |E'| =2|V] - 3.
larger rigid formation can also be found in [4], [15]. « For all non-emptyE” C E’ there holds
i . |[E"| < 2|V(E")| — 3, where V(E") is the set of

In this paper, we treat the problem of determining  \ertices incident to edges df”.

whether a given meta-formation obtained by merging

several persistent formations is persistent. For this@Bep  ynfortunately the analogous criterion # obtained by

we first consider the above mentioned problem Ofgpiacing respectively 2 by 3 and 3 by 6 is only necessary,
determining whether a meta-formation obtained by mergings gemonstrated by the example in Fig. 1(c). We say that a
rigid formations is rigid. We also analyze the conditiongyraph isminimally rigid if it is rigid and if no single edge
under which a collection of persistent formations can bgan pe removed without losing rigidity. It follows from the

merged into a persistent meta-formation. Conditions angits above that a graph is minimally rigid R¥ (resp. in
then given on the minimal number of additional links thatj%g) if and only if it is rigid and containg V| — 3 (resp.

are needed to achieve such a merging. Note that througthtV‘ — 6) edges [12].
all the paper, we always assume that the internal structure

of the formations cannot be modified. Moreover, we USe a consider now that the constraints are not enforced by an
convenient graph theoretical formalism, abstracting BeNayternal entity, but that each constraint is the respolitsilof
by vertices and (unilateral) distance constraints by (ted) o agent to enforce. To each agent, one assigns a (possibly
edges. empty) set of unilateral distance constraints represented
o ) o ) by directed edges: the notatigf, j) for a directed edge
After reviewing some properties of rigidity and persisnc connotes that the agenthas to maintain its distance to
of graphs in Section II, we examine in Section Il the issue§gnstant during any continuous move. As explained in the
mentioned above for agents evolving in a two-dimensionghoduction, thepersistencef the directed graph means that
space. We show in Section IV how our results can bgysyided that each agent is trying to satisfy its constgaint
generalized in a three-dimensional space, and explain Whe gistance between any pair of connected or non-connected
this generalization can only partially be achieved. Theepap ggents is maintained constant during any continuous move,
ends then by the concluding remarks in Section V. Due tQnq as a consequence the shape of the formation is preserved.
space I|m|tat!ons the proofs of some results are omittetl, by though that the assignments given to an agent may
they are available on request from the authors. be impossible to fulfill, in which case persistence is not
achieved. An example of a persistent and a non-persistent
graph having the same underlying undirected graph is shown
As explained in Section I, the rigidity of a graph hasin Fig. 2. For a more formal definition of persistence, the
the following intuitive meaning: Suppose that each vertexeader is referred to [5], [17], where it is also proved that
represents an agent in a formation, and each edge representzersistent graph is always rigid, and that persistence can
an inter-agent distance constraint enforced by an externa® checked by checking the rigidity of several subgraphs. A
observer. The graph is rigid if for almost every such stregstu key result in the proof of this is the following:
the only possible continuous moves are those which preserveProposition 1: A persistent grapR? (resp.R?) remains
every inter-agent distance, as shown in Fig. 1(a) and (k). Fpersistent after removal of an edge leaving a vertex whose
a more formal definition, the reader is referred to [5], [12]out-degree is larger than 2 (resp. 3).
In N2, that is, if the agents represented by the vertices of the

Il. REVIEW OF RIGIDITY AND PERSISTENCE



We use the ternmumber of degrees of freedasha vertex G
1 to denote the (generic) dimension of the set in which 3 2

the corresponding agent can choose its position (all the Gi o Gi o
other agents being fixed). Thus it represents in some sense % G, SN

the decision power of this agent. The number of degrees

of freedom of a vertexi in N2 (resp. R?) is given by ”
max (0,2 — d* (7)) (resp.max (0,2 — d*(4))), whered™ (i) G,
represent the out-degree of the veriexA vertex having a (a) (b)

maximal number of degrees of freedom (i.e. an out-degree

; ; ; ig. 3. The graph represented in (a) and (b) is an edge-optiigial
0) is called deadersince the corresponding agent does nof erge if it is obtained by merging’; and G2 (a) but not if it is obtained

have any distance constraint to satisfy. It is proved in [5Lny mergingG1, G and G (c). The dashed edge represents the edges of
[17] that the sum of the numbers of degrees of freedor,

over all vertices of a persistent graph cannot exceed 3 in

R? and 6 inR3. Note that those numbers correspond to the o )

number of independent translations and rotation®inand  Which are incident to at least two vertices of each meta-
3. In the sequel we abbreviate degree of freedom by poitertex. This is _actually a particular case of the following
By an abuse of language, we define the DOF number &esult for an arbitrary number of graphs (analogous to dtresu

a graph to be the sum of the DOF numbers of degrees B [9] which is obtained under the assumption that no vertex
freedom of its vertices. of any meta-vertex is incident to more than one edg® gf:

Theorem 2:G' = (Uy s Gi) U Ey (with N and S as

As explained in [17], although the concept of persistenceefined at the beginning of this section) is rigid if and only
is applicable in three and larger dimensions, it is noif there existsE’, C E); such that
sufficient to imply the desired stability of the formation o |F},|=3|N|+2|S|-3
shape. For the shape stability, the graph corresponding to a For all non-emptyE%, C E},, there holds
three-dimensional formation needs indeed tostrecturally |[EY | < 3|I(EY)| +2]J(Ewx)| — 3,
persistent In %°, a graph is structurally persistent if andwhere 7(E%,) is the set of meta-vertices with at least two
only if it is persistent and contains at most one leader. Igertices incident to edges &y, and J(E},) is the set of
R?, persistence and structural persistence are equivalent. those with only one vertex incident to edge(s) ;.

Similarly to minimal rigidity, we say that a graph is  For a given collection of meta-vertices, we say tiat
minimally (structurally) persistent it is (structurally) per- s an edge-optimal rigid mergingf no single edge ofE,,
sistent and if no single edge can be removed without losingan be removed without losing rigidity. Notice that a single
(structural) persistence. It is proved in [5], [17] that @@t graph can be an edge-optimal rigid merging with respect to
is minimally (structurally) persistent if and only if it is 3 certain collection of meta-vertices, and not with respect
(structurally) persistent and minimally rigid. The numimér 5 another one, as shown in Fig. 3. If all meta-vertices are
edges of such a graph is thus uniquely determined by thginimally rigid, then an edge-optimal rigid merging is also
number of its vertices as it is the case for minimally rigidy minimally rigid graph. From Theorem 2, one can deduce

graphs. that G is an edge-optimal rigid merging if and only if it is
1. RIGIDITY AND PERSISTENCE OF2D rigid and|Ey| = 3[N|+ 25| - 3.
A. Rigidity Next we analyze the case where the meta-vertices are
Consider a setN of disjoint rigid (in %2) graphs directed persistent graphs. If it is possible to merge them
Gi,...,Gy| having at least two vertices, and a setof into a persistent graph, then it is possible to do so in such
single-vertex graphsx|yiy1,...,G|n|4js- In the sequel, a way that all the edges af, leave vertices which have

those graphs are calladeta-verticesand it is assumed that an out-degree not greater than 2Gh A set of edgest;,
no modification can be made on their internal structure: nthat would makeZ persistent but that would not satisfy this
internal edge or vertex can be added to or removed frommoperty could indeed be reduced by Proposition 1 until it
meta-vertex. We define the merged gra@hby taking the satisfies it. It is possible to prove that when the added edges
union of all the meta-vertices, and of some additional edgdsave only vertices whose out-degree is not greater than 2,
E); each of which has end-points belonging to differents is persistent if and only if it is rigid. The condition on
meta-vertices. the out-degrees of the vertices with an outgoing edge of
Ej can be conveniently re-expressed in terms of degrees
The conditions under which the merging of two metaof freedom: To each DOF (within a single meta-vertex) of
vertices leads to a rigid graph are detailed in [15]: If bottany vertex there corresponds at most one outgoing edge of
meta-vertices contain more than one vertices, the mergéd,,. By an abuse of language, we say that such edges leave
graph is rigid if and only if£y; contains at least three edges,a vertex with one or more local DOFs, i.e. a vertex which



between the DOF number of the graph and the maximal
DOF number that any graph with the same number of

Gl
m G G vertices can have. I&?, this maximal number is 2 for the
A 3 4 : .
single vertex graphs, and 3 for other persistent graphseThe
G2 A‘ is an interesting consequence: when the minimal number of
@ edges is used to merge two meta-verticés and G, the
number of missing DOFs is preserved through the process,
(a) (b)

i.e.mpor (Ga UG, U EN) =mpor(Ga) + mpor(Gs).
Fig. 4. Merging of the persistent meta-verti¢&@s andGs into a persistent . . .
graph in®R2 (a). The symbol “*" represents one DOF (with respect to Consider now an arbitrary number of meta-vertices, pos-
the meta-vertex). (b) represents two persistent meta-véhiaxcannot be sibly containing single-vertex graphs, but such that thal to
rggl;ged into a persistent graph ¥ because none of their vertices has anumber of vertices is at least 2. If the sum of their number
of missing DOFs is no greater than 3, it follows from
Proposition 2 that any two of them can be merged in such
inside its meta-vertex has one or more DOFS. This allows way that the obtained graph is persistent and that the total
reformulating the above results in a dimension-free way: number of missing DOFs remains unchanged. Any pair of
Theorem 3:A collection of (structurally) persistent those meta-vertices would indeed contain at least the redjui
meta-vertices can be merged into a (structurally) persistenumber of DOFs. Doing this recursively, it is possible to
graph if and only if it can be merged into a (structurally)merge all these meta-vertices into a single persistenthgrap
persistent graph by adding edges leaving vertices with one case there are more than 3 missing DOFs, the total DOF
or more local DOFs. In that case, the merged graph isumber is by definition smaller theh| N|+2|S|— 3, which
persistent if and only if it is rigid. is the minimal number of edges required to make the merged
graph rigid. It follows then from Theorem 3 that such meta-
If one or more edges do leave a vertex with an out-degrertices cannot be merged in a persistent graph. We have
larger than 2, no criterion has been found yet to determirtdus proved the following result:
whether the merged graph is persistent or not, which also proposition 3: A collection of persistent meta-vertices
takes advantage of the fact that the graph is obtained by S (with N andS as defined in the beginning of Section
merging several persistent meta-vertices. l1I-A) can be merged into a persistent graph if and only if
the total number of missing DOFs is no greater than 3, or
Tying Theorem 3 together with what is known and reequivalently if the total number of local DOF iN U S is at
viewed above regarding the merging of two rigid metateast3|N| + 2|S| — 3. At least3 |N| + 2|S| — 3 edges are
vertices, we conclude: two persistent meta-verti€gsand needed to perform this merging, and merging can always be
Gy, each having more than one vertex can be merged intogane with exactly this number of edges.
persistent graph if and only if three edges leaving vertices
with local DOFs can be added in such a way that they are os when merging rigid meta-vertices, we say thats an
incident to at least two vertices in each meta-vertex. Thetgge-optimal persistent mergiifgno single edge of,; can
must thus be at least three local DOFs available among th@ removed without losing persistence. Again, if all meta-
vertices inG, and G,. Conversely, if there are available yertices are minimally persistent, théhis an edge-optimal

three local DOFs among the vertices @f, and Gy, Since  persistent merging if and only if it is minimally persistent
no vertex can have more than two DOFs, it is possible to acrpl can be proved that:

a total of at least three edges leaving at least two verti€es o .
G, UG)y. The vertices to vghich thosg edges arrive can then Theorem 4G = _<U_N75 Gi) - EM (with anq 5 as
be chosen in such a way that at least two vertices of boficfined at the beginning of Section lll-A and with al;
G, and G, are incident to edges adf,;, as shown in Fig. per3|sten'§) IS an edge-opnme.lll persistent mergingiinif
4. By Theorem 3, this implies that the merged graph Wouland only if the following conditions all hold
be rigid and therefore persistent: e |[EM|=3|N|+2|S|-3

Proposition 2: Two meta-vertices with more than one « For all non-emptyE’, C E},, there holds
vertex can be merged into a persistent graph if and only if  |Ef;| < 3|I(EY,)| +2|J(Ewm)| —3
the sum of their DOFs number is at least 3. At least three  Wwith I(E},) and J(E},) as defined in Theorem 2
edges are needed to perform this merging, and merging cane All edges of £, leave vertices with local DOFs.
always be done with exactly three edges.

Equivalently, a persisten® is an edge-optimal persistent

If one or two of the meta-vertices are single vertexmerging if and only if it is an edge-optimal rigid merging,
graphs, the result still holds, but the minimal number obr if and only if its number of missing DOFs is equal to
added edges (and therefore the number of needed DOFs) Hre sum of the numbers of missing DOFs of all its meta-
then respectively 2 and 1. We define tlember of missing vertices. Notice that an efficient way to obtain such a mergin
DOFs (mpor) to be the absolute value of the differenceis provided in the discussion of Proposition 3.



[Val 1 1 1 2 2 >3
V] 1 2 >3 2 >3 >3
min|Ey| | 1 2 3 3 5 6 G,
TABLE |
MIN. NUMBER OF EDGES TO MERGE TWO GRAPH INTO A RIGID GRAPH
IV. RIGIDITY AND PERSISTENCE OF3D

META-FORMATIONS Fig. 5. Example of a persistent but not structurally persisteeta-vertex
o G, which cannot be merged into a persistent or rigid graph withrtteta-
A. Rigidity vertexG,, the latter being persistent but having no DOF. (b) shows tnaw

. L . . 3 non-structurally persistent meta-vertices can be mergedanstructurally
We now consider a sefV of disjoint rigid (in :°) persistent graph. The symbol “*” represents one DOF, and dsbet edges

graphs Gy,...,G|y; having at least three vertices, aare the edges of.

set D of graphs containing two (connected) vertices

G\N|4+15-- > G|Nj+|p|» and a setS of single-vertex graphs o ;
G\N|4D+15- - GIN|+|D|4s|- AS in Section Ill, these One vertex incident to edge(s) &fy;.

graphs are called meta-vertices, and we define the merged

grath by taking the union of all the meta-vertices, and of It should be noted that the Counting conditions of Theorem

some additional edges,; each of which having end-points 5 are not sufficient for rigidity. The non-rigid graph of Fig.
belonging to different meta-vertices. 1(c) which can be obtained by merging two rigid tetrahedral

meta-vertices (1,3,4,5) and (2,6,7,8) would indeed satisf

The merging of two rigid meta-vertices, each containinéhem- Nevertheless, one can deduce from Theorem 5 that
more than two vertices, is treated in [15]: At least six edge§' IS an edge-optimal rigid merging iR® if and only if it is
are needed, and they must be incident to at least threeegrti¢igid and [Ey| = 6 [N] + 5[D| + 3[S| — 6.
of each meta-vertex, and it is always possible to achievg Persist
a rigid merging using exactly six edges incident to exactly ersistence
three vertices of each meta-vertex. But these conditioas ar Consider now all meta-vertices as persistent graphs. The-
only necessary: The so-called “double-banana” of Fig. 1(@rem 3 can be proved in a way that does not depend on
can be obtained by merging two distinct rigid tetrahedrdhe dimension of the space in which the agent evolves
meta-vertices (1,3,4,5) and (2,5,7,8) using a total of dges  and is thus still valid in three dimensions. Merging two
incident to four vertices of each meta-vertex. With a minometa-vertices into a persistent graph is however a more
modification, the merging result above holds in the case¥@mplicated problem iriR? than in ®*. Consider indeed
where at least one meta-vertex has less than 3 verticésmeta-vertexG;, without any DOF, and a meta-vertex,
The required number of edges is different, as summarizeéthich is not structurally persistent, i.e. which is perest
in Table | wheremin |E,,| represents the minimal number and contains two vertices (leaders) having three DOFs. The
of edges required to merge the meta-verticegV,, E,) humber of available DOFs is equal to the minimal number of
and G (Vy, E}) into a rigid graph. Also, if a meta-vertex edges that should be added to obtain a rigid merged graph.
has less than 3 vertices, all of them should be incident tdowever, the only way to add six edges leaving local DOFs
edges ofE,,, otherwise at least 3 of them should be. Wheris to add three edges leaving each leadet‘pfand arriving
merging several meta-vertices, there is no available sacgs in G, as shown in Fig. 5(a). Only two vertices 6f, would
and sufficient condition for the rigidity ofy. Determining thus be incident to the added edges, which prevents the
whether a merged graph is rigid ®* is indeed a more merged graph from being rigid and therefore persistent. We
general problem than determining whether a given graph Rave thus proved the following condition:
rigid (it suffices to takeV = D = @) and there is no known  Proposition 4:If two persistent meta-vertices are such
set of combinatorial necessary and sufficient conditioms fdhat one is not structurally persistent and the other doés no
this. However, we have the following necessary condition: have any DOF, they cannot be merged into a persistent graph.

Theorem 5:G = (UMD’S Gi) U Ey (whith N, S, D as

defined at the beginning of this section) is rigid §#). Then
there existsE’), C Ejs such that

However, this is the only case for which the argument
used in establishing Proposition 2 cannot be generalized to
establish an analogous propertyJi:

o |Ey|=6[N[+5 |D//| +3 |§\ -6 Proposition 5: If two meta-vertices (with more than 2
. forNaII no”‘em/F/’tyEM < EA;/, there h0|d§/ vertices) do not satisfy the condition of Proposition 4ythe
|E | < 6[I(EY)|+5[J(Ey)| +3|K(Ey)| -6, can be merged into a persistent graph if and only if the sum

where I(EY,) is the set of meta-vertices with at least threef their DOFs is at least 6. At least six edges are needed to
vertices or two unconnected ones incident to edge®’/fgf  perform this merging, and merging can always be done with
J(EY,) is the set of those with one connected pair incidengxactly six edges and in such a way that the graph obtained
to edges ofE},, and K(EY,) the set of those with only is structurally persistent.



In case at least one of the meta-vertices has less than 3 V. CONCLUSIONS

vertices, the result still holds, but with a different rempoi We have analyzed the conditions under which a graph re-
number of edges iy, and therefore of available DOFs: gyiting from the merging of several persistent graphs efits
these minimal numbers are both equahtin |Ey,| in Table  persistent. Necessary and sufficient conditions were found
| (for the merging of a graphi,(Va, E.) with a graph to determine which collections of persistent graphs coeld b
Gy (Ve, E))- It is worth noting that even if one or both of merged into a larger persistent graph. We first treated these
the meta-vertices are not structurally persistent, it issge  jssyes in®2. Our analysis was then generalized?3 and
to obtain a structurally persistent merged graph, as show§ structural persistence, leading to somewhat less pawerf
in Fig. 5(b). This has already been observed in [17] for theasuits. This is especially the case for those which relyhen t
case where one meta-vertex is a single vertex graph.  gyfficient character of Laman’s conditions for rigidity #?
(Theorem 1), no equivalent condition being known 3.
Consider now a collection of meta-vertices such that theollowing this work, we plan to develop systematic ways
total number of vertices is at least 3. By a similar argumenb build all optimally merged persistent graphs, similady
as for Proposition 3, one can prove the following result. what has been done for minimally persistent graphs [6] and

Proposition 6: A collection of persistent meta-vertices for minimally rigid merged graphs [16].

NUDUS (with N,D, S as defined in the beginning of
Section IV-A) that does not consist of only two meta-vewice
satisfying the condition of Proposition 4 can be mergedm
into a persistent graph if and only if the total number
of missing DOFs is no greater than 6, or equivalently if
the total number of local DOFs iV U D U S is at least
6|N|+5|D|+3|S| —6. At least6 |[N|+5|D|+3|S| —6
edges are needed to perform this merging. Merging can
always be done with exactly this number of edges, an
in such a way that the merged graph is structurally perdisten
[4]
The only difference with the discussion of Proposition
3 appears when the collection contains two meta-verticeg)
satisfying the condition of Proposition 4 (that is, one not
structurally persistent and one without DOF) and at least
one other meta-vertex. In that case, a counting argument
shows that there can only be one meta-vertex with no DOFS]
and that apart from this one, all meta-vertices have no
missing DOF. One can thus begin by merging all those intq7]
a structurally persistent graph, which can then be merged
with the meta-vertex without DOF. 8]

As in the two-dimensional case, one can prove that a°
persistent graph is an edge-optimal persistent mergingdf a;;
only if it is an edge-optimal rigid merging. However, due to
the absence of necessary and sufficient conditions allowing
a combinatorial checking of the rigidity of a graph or of[ll]
a merged graph i3, the result cannot be expressed in a
purely combinatorial way. (12]

Theorem 6:G = (UN,D,S Gi) U Ey with N, D, S as
defined at the beginning of Section IV-A and with &}
persistent) is an edge-optimal persistent mergingiti if
and only if the following conditions all hold

o |[Ex|=6|N|+5[|D|+3|S|—6

o G is rigid

o All edges of £y, leave local DOFs.

[13]
[14]
(18]

[16]

Again, an efficient way to obtain an edge-optimal persis-
tent merging from a collection of meta-vertices satisfyting [17]
hypotheses of Proposition 6 is to first merge two of them and
then to iterate, as in the discussion of Propositions 3 and 6.
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