
On the robustness of distributed algorithms

Vijay Gupta , Cedric Langbort and Richard M. Murray

Abstract— In recent years, numerous distributed algorithms
have been proposed which, when executed by a team of
dynamic agents, result in the completion of a joint task.
However, for any such algorithm to be practical, one should be
able to guarantee that the task is still satisfactorily executed
even when agents fail to communicate with others or to
perform their designated actions correctly. In this paper,
we present a concept of robustness which is well-suited for
general distributed algorithms for teams of dynamic agents.
Our definition extends a similar notion introduced in the
distributed computation literature for consensus problems. We
illustrate the definition by considering a variety of algorithms.

I. INTRODUCTION

Many algorithms have been presented in the last few

years to solve problems as varied as average consensus [3],

rendezvous [2] and sensor coverage [4] when there are

multiple cooperating agents present. Some of the problems

(such as average consensus) do not even make sense without

many agents being present. For any such algorithm to be

practical, the failure of one agent to perform its designated

duties should not imperil the joint task. In this note, we

introduce the notion of robustness to agent failure which

has been largely ignored in the control community. We

take a first step towards defining the concept and study

some common algorithms for their robustness properties.

Our definition ties in with a similar concept studied in the

distributed computation literature (see, e.g., [6] for a good

overview). We will show that distributedness in algorithms

does not inherently lead to robustness. As an example, the

recently proposed average consensus algorithm [3] is non-

robust in the sense that a single agent failing to update

its values according to the algorithm will lead to no agent

converging to the desired mean value. To make such al-

gorithms robust, in general, we need to ensure that agents

receive enough information from their neighbors to be able

to detect and isolate faulty agents. This point is of interest

while designing multi-agent systems and algorithms.

The paper is organized as follows. We begin by setting up

a framework for studying algorithms executed by teams of

dynamic agents. We then define the notions of agent failure

and robustness and illustrate the definitions by studying

various algorithms. We compare some algorithms that fulfill

Vijay Gupta is with the Institute of Systems Research, University
of Maryland, College Park. The work was done at the California In-
stitute of Technology, Pasadena. Research supported in part by the
AFOSR grant F49620-01-1-0460 and in part by NSF grant CCR-0326554.
vijay@cds.caltech.edu

Cedric Langbort is at the Department of Aerospace Engineering, Uni-
versity of Illinois at Urbana-Champaign. langbort@uiuc.edu

Richard M. Murray is with the Division of Engineering and Applied
Science, California Institute of Technology, Pasadena, CA 91125, USA.
murray@caltech.edu

the same task yet display different robustness properties and

identify possible means of making an algorithm robust. We

end with some possible avenues of future work.

II. BASIC FRAMEWORK

For the rest of the discussion, we will concentrate only

on discrete-time algorithms and synchronous networks.

Definition 1: (A Controlled Agent:) We define an agent

as a collection of 4 quantities (X , U , X0, f).
1) x(k) ∈ X is the state; X represents the state space.

2) u(k) ∈ U is the control input; U is the input space.

3) x(0) ∈ X(0) is the initial condition, where X(0) ⊂
X is the set of allowable initial states.

4) f : X × U → X is a map that defines the dynamics
of the agent.

In words, an agent has a state x(k) at time k. Given a control

input u(k), the state evolves according to the dynamics

f , i.e., x(k + 1) = f (x(k), u(k)) . As an example, the

agent has linear dynamics if f (x(k), u(k)) is of the form

A(k)x(k)+B(k)u(k) where A(k) and B(k) are given. The

state space X can in general be a continuous space (such

as Rn) or a discrete space (such as nodes of a graph).

Definition 2: (Network of Controlled Agents) (follow-

ing [1]): We define a network of N agents using three

quantities (I,A,Gcomm).
1) I = {1, · · · , N} is the set of unique identifiers for

each of the N agents.

2) A = {Ai}i∈I is the set of controlled agents. Each

agent Ai is in turn defined as in definition 1. We will

refer to the state of the i-th agent at time k as xi(k),
the control input as ui(k) and the corresponding sets

of allowed values as Xi and Ui respectively.

3) Gcomm is the set of allowed communication graphs.

At each time step k, the communication graph

Ecomm(k) over N nodes is an element of Gcomm.

Every node is identified with the identifier i corre-

sponding to a unique physical agent. The edges in the

graph represent communication edges in the network.

Thus, if the pair (i, j) is an edge in Ecomm(k), the

agents with identifier j can communicate with the

agent with identifier i at time step k .

We will assume undirected graphs. Agent i is a neighbor

of agent j if the two can communicate. Note that the word

communication includes any means of gathering informa-

tion about the state of another agent (e.g., through sensing).

To fully characterize a networked system, we need to also

define communication and control laws according to which

the agents choose the messages transmitted to the neighbors

and the control inputs for their own dynamics. However, for

our present purpose, the above two definitions suffice.

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

ThB14.3

1-4244-0171-2/06/$20.00 ©2006 IEEE. 3473

There might be additional variables involved in the

problem specification, which we refer to collectively as

environmental variables and denote by the set V . For

example, these can pertain to the locations of obstacles

when the agents are robots moving in an area. Similarly for

algorithms which assume a fixed and given communication

graph, the graph is an environmental variable.
We now define a cooperative task to be carried out by the

agents. We will define a task in terms of a cost function.
Definition 3: (Cooperative Task) A cooperative task is a

cost function C that depends on the state trajectories of all

the agents, the control inputs applied by them, their initial

conditions and possibly some environmental variables.

C :
∏

i

{xi(k)}∞k=0×
∏

i

{ui(k)}∞k=0×
∏

i

xi(0)×V �→ R+.

Note that for a task that is informally described in words,

say ‘rendezvous’, there might exist many choices of possi-

ble cost functions. We will associate a separate task with

each cost function. The aim of any algorithm that carries

out the task is to minimize the cost function.
Definition 4: (Cooperative Algorithm) A cooperative al-

gorithm is a choice of communication and control laws for

every agent.
Note that the cost function associated with the underlying

cooperative task and the cost function that the algorithm

is actually minimizing may be different, even though the

same control law may minimize both the functions. An

example of this will be provided in the average consensus

algorithm discussed below. Also, there can be constraints

on the control and communication laws that an algorithm

must satisfy. As an example, for robotic agents moving in

physical space, it might be the case that only a specific

function of the state of the neighbors can be sensed (output-

measurable). Hence, the messages and the control inputs

have to depend on that function.
Examples:
1) Average Consensus [3]: Consider N agents, each of

which is provided a scalar value. The arithmetic mean

of the values across the agents is m. The task is to

ensure that on termination, each agent has the value

m. The i-th agent has scalar dynamics of the form

xi(k + 1) = xi(k) + ui(k),

with xi(0) given. There are many cost functions that

can be considered. We will consider the cost function

C = lim
k→∞

(∑
all nodes i

(
xi(k) − 1

N

∑
xi(0)

)2
)

.

This is clearly a function of the state values of the

agents and their initial conditions and thus fits in our

framework. The communication graph is fixed and

given. The only requirement on the edge set is that

the graph be connected. Let h be a small positive

number. Then, the i-th agent applies the control input

ui(k) = −h
∑

j:j is a neighbor of i

(xi(k) − xj(k)) .

Note that the algorithm minimizes C by minimizing

the cost function

Calgo = lim
k→∞

⎛
⎝ ∑

(i,j) being neighbors

(xi(k) − xj(k))2
⎞
⎠ ,

with the constraint∑
all nodes i

xi(k) =
∑

all nodes i

xi(0).

If all the agents are functional, it can be proven that

minimizing Calgo yields the control and communi-

cation laws that minimize the task cost C as well.

This algorithm is similar to the rendezvous algorithm

without connectivity constraint proposed in [2] and is

related to works based on Vicsek’s model (see [7] for

an overview).

2) Sensor Deployment: This problem and its solution

have been widely studied. We adopt the algorithm that

is described in [4]. The basic problem is for N agents

to position themselves in a convex region Q such that

the total distance from each point in the region to the

nearest agent (possibly weighted by a non-negative

density function) is minimized. The agents once again

have first order dynamics. They are assumed to move

in the convex region Q. Thus, Xi = Q for every agent

i. The cost function is defined as

C = lim
k→∞

∫
Q

min
i

|q − xi(k)|22φ(q)dq,

where φ(x) is a density function that has a non-

negative value at all points x in Q. In addition to the

state values, the cost also depends on the region Q
and the function φ(x), which are given environmental

variables. The network considered in [4] is the De-

launay graph. The control input is designed so that

each agent moves towards the centroid of its Voronoi

cell. The details are given in section III-B of [4].

Failure Modes and Robustness: One way to characterize

an algorithm is through the value of the task cost function

C that it achieves. Denote the performance cost achieved

by the algorithm by PC. Since the cost function C can be a

function of the initial conditions xi(0) and the values of the

environmental variables, so can be PC. To characterize the

algorithm, we can get rid of this dependence in two ways.

1) We can consider the average cost, PCavg obtained by

averaging PC as the initial conditions and values of

the environmental variables are chosen from a given

set S using a given probability distribution function.

2) We can consider the worst case cost PCwc which is

obtained by computing the supremum of the PC as

the initial conditions and values of the environmental

variables are varied across a set S.

In general, the performance cost will also depend on the

number of agents. To show this dependence explicitly, we

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB14.3

3474

will sometimes denote the performance cost by PCavg(N)
or PCwc(N) if N agents are present.

Before defining the key property of robustness, we need

to define an agent failure. During the execution of an

algorithm, an agent may stop functioning in many ways.

When an agent fails, it alters the control law and the

communication law that it follows. We can define some

failure modes as follows:

1) Failure mode 1: An agent may fail by simply ceasing

to communicate with other agents. This is the most

popular agent failure model considered in the litera-

ture. In the language of [6], this is similar to saying

that the process suffers from a stopping failure.

2) Failure mode 2: An agent fails by setting its state

value xi(k) to a constant. Thus, the control input

ui(k) that ensures xi(k + 1) = xi(k) is used at

every time step k. The constant state value can be

any value in the set Xi. The messages that a failed

agent transmits to its neighbors also assume constant

values for all time k.

3) Failure mode 3: The agent alters the control input to

set its state at every time step k to an arbitrary value in

the set Xi. The sequence of the values can be chosen

maliciously so that the other agents are hindered in

the pursuit of the cooperative task. The messages a

failed agent transmits are also chosen arbitrarily. This

is akin to the way agents fail as described in [5] and

is referred to as the Byzantine failure mode in [6].

In the language of [5], the assumption that any communi-

cation from a failed agent is also affected according to the

failure mode means that agents communicate “orally” and

not through “signed messages”. This list is not exhaustive

and other modes of failure can readily be thought of.

When a given number p out of a total of N agents

executing a certain algorithm fail according to a certain

mode, the situation is as if the p agents follow a new control

and communication law while the remaining N − p agents

follow the original laws. We can calculate the performance

of this new algorithm. We now define robustness of an

algorithm with respect to a particular agent failure model.

Definition 5: (Robustness of an Algorithm): Consider an

algorithm being executed on a system of N agents out

of which p agents fail according to a particular failure

model. Denote the worst-case performance cost achieved

through the remaining N − p agents as PCwc(N, p) where

the supremum is also taken over all groups of p agents that

can fail. An algorithm is said to be worst-case robust to a

particular failure mode up to p agents if

PCwc(N, p) = O (PCwc(N − p)) ,

as N → ∞. If PCwc(N, p) = Ω (PCwc(N − p)) but

PCwc(N, p) �= Θ (PCwc(N − p)) , the algorithm is said

to be worst-case non-robust1.

• If instead of the worst case performance costs, we con-

sider the average performance costs PCave(.) (how-

ever, while still taking the supremum over the p agents

that fail), we obtain the definition of average case

robustness. While the worst case robustness tells us

if the algorithm will perform correctly for any set of

initial conditions (similar to the case in robust control),

average case robustness guarantees that the algorithm

will perform correctly on an average. We can also talk

about almost sure (a.s.) robustness when the algorithm

is worst case robust as the initial conditions and values

of the environmental variables are varied across a set

S, except on a region with measure zero.

• Strictly speaking, the definitions given above pertain

to the robustness over the set S over which the initial

values and the environmental variables vary.

• The basic intuition behind the definition is that a

distributed algorithm should lead to better performance

as the number of agents increases. We can expect a hit

in the performance if some agents fail. However, if we

calculate the performance loss in two situations:

– N agents were present to begin with but p of them

failed, and

– Only N − p agents were present to begin with,

(Equivalently, N agents were present and p failed

but they were detected and removed)

then the rate at which adding functional agents de-

creases the cost should not be adversely affected. In

other words, the impact due to agents failing should

not increase as more functional agents are added.

We note the following properties that follow from the

definitions. We present the proofs for worst-case robustness.

The proofs for average-case robustness are similar.

Proposition 1: If an algorithm is non-robust for p failed

agents to failure mode 2, it is non-robust to p failed agents

to mode 3. Similarly an algorithm robust for p failed agents

to failure mode 3 is robust for p failed agents to mode 2.

Proof: Let the control inputs used in the calculation

of PCwc(N, p) for failure mode 3 be given by {ui(k)}3

for agent i and the messages sent be given by {mi(k)}3.

Similarly, let the control inputs used in the calculation of the

performance cost for failure mode 2 be given by {ui(k)}2

for agent i and the messages sent by {mi(k)}2. Consider the

choice of the control inputs. The set in which the control

inputs are allowed to vary for mode 3 also contains as a

particular element {ui(k)}2. Since, by definition, the cost

in mode 3 is maximized by {ui(k)}3; in particular, the cost

achieved by using {ui(k)}2 is not more than when {ui(k)}3

is used. But the cost achieved when {ui(k)}2 is used is the

1We say f(x) = O(g(x)) iff ∃ numbers x0 and M > 0 such that
|f(x)| ≤ M |g(x)| for x > x0. f(x) = Ω(g(x)) iff ∃ numbers x0 and
M > 0 such that |f(x)| ≥ M |g(x)| for x > x0. Finally, iff ∃ x0,
M0 > 0 and M1 > 0 such that M1g(x) ≥ f(x) ≥ M0g(x) for x > x0

then f(x) = Θ(g(x)). Also note that in the definition all the elements
are compared as functions of N .

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB14.3

3475

cost in failure mode 2. Thus,

PCwc(N, p) failure mode 3 ≥ PCwc(N, p) failure mode 2.

If the algorithm is non-robust to failure mode 2, there exists

a constant c such that

PCwc(N, p) failure mode 2 ≥ cPCwc(N).

The above two equations together prove that the algorithm

is non-robust to failure mode 3 as well. The second part

can be proved similarly.

However, a similar statement cannot be said for failure

modes 1 and 2. Even if an algorithm is non-robust to failure

mode 1, it can be robust to failure mode 2.

Proposition 2: If an algorithm is non-robust to failure of

p agents in failure mode 3, it is also non-robust to failure

of t agents in failure mode 3 where t ≥ p. Similarly if the

algorithm is robust to failure of t agents in failure mode 3,

it is also robust to p failures where p ≤ t.
Proof: Consider the case when p agents fail. Consider

the choice of initial conditions, control inputs and messages

for the failed agents that corresponds to the worst case of

the performance cost. Choose an arbitrary set S of t − p
functional agents. For this choice denote the control input

that the agent i in the set S of t−p functional agents applies

by {ui(k)} and the messages it transmits by {mi(k)}. Now,

consider the case when t agents can fail. Choose the same

initial conditions as the previous case. Let the t agents that

fail be chosen such that they consist of the p agents that

failed in the previous case and the t − p agents in the set

S. Also, let the p agents apply the same control inputs and

transmit the same messages as the previous case. Let the

i-th agent in set S apply control input {ui(k)} and transmit

messages {mi(k)}. Thus, the evolution of the system will

be identical to the case when only p agents failed. Hence,

PCwc(N, t) ≥ PCwc(N, p) and the result follows. The

second part can be proved along the same lines.

Proposition 3: Suppose PCwc(N) = Θ(PCave(N)).
Then, if the algorithm is worst-case robust to failure of p
agents to a particular failure mode, it is also average-case

robust to failure of p agents to that failure mode. Similarly

of the algorithm is average-case non-robust to failure of p
agents to a particular failure mode, it is also worst-case

non-robust to failure of p agents to that mode.

Proof: Proof follows from the definitions once we note

that PCwc(N, p) ≥ PCave(N, p).
A similar statement can also be made about the relation

between worst-case robustness and a.s. robustness.

Examples: We now illustrate the above definitions using

specific algorithms. If the algorithms involve agents moving

in physical space, we will model the agents as point masses

and ignore issues such as collision avoidance. Let us begin

with an example in which there is a central data processing

node which intuitively renders the algorithm non-robust.

a) Multi-Sensor Fusion using a Central Node: Let

N nodes measure the value of a random variable v with

some additive measurement noise. To obtain the global

estimate, every node i transmits its local estimate x̂i with

error covariance Pi to a central node. The central node fuses

the estimates to obtain the global estimate x̂ with the error

covariance P given by P−1 =
∑

i(Pi)−1 and transmits

it back to every node. The cost function is
∑

i trace(Pf,i)
where Pf,i is the final error covariance of the i-th node. The

algorithm is worst-case, average-case and a.s. non-robust to

either failure mode 1 or to mode 2.

Proof: We give the proof for failure mode 1 for worst-

case robustness. The proof for other cases is similar. First

we note that if the error covariance for the local estimate is

given by Pi = P , then the error covariance for the global

estimate will be given by P
N if N agents are present. Thus,

PCwc(N) = (N) × trace

(
P

N

)
= trace(P).

Now, consider the case when the central node fails. Then,

Pf,i = Pi. Thus, PCwc(N, 1) ≤ ∑
i trace (Pi) = (N −

1)trace (P)and the algorithm is non-robust.

b) Average Consensus [3]: Since the algorithm re-

quires connected graphs, we will assume that to be the case

as long as no agents fail. For average-case robustness, we

will consider the initial conditions to be chosen uniformly

over the set [−1, 1].
• Assume that the p agents that fail are allowed to be

chosen so that the graph of the remaining N − p
agents is disconnected. Then, the algorithm is worst-

case non-robust to failure mode 1. If the graph remains

connected, then the algorithm is worst-case, average-

case and a.s. robust to failure mode 1.

Proof: First consider the case when we allow

the graph of the remaining agents to be potentially

disconnected. Consider the case when p = 1 and let

N = 2m+1. Choose the graph of N agents as a line.

Let the agent i fail such that two distinct connected

sub-groups of agents are formed, each with m agents.

Also, suppose the initial conditions are chosen such

that every agent in the first sub-group has value 1
and every agent in the second sub-group has value

−1. Thus, the algorithm will converge with each agent

retaining its value, as against converging to the correct

mean for the N − 1 agents, which is 0. Thus,

PCwc(N, 1) ≥
m∑

i=1

(1)2 +
m∑

i=1

(−1)2 = N − 1.

If N agents were present, they would have all con-

verged to the mean as long as the graph was con-

nected. Thus, PCwc(N) = 0. Thus, the algorithm is

worst-case non-robust. If the graph remains connected,

PCwc(N, p) = PCwc(N) = 0. Hence, the algorithm is

worst-case robust. A similar argument shows that the

algorithm is average-case and a.s. robust.

In a similar manner, it can be proven that the algorithm,

if it runs on a l-connected graph, is robust to the

failure of l − 1 agents. A random G(n, p) graph

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB14.3

3476

is almost surely (a.s.) l-connected for p ≥ pl =
(log(n)+(l−1) log log(n))/n, and a.s. not l-connected

otherwise [8]. It can be shown that if the set over

which the graph (which is an environmental variable)

is allowed to vary is the set of random graphs, the

algorithm is a.s. robust to l−1 failures in failure mode

1 for p ≥ pl and non-robust otherwise.

• The algorithm is worst-case, average-case and a.s. non-

robust to failure mode 2.

Proof: Consider the case when p = 1. Let the

initial conditions be such that the non-faulty N − 1
agents have values 0 while the faulty agent has value

1. Thus, the algorithm will converge with each agent

achieving the value 1, as against converging to the

correct mean for the N − 1 agents, which is 0. Thus,

PCwc(N, 1) ≤
N∑

i=1

(1 − 0)2 = N.

Since PCwc(N − 1) = 0, the algorithm is non-robust.

A similar argument holds for average case robustness.

c) Sensor Deployment [4]: Assume the density func-

tion φ(x) to be a constant. For the statements below, we

consider the communication graph to be fully connected.

• The algorithm is worst-case robust to failure mode 1

but not to mode 2.

Proof: Clearly, if p agents fail according to mode

1, the remaining N−p agents will perform exactly as if

there were only N−p agents to begin with. Robustness

to failure mode 1 can thus be shown. For failure mode

2, let the agents move in the set Q which is a line

segment of unit length. Let all the agents be stationed

at one of the ends and the agent closest to the other

end fail. Thus, PCwc(N, 1) ≥ ∫ 1

x=0
x2dx = 1

3 . When

we have N agents present, the cost is obtained by a

Voronoi partition of a unit length segment by N agents.

This can be shown to be PCwc(N) = 1
12N2 . Thus, the

algorithm is non-robust.

• The algorithm is a.s. robust to failure modes 1 and 2

for p agents failing, where p is any constant.

Proof: Robustness to failure mode 1 follows

from the worst-case robustness. For failure mode 2,

consider the case when the agents are deployed along

a straight line of unit length. Consider also the case

when only one agent fails. Suppose that the failing

agent is at the position x and there are N1 agents in

the region [0, x) and N −N1 − 1 in the region (x, 1].
Easy algebra shows that given x and N1 PC(N, 1) ≈

x3

12N2
1
+ (1−x)3

3(2N−2N1−2)2 . Thus, if the agents are deployed

according to a uniform distribution, we can show that

each typical event will have PC(N, 1) ≈ 1
12N2 . When

N is large, PCwc(N, 1) ≈ 1
12N2 with high probability.

Since PCwc(N) = 1
12N2 as well, the robustness is

obvious. For general sets Q, the proof is similar.

Discussion: How to make Algorithms Robust: In this

section, we give some ideas about how to make algorithms

robust. As a case study, we will consider the classical

Byzantine Generals problem in which a General needs to

transmit a value v to N commanders such that when the

algorithm terminates

1) All the functional (or loyal) commanders make the

same decision about the value. We are not concerned

with the final values of the non-loyal commanders.

2) If the General is functional, all functional comman-

ders receive the correct value.

For ease of exposition, we will also assume that

the General is functional. Consider the cost C =
limk→∞

∑N
i=1 (xi(k) − v)2 , where xi is the final decision

of the i-th loyal commander and N is the number of loyal

commanders. We will study the robustness properties of

three algorithms that solve the problem. The first algorithm

is similar to the average consensus algorithm discussed

above. The general is assumed to be node 1. Its state

remains at a constant value v that it needs to communicate

to others. Every other agent updates its state as

xi(k + 1) = xi(k) − h
∑
j �=i

(xi(k) − xj(k)) ,

where h is a positive constant designed to make the al-

gorithm converge. It can be easily shown that any initial

condition for the agent states is driven to a consensus

vector in which every node has the value v. Thus, the

algorithm solves the problem provided all the agents are

functional. However, let us consider the case when p agents

fail according to failure mode 2. It can be shown [9] that

as long as a node has a path from the failed agent that does

not include the general, it does not converge to the value

v. Since there can be an arbitrarily large number of such

nodes, it can be proven that the algorithm is worst-case non-

robust for any non-zero value of p. Since the algorithm is

non-robust to failure mode 2, it is non-robust to mode 3.

The second algorithm was proposed by Lamport et al [5].

They demonstrated that if one-third or more agents fail

according to the failure model 3, then no algorithm that

solves the above problem exists. For the case of less than

one-third agents failing, they gave an algorithm which

successfully solves the problem. In the simplest version of

the algorithm, the communication graph is assumed to be

fully connected. We will also make that assumption. We

illustrate Lamport’s algorithm with a simple example of one

General and three commanders. The algorithm proceeds as:

1) At time step 1, the General transmits its value v to

all the commanders.

2) At time step 2, every commander broadcasts its esti-

mate of what the General transmitted.

3) At time step 3, every commander calculates a majority

of the messages it has heard, so far, and outputs its

estimate of the decision.

If at most one commander can fail, it can be proven that

the cost C is still 0. The algorithm can be extended to N

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB14.3

3477

commanders and can be studied under slightly less restricted

communication requirements than a fully connected graph,

e.g., a 3-regular graph. We note that the algorithm fits in our

framework and that it is both worst-case and average-case

robust to failure mode 3.

The third algorithm involves including a fault-detection

step in algorithm 1. For node i, let Ni be the neighbor set

of i and Ni be its cardinality. In this algorithm, when agent

i communicates with agent j at time k, it transmits four

quantities: xi(k) (denoted by ai(k)), xi(k−1) (denoted by

bi(k)),
∑

l∈Ni
xl(k − 1) (denoted by di(k)) and Ni. Given

these quantities, each node carries out the following checks:

1) It checks if ai(k − 1) = bi(k).
2) It checks if ai(k) = (1 − hNi)bi(k) + hNidi(k).

If both these checks are successful, it carries out the

same step as the average consensus algorithm, otherwise

it identifies the node i as faulty and disregards it from that

time on. We will consider the case of one agent failing in

failure mode 2. If the failing node disconnects the network

into 2 parts, there is no hope for an algorithm to be robust.

We will assume the network is at least 2-connected. The

general is again node 1. Without loss of generality, let node

2 fail. The following can easily be proved.

1) If ∀k, node 2 transmits ai(k) = a, bi(k) = b, di(k) =
d, and Ni = N then to avoid detection, a = b.

2) Moreover, to avoid detection by some node j0,

xj0(k) = Nia−d. Thus, unless two non-faulty nodes

have the same state value at all times, at least one

will be able to detect the fault in node 2.

3) To ensure that xj0(k) remains constant, it must be

true that
∑

l∈Nj0 ,l �=i xl(k) = Nj0(Na − d) − a.

Note that the last two conditions define two surfaces param-

eterized by the values of {xl(k)}l �=i in the (a, d, N) space

where the faulty values transmitted must lie for the failing

agent to go detected. Similarly the condition that the sum

of the state values of all neighbors of j0 remains constant

places an algebraic condition on the state values of all other

nodes of the network and defines another surface. Now, it

is certainly possible to come up with initial conditions that

satisfy the above constraints. As an example consider the

topology in which the edges (1,2), (1,5), (2,4), (3,4), (3,5)

and (4,5) are present. Node 5 is the general with value

4m−n+1 while node 1 fails by transmitting values a = m,

d = n and N1 = 2. The initial values of nodes 2, 3 and 4

are 3m − 1, 2m − 3n + 1 and 2m − n respectively. Then,

the nodes 3 and 5 will be able to detect that node 1 is

faulty but not node 4. Also, the nodes will never agree on

the value of node 1. We can add any number of nodes such

that they transmit only to nodes 3 and 5 with the same initial

conditions as node 3. Thus, they too will never reach node

1’s value and the algorithm is worst-case non-robust. On the

other hand, if we choose the initial conditions randomly

from a uniform distribution over the interval (0, 1), the

probability that the three surfaces will intersect is small.

Thus, the probability that valid values of a, d and Ni will

exist is also small. Hence, with high probability, all nodes

will be able to detect that node 1 is faulty and disregard

it. Once the nodes disregard it, the algorithm will run on a

connected graph of N − 1 functional agents and hence will

terminate successfully. The algorithm is thus a.s. robust.

The common feature of the two robust algorithms is

that every node received enough information to be able to

recover from the effects of the faulty agents. In the second

algorithm, enough number of edges were present for every

node to obtain multiple copies of the same value. Thus,

it could apply majority rule and obtain the correct value.

In the third algorithm, information was being transmitted

with sufficient redundancy that each node could check if

its neighbor was transmitting inconsistently and hence was

faulty. This robustness through information redundancy is

different in nature from the robustness through cost func-
tion that was exhibited by the sensor coverage algorithm.

Whether any algorithm can be made robust through such

information redundancy is an open question.

III. CONCLUSIONS AND FUTURE WORK

In this note, we introduced a framework for defining

a distributed task and an algorithm. We then defined the

key property of robustness and considered some common

algorithms for their properties. We saw that distributed

algorithms may not be robust and discussed how one might

design them to be robust.

This work is but a first step towards a theory of robust

distributed algorithms. We are currently working on identi-

fying the properties that the cost function must satisfy for

an algorithm to be robust. An analytic tool to determine the

robustness properties of algorithms and to synthesize robust

algorithms systematically is needed.

REFERENCES

[1] ‘On Synchronous Robotic Networks - Part I: Models, Tasks and
Complexity Notions,’ S. Martinez, F. Bullo, J. Cortes and E. Frazzoli,
IEEE Transactions on Automatic Control, Submitted.

[2] ‘On Synchronous Robotic Networks - Part II: Time Complexity of
Rendezvous and Deployment Algorithms,’ S. Martinez, F. Bullo, J.
Cortes and E. Frazzoli, IEEE Transactions on Automatic Control,
Submitted.

[3] ‘Consensus Problems in Networks of Agents with Switching Topol-
ogy and Time-Delays,’ R. O. Saber and R. M. Murray, IEEE
Transactions on Automatic Control, 49(9):1520-1533, 2004

[4] ‘Coverage Control for Mobile Sensing Networks,’ J. Cortes, S.
Martinez, T. Karatas and F. Bullo, IEEE Transactions on Robotics
and Automation, 20(2):243-255, 2004.

[5] ‘The Byzantine Generals Problem,’ L. Lamport, R. Shostak and M.
Pease, ACM Transactions on Programming Languages and Systems,
4(3):382-401, 1982.

[6] ‘Distributed Algorithms,’ N. Lynch, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

[7] ‘Consensus Seeking, Formation Keeping, and Trajectory Tracking
in Multiple Vehicle Cooperative Control,’ W. Ren, Doctoral Disser-
tation, Electrical and Computer Engineering Department, Brigham
Young University, August 2004.

[8] ‘Random Graphs,’ B. Bollobas, Academic Press, London, England,
1985.

[9] ‘Decentralized Control of Networks of Dynamic Agents with In-
variant Nodes: A Probabilistic View,’ P. Hovareshti and J. S. Baras,
Technical Report: ISR TR 2004-39, Institute of Systems Research,
University of MAryland, College Park.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThB14.3

3478

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

