
Parametric Analysis of Controllers for Constrained Linear Systems
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Abstract— We analyze properties of closed-loop systems
based on explicit model predictive control (MPC) when parame-
ters of the controllers are changing. Formulation of the problem
in the framework of MPC with a cost based on piecewise
linear norms leads to the generalized multi-parametric linear
program containing parameters both in the cost and in the
constraints. The focus of the paper is on describing a novel
simplex-based algorithm for solving such a class of problems.
The algorithm uses the concept of lexicographic perturbation
to resolve problems caused by degeneracy.

I. INTRODUCTION

Recently introduced concept of the explicit solution extended
the application of the MPC paradigm to faster processes [1].
In such an approach, the MPC problem is formulated as
a multi-parametric convex optimization problem, where the
states of the system are treated as parameters, and control
inputs as optimization variables. The solution to the multi-
parametric program gives a closed-form expression for the
optimal control input as a function of the state variables.
For piecewise linear (norms 1 and ∞) and quadratic costs,
i.e. for multi-parametric linear programs (mpLPs) and multi-
parametric quadratic programs (mpQPs), the optimal control
input is defined as an affine state feedback law over a poly-
hedral partition of the feasible state space. By pre-solving
the optimization problem using parametric programming, the
computational burden is moved off-line, while the on-line
procedure reduces to simple calculation of the affine control
law.

In this framework parametric programming has reached
its renaissance as the major computational tool. A number
of different algorithms for solving parametric linear and
quadratic programs have been developed ([2], [3], [4]). The
application in the area of control motivated the search for
algorithms guaranteeing uniqueness and continuity of the
explicit control law ([5], [6]). In [6] the author provides
an elegant algorithm for the solution of multi-parametric
linear programs with parameters either in the cost or in
the constraints (but not in both). The algorithm uses the
concept of lexicographic perturbations ([7]) to guarantee both
uniqueness and continuity of the control input in the presence
of degeneracy.

Application of parametric programming in control has
focused almost exclusively on the computation of explicit
controllers. A different application was presented in [8],
where authors described a method for analyzing the stability
of a class of explicit controllers when parameters of the
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controller are changing. The proposed analysis procedure
requires the solution to so-called RIM mpLPs [9], i.e. multi-
parametric linear programs with parameters both in the cost
and in the constraints. However, the authors did not provide
an algorithm which resolves the problem of degeneracy
efficiently.

This paper contains an extension of the work presented
in [8]. We present a novel, efficient algorithm for solving
RIM mpLPs, which guarantees the correctness of the solu-
tion. The algorithm is based on the idea of lexicographic
perturbation and uses a series of primal and dual simplex
iterations to exhaustively enumerate optimal basic solutions
of the mpLP.

II. NOTATION

Given an ordered set B ⊆ N, Bi represents the i−th element
of the set. Given a vector c and a set of indices B, cB
is a vector consisting of the elements of c indexed by
B. Similarly, given a matrix A, A·B denotes a submatrix
consisting of columns of A indexed by the set B. If B = {i}
is a singleton, we will write A·i for A·{i}. The jth row of
a matrix A is denoted as Aj . Superscript indices are used
for enumeration: the matrix Ai is the i-th among several
matrices and the set Bi is the i-th among several sets etc.

A polyhedron P is an intersection of finitely many half-
spaces: P � {x ∈ R

n | Hx ≤ k}. The affine hull of a
polyhedron P is the intersection of all affine combinations
of points x ∈ P and is denoted aff(P). The dimension
of a polytope, dim(P), is dimension of its affine hull,
i.e. dim(P) � dim(aff(P)). Polyhedron P is called full
dimensional if dim(P) = n, otherwise, it is called lower
dimensional. Given a halfspace H = {x ∈ R

n | hT x ≤ k},
a face of a polyhedron P ⊆ H is any set of the form
P ∩ {x ∈ R

n | hT x = k}. Faces whose dimension is
n − 1 are called facets.

A point x0 is called an interior point of a polyhedron P =
{x | Hx ≤ k} if Hx0 < k. The set of all interior points of
P is denoted int(P). The relative interior of a polyhedron P
is defined as relint(P) � {x ∈ P | for any x1 ∈ P,x1 �=
x ∃x2 ∈ P | x = λx1 + (1 − λ)x2, 0 < λ < 1}.

III. MOTIVATION

Consider discrete-time linear time-invariant system:

xk+1 = Axk + Buk, (1)

where A ∈ R
n×n, B ∈ R

n×m. The system (1) is subject to
constraints:

Pxxk + Puuk ≤ pc (2)
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for all time instances k ≥ 0. Define the following cost
function:

J(UN−1
0 ,x0) � ‖PNxN‖� +

N−1∑
k=0

‖Qxk‖� + ‖Ruk‖�, (3)

where N is a prediction horizon, PN is a matrix defining
the weight on the terminal state xN , ‖ · ‖� with � ∈ {1,∞}

denotes the vector norm and UN−1
0 =

[
uT

0 , . . . ,uT
N−1

]T
∈

R
m·N is the vector of control moves over the time horizon.

Constrained finite time optimal control (CFTOC) requires the
solution to the following problem:

J∗(x0) := min
U

N−1

0

J(UN−1
0 ,x0), (4)

s. t.

⎧⎨
⎩

xk+1 = Axk + Buk,
Pxxk + Puuk ≤ pc,
xN ∈ Tset,

(5)

where Tset is a terminal set, i.e. the set of admissible states
at the final time instance k = N .

As shown in [10], the CFTOC problem (4)- (5) can be
formulated and solved as a linear program, for � ∈ {1,∞}.
Moreover, it can be solved explicitly as a multi-parametric
linear program (mpLP), where an initial state vector x0 is
considered as a parameter. In [8] we extended this concept
by including the parameters from the cost function (matrices
Q, R, PN ) into the vector of parameters of the mpLP.
The extended problem was formulated as a RIM multi-
parametric linear program, i.e. parametric linear program
containing parameters both in the cost and in the constraints.
The solution to this type of problems enables the direct
analysis of the properties of the controller with respect to
the parameters of the cost function (3). The computational
scheme used in [8] for solving the RIM mpLP is derived from
the simple “geometric” algorithm for solving parametric
quadratic programs described in [3]. This computational
procedure may be very inefficient for highly degenerate
problems, due to the extensive use of projection as the mean
to obtain the unique solution. Additionally, the algorithm
cannot guarantee the completeness of a solution, which has
to be verified a posteriori. Therefore, in this paper we focus
on the development of a more efficient and reliable algorithm
for solving RIM mpLPs.

IV. PRELIMINARIES

Before presenting the algorithm for solving RIM mpLPs we
will give some preliminaries on linear programs (LPs) in
general. The focus will be on the phenomenon of degeneracy
in LPs and on an algorithm for solving degenerate LPs. As
will be shown further in the text, a systematic procedure for
resolving degeneracy in LPs is crucial for the development
of the RIM mpLP algorithm.

A. Linear Programming

Consider the following primal-dual pair of LPs:

min
x

cT x, s. t. Ax = b, x ≥ 0 (6)

max
π

bT π s. t. AT π ≤ c, (7)

where x ∈ R
n, A ∈ R

m×n and rank(A) = m. We will refer
to LP (6) as the primal and to LP (7) as the dual. A crucial
concept in the theory of linear programming is the concept
of a basic solution. A basis is defined as set of indices
B ⊂ {1, . . . , n}, |B| = m such that rank(A·B) = m. The
basis B and a complementary set of non-basic indices N =
{1, . . . , n}\B define a partition of x into basic variables xB

and non-basic variables xN . A basic solution is a solution
to the system of equations in (6) with xN restricted to zero.
A basic solution for which xB ≥ 0 is called a basic feasible
solution (BFS) and the corresponding basis B is referred to
as a primal feasible basis. In the remainder of the text the
following notation will be used:

A � A−1
·B A, b � A−1

·B b, (8)

c � c − A
T
cB (9)

Expression (8) denotes the updated matrix A and the basic
solution xB = b, while (9) defines the vector of reduced
costs c. A basic dual solution is given by the equation
AT

·Bπ = cB. If a basic dual solution satisfies constraints
in (7) (dual feasible), than a basis B is called dual feasible
basis. It can be easily verified that a basis B is dual feasible
if and only if c ≥ 0.

If there are vectors x and π satisfying constraints in (6)
and (7) respectively, then there exists an optimal primal-dual
pair (x∗,π∗) as a solution to (6)- (7). A basis B∗ defining an
optimal solution is called the optimal basis. The following
standard result provides the optimality condition for LP (6):

Theorem 4.1 (LP Optimality): A primal feasible basis B
is the optimal basis if and only if it is dual feasible.

B. Simplex Algorithm

A basic algorithm for solving an LP is the simplex algo-
rithm [7]. The simplex algorithm is also the core of the
proposed computational scheme for solving RIM mpLPs and
as such will be outlined here.

The simplex algorithm starts with any primal or dual
feasible basis and performs pivot operations, until the basis
becomes both primal and dual feasible (i.e. optimal), or
until unboundedness is detected. In each of the pivot steps
a variable leaves the basis (the leaving variable) and one
enters the basis (the entering variable). These variables are
selected such that the initial primal or dual feasibility of
the basis is preserved. If the initial basis is primal feasible,
primal pivots are performed, preserving the primal feasibility.
Similarly, if the algorithm starts with a dual feasible basis, a
series of dual pivots are executed, maintaining the initial dual
feasibility. The selection of entering and leaving variables

Algorithm IV.1 Primal Simplex Pivot
1: choose index e of the entering variable such that ce < 0
2: choose the leaving variable l as:

l = argmin
j∈{1,...,m}

{
bj/Aje | Aje > 0

}
3: update the basis: B ← B ∪ {e}\{Bl}
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for primal and dual simplex pivots is given by Algorithms IV-
B-IV-B (checking of optimality and feasibility conditions are
omitted).

Algorithm IV.2 Dual Simplex Pivot

1: choose index l of the leaving variable such that bl < 0
2: choose index of the entering variable e as:

e = argmin
j∈N

{
cj/(−Alj) | Alj < 0

}
3: update the basis: B ← B ∪ {e}\{Bl}

The case when the optimal basis B∗ or the intermediate
bases are not unique is described by the notion of degener-
acy.

Definition 4.1 (Primal degeneracy): Basis B for the prob-
lem (6) is called primal degenerate if the number of nonzero
elements in the vector b is less than m.

Definition 4.2 (Dual degeneracy): Basis B is called dual
degenerate for the problem (6) if the vector of reduced costs
c contains more than n − m zero elements.
In theory, degeneracy can cause the appearance of a basis B
more than once in the pivoting procedure which can lead to
an infinite number of pivots being performed, i.e. cycling of
the simplex algorithm. Furthermore, degeneracy in paramet-
ric linear programming may introduce additional complexity
in the solution procedure and may cause the solution to
be incorrect or incomplete if not resolved properly [5]. A
systematic way to resolve degeneracy in LPs and parametric
LPs is the use of lexicographic perturbation [7].

C. Lexicographic perturbation

The crucial concept used in this scheme is lexicographic
(lexico) positivity.

Definition 4.3 (Lexico positivity [7]): A vector γ =
[γ1, ...γn]

T is called lexico positive if γ �= 0 and the first
non-zero component of γ is strictly positive.
Lexico positivity of a vector γ is denoted as γ 
 0. A vector
γ is referred to as lexico negative if −γ 
 0. For a pair of
vectors γ1 and γ2, γ1 
 γ2 if γ1 − γ2 
 0. Following the
same reasoning, in the set of vectors {γ1, . . . ,γn}, a lexico
minimum is defined as the vector γp such that γq − γp 
 0
for all q ∈ {1, . . . , n} and q �= p. A matrix is called lexico
positive if all of its rows are lexico positive. We will abuse
the notation and denote lexico positivity of a matrix M as
M 
 0.

Consider the following fully perturbed problem:

min
x

(c + δ)T x

s. t. Ax = b + ε, x ≥ 0,
(10)

where δ �
[
δ0, δ

2
0 , . . . , δn

0

]
, ε �

[
ε0, ε

2
0, . . . , ε

m
0

]
and the

scalars δ0 and ε0 are strictly positive. For the perturbed
problem (10), given a feasible basis B and the corresponding
set of non-basic indices N , the following statements are
valid.

Theorem 4.2 ([7]): If the basis B is primal feasible for
(10) for a sufficiently small ε0 > 0, then it is primal feasible

for (6). Furthermore, if the basis B is dual feasible for (10),
it is also dual feasible for unperturbed problem (6)-(7).
Feasibility of a basis for a perturbed LP problem (10)
will be referred to as lexicographic or lexico feasibility.
The following theorem gives a criterion for verifying lexico
feasibility of a basis.

Theorem 4.3 (Primal and dual lexico feasibility [7]):
For the perturbed problem (10) a basis B is:

a) primal lexico feasible if and only if
[
b A−1

·B

]

 0.

b) dual lexico feasible if and only if
[
c I − Â

]

 0,

where Â·B = A
T

, Â·N = 0.
The following theorem justifies the use of lexicographic
perturbation:

Theorem 4.4: Given any b ∈ R
m and c ∈ R

n, there exist
δ1, ε1 > 0 such that for all δ, 0 < δ < δ1, and ε, 0 < ε < ε1,
the problem (10) is neither primal nor dual degenerate.

Remark 4.1: If the original problem (6)-(7) has an optimal
solution, according to Theorem 4.4, for arbitrarily small
positive values of δ and ε, the optimal solution of the
perturbed problem (10) is defined by a single unique basis.
Lexicographic perturbation is applied through modified pri-
mal and dual pivoting rules by replacing positivity by lexico
positivity and negativity by lexico non-positivity, as given by
the following algorithms.

Algorithm IV.3 Lexico Primal Simplex pivot

1: choose index e of the entering variable such that[
c I − Â

]
e

� 0

2: choose the leaving variable index l as:

l = arglexmin
j∈{1,...,m}

{
[b A

−1

·B ]
j

Aje
| Aje > 0

}
3: update the basis: B ← B ∪ {e}\{Bl}

Algorithm IV.4 Lexico Dual Simplex pivot

1: choose index l of the leaving variable as
[
b A−1

·B

]
l
� 0

2: choose the entering variable index l as:

e = arglexmin
j∈N

{
−

[c I−Â]
j

Alj
| Alj < 0

}
3: update the basis: B ← B ∪ {e}\{Bl}

Similarly to the standard simplex algorithm, lexico sim-
plex pivot rules preserve a particular feasibility of the bases
generated in the solution process.

Theorem 4.5 ([7]): Given a primal lexico feasible basis,
performing a primal pivot according to Algorithm IV.3
preserves lexico primal feasibility. Analogously, given an
initial dual lexico feasible basis, performing dual lexico
pivots according to Algorithms IV.4 maintains lexico dual
feasibility.
It can be shown that, if the optimal solution exists, after
finitely many iterations a lexico simplex algorithms IV.3-IV.4
terminate with a basis which is lexico primal and lexico dual
feasible, i.e. lexico optimal.

Remark 4.2: Note that the variables δ and ε are not
assigned real values. Therefore, the use of the lexicographic
perturbation scheme does not raise any numerical problems.
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V. RIM MULTI-PARAMETRIC LINEAR PROGRAM

Consider the following RIM mpLP:

J∗(θ) = min
x

(c + Eθ)T x (11)

s. t. Ax = Sθ + b, x ≥ 0 (12)

where x ∈ R
n is the vector of optimization variables, θ ∈

Q ⊂ R
p is the vector of parameters and A ∈ R

m×n. In
the following, we only state the relevant properties of the
problem (11) and the corresponding solution. For an in-depth
treatment of the subject, the reader is referred to [11], [12],
[9].

The following theorem summarizes properties of the so-
lution to the mpLP (11):

Theorem 5.1: Let Q∗ ⊆ Q be the set of parameters θ for
which the linear program (11) has a finite optimal solution.
Then, Q∗ is a closed polyhedral set and the optimizer x∗(θ)
is a piecewise affine function defined over polyhedra within
the set Q∗, i.e x∗(θ) = Φiθ + γi, if θ ∈ CRi, where{
CRi

}R

i=1
, with Q∗ =

⋃R

i=1 CR
i and CRi ⋂

CRj = ∅ for
i �= j.
Solving the mpLP (11)-(12) means to compute the closed
form solution for all values of parameter θ ∈ Q∗, i.e.
computing the representation for all regions CRi and the
corresponding matrices defining the optimizer and the cost as
functions of the parameters. The regions CRi are commonly
referred to as critical regions and represent sets of parameters
for which the optimal solution to the corresponding LP
satisfies the same optimality conditions [12]. Conceptually,
the procedure for solving the parametric program (11)-(12)
amounts to solving a number of linear programs for different
fixed values of the parameter θ and computing critical
regions from their optimality conditions.

A. Lexico perturbed RIM mpLP

As already mentioned, degeneracy in parametric program-
ming has to be handled properly in order to guarantee
correctness of the solution. In this section we present a sim-
plex algorithm for solving RIM mpLPs using lexicographic
perturbation for resolving degeneracy. Consider the following
full lexico perturbed RIM mpLP:

J∗(θ) = min
x

(c + Eθ + δ)T x (13)

s. t. Ax = b + Sθ + ε, x ≥ 0, (14)

where x ∈ R
n is the vector of optimization variables, θ ∈

Q ⊂ R
p is the vector of parameters, A ∈ R

m×n and ε and
δ are lexicographic perturbations.

We will make two assumptions:
Assumption 5.1: There is a finite optimal solution for

every θ ∈ Q.
Assumption 5.2: The set of parameters Q is full dimen-

sional.
For a basis B, the associated critical region is defined as:

CRB =

{
θ

∣∣∣∣
[

b + Sθ A−1
·B

c + Eθ I − Â

]

 0

}
(15)

Note that the critical region CRB can be an empty set if
the basis B is not lexico optimal for some θ ∈ Q. Since the
values of ε and δ are considered to be arbitrarily close to
zero, the closure of a critical region is given by:

CRB =

{
θ

∣∣∣∣
[

cN + EN ·θ

b + Sθ

]
≥ 0

}
. (16)

The algorithm presented in this section enumerates all lexico
optimal bases for which the corresponding critical region
is full dimensional, i.e. dim(CRB) = p. Since the optimal
basis for each parameter θ is unique, the intersection of any
two full dimensional critical regions is empty. As we assume
that for all parameter vectors θ ∈ Q there exists a finite
optimal solution, the set Q is fully covered by the closures
of full dimensional critical regions. For convenience, in the
remainder of the paper we will use the term “critical region”
to denote its closure.

The algorithm is initialized by choosing a parameter
vector θ0 ∈ int(Q) and solving a lexico perturbed linear
program (10) for the chosen θ0. The initial parameter θ0 can
be chosen, for example, as a randomly perturbed Chebyshev
center of the polyhedron Q. Random perturbation practically
ensures that the initial lexico optimal basis B0 defines a full
dimensional critical region. If this is not the case then the
whole procedure is repeated until the initial critical region is
full dimensional.

The computed initial critical region CRB0 is defined by
the set of inequalities (16). This set of inequalities is not
necessarily minimal, i.e. it may contain inequalities whose
removal does not change the critical region. Such constraints
are called redundant and the minimal representation of the
critical region is obtained by removing all redundant con-
straints from (16). The procedure requires solving a number
of LPs, equal in the worst case to the number of inequalities
in (16) (cf. [13]).

Definition 5.1 (Adjacent critical regions):
Critical regions CRB1 and CRB2 are adjacent if CRB1 ∩
CRB2 is of dimension p − 1.
We will refer to the bases B1 and B2 defining adjacent critical
regions as adjacent bases. Starting from the initial basis B0,
the algorithm explores the set Q recursively by performing
the following two actions:

1) computing the minimal representation of the critical
region defined by the basis,

2) computing the bases defining adjacent critical regions
along each facets of the critical region

These two steps are repeated for each of the newly discovered
bases until all of the bases defining full-dimensional critical
regions have been found. The complete procedure is outlined
in Algorithm V.1.

The central component in the algorithm is the computation
of adjacent critical regions along a facet of the current region.
The following section explains the procedure in details.

B. Computation of adjacent regions

Assume that initially a lexico optimal basis B is given
and that the minimal representation of the region CRB is
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Algorithm V.1 RIM mpLP
1: compute an initial lexico optimal basis B0

2: initialize the list of unexplored bases:
Lunexplored ← {B0}

3: initialize the list of discovered bases: Lfound ← {B0}
4: while Lunexplored �= ∅ do
5: remove any basis B from Lunexplored

6: compute the min. representation of the region CRB

7: for all facets F i of CRB do
8: compute bases {Bj}r

j=1 defining adjacent critical
regions intersecting CRB on F i

9: for all of the bases Bj do
10: if the basis Bj is not in Lfound then
11: Lfound ← Lfound ∪ {Bj}
12: Lunexplored ← Lunexplored ∪ {Bj}
13: end if
14: end for
15: end for
16: end while

described by the following set of inequalities:

CRB = {θ | Hθ ≤ k} .

Consider the facet of the region CRB given by the f th

constraint:

F =
{
θ ∈ CRB | Hfθ = kf

}
where Hf denotes the f th row of the matrix H. The goal is
to find, starting from the initial basis B, all the bases that are
lexico optimal “just across the facet”, i.e. for parameter θ̂ =
θ0 + αHT

f with θ0 ∈ F and α > 0 arbitrarily small. When
the value of α is increased from zero, some of the constraints
in (15), defining the optimality of B, will change from lexico
positive to lexico non-positive. This change indicates the loss
of primal or dual feasibility (or both) for the parameter θ̂.
The following two sets of indices identify constraints that
may change sign when moving from some θ0 to θ̂:

Tp =
{
i | b̄i + S̄iθ = 0, ∀ θ ∈ F

}
(17)

Td =
{
i ∈ N | c̄i + Ēiθ = 0, ∀ θ ∈ F

}
, (18)

where N is the ordered set of non-basic indices correspond-
ing to the basis B. Note that all constraints not in Tp and Td

remain strictly positive for some sufficiently small α > 0.
We distinguish the following cases:

1) (Tp �= ∅ and Td = ∅) OR (Tp = ∅ and Td �= ∅)
2) Tp �= ∅ and Td �= ∅

The case when both Tp and Td are empty is not possible as
this would imply the optimality of the basis B outside the
region CRB. In the case 1, dual or primal lexico feasibility
of the basis B is preserved for the parameter θ̂, i.e. on the
other side of the facet F . If the basis B is dual lexico feasible
at θ̂, the goal is to achieve primal lexico feasibility while
preserving the initial dual lexico feasibility. This is done by
performing dual lexico pivots. Likewise, if the basis B is
primal lexico feasible at θ̂, we take primal lexico pivots.

However, in case 2 when the initial basis B is neither
primal nor dual lexico feasible for the parameter θ̂, we cannot

proceed with the simplex pivoting scheme outlined above.
Instead, we consider a different pivoting scheme known as a
Criss-Cross method, which does not require primal or dual
lexico feasibility of the initial basis B [14].

We will now give detailed description of the pivoting
schemes for all three cases.

1) Dual Pivots: Assume the case when Tp �= ∅ and Td =
∅, i.e. when the initial basis B is dual lexico feasible for the
parameter θ̂.

Consider the following auxiliary fully perturbed paramet-
ric LP:

min
x

∑
i

[
c + Eθ + αEHT

f + δ
]
i
xi

s. t.
∑

i

Ajixi = SjH
T
f + εj , xi ≥ 0,

θ ∈ F , j ∈ Tp, i ∈ BTp
∪N

(19)

where α > 0 is arbitrarily small and δ and ε are lexico-
graphic perturbation vectors.

Proposition 5.1: Let {B̃i} denote the set of lexico opti-
mal bases defining full dimensional critical regions for the
parametric problem (19). The set of bases defining critical
regions adjacent to CRB along the facet F is defined as
{B̃i ∪ BJ } where J = B \ BTp

.
Proof: See [15].

As stated above, the solution to the problem (19) is obtained
by performing dual simplex pivots starting with the basis B,
which is dual lexico feasible for a sufficiently small α > 0,
implying the following lexico positivity:[

c + Eθ + αEHT
f I − Â

]

 0. (20)

The condition (20) has to be fulfilled for some α > 0
arbitrary small and, therefore, the lexico inequality (20) can
be equivalently written as:[

c + Eθ EHT
f I − Â

]

 0. (21)

In each pivot step, given index l of the variable leaving the
basis, the index of the entering variable is chosen according
to the following rule:

e = arglexmin
j∈N

{
[ c+Eθ EH

T
f I−Â ]

(−Alj)

∣∣∣∣ Alj < 0

}
. (22)

The lexico minimum rule (22) is derived directly from the
standard dual simplex method (Algorithm IV.4) and guaran-
tees that dual lexico feasibility of the basis is preserved for
θ̂. If

[
c + Eθ

]
j

> 0 for all j ∈ N such that Alj < 0, lexico
minimum choice (22) is parameter dependent. For this case,
we define the set of variables E as the set of all j ∈ N for
which there exists θ ∈ F and j is the minimum in (22).
Consider the following polyhedron:

F̃j =

{
θ ∈ F

∣∣∣∣ cj + Ejθ

(−Alj)
<

ck + Ekθ

(−Alk)

}
, (23)

where Alj ,Alk < 0 and j, k ∈ N , j �= k. A variable j enters
the set E if the polyhedron F̃ j ⊂ F is not empty. This can
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be verified by computing the Chebyshev center of the poly-
hedron F̃ j , which requires solving a single linear program.
The complete procedure is outlined in Algorithm V.2.

Algorithm V.2 Function DualPivot
INPUT: dual lexico feasible basis B, the facet F
OUTPUT: list of optimal adjacent bases Ladj

1: select the leaving variable:

l = arglexmin
j∈Tp

{j

∣∣∣∣[SHT
f A−1

·B

]
j
� 0}

2: if {l} = ∅ then
3: return Ladj ← {B}
4: end if
5: select entering candidates: Ec =

{
j ∈ N | Alj < 0

}
6: if Ec = ∅ then
7: return ∅ {/* dual problem is unbounded */}
8: end if
9: Ze =

{
j ∈ Ec |

[
c + Eθ

]
j

= 0, ∀ θ ∈ F
}

10: if Ze �= ∅ then

11: entering variable: e = arglexmin
j∈Ec

{
[EH

T
f I−Â]

j

(−Alj)

}
12: return DualPivot (B ∪ {e}\{l}, F)
13: end if
14: for all j ∈ Ec do
15: compute F̃ according to (23)
16: Ladj ← Ladj ∪ DualPivot(B ∪ {j}\{l}, F̃ )
17: end for
18: return Ladj

2) Primal Pivots: In the case when the basis B0 is primal
lexico feasible for the parameter θ̂, according to the same
reasoning, the following auxiliary problem is formulated:

min
x

∑
j

[
EHT

f + δ
]
j
xj

s. t.
∑

j

A·jxj = b + Sθ + αSHT
f + ε, xj ≥ 0,

xk = 0, θ ∈ F , j ∈ Td, k ∈ N\Td

(24)

The problem (24) is solved by performing primal simplex
pivots. The lexicographic rule for the selection of the entering
variable e and the leaving variable(s) is given by:

e = arglexmin
i∈N

{[
EhT

f I − Â
]

i
� 0

}
(25)

l = arglexmin
j∈{1,...,m}

{
[ b+Sθ EH

T
f A

−1

·B ]j

ABje

∣∣∣∣∣ ABje > 0

}
, (26)

3) Criss-Cross Method: In case 2 of Section V-B, when
both primal and dual lexico feasibility of a current basis B
are violated for the parameter θ̂, direct application of the
above proposed methods is not possible. An elegant and
simple solution is to apply the so called Criss-Cross pivoting
scheme [14]1, which does not require an initial lexico feasible
basis. The method used in the algorithm is also known as the
least-index Criss-Cross method. A pivot iteration begins by
choosing the variable with the smallest index among basic

1The authors gratefully acknowledge prof. Fukuda Komei for suggesting
the application of the Criss-Cross method

variables violating primal lexico feasibility and non-basic
variables with a negative reduced cost. If a non-basic variable
is chosen, a primal pivot is performed. Similarly, if the least
index variable is a basic variable, then the basis is updated
using a dual simplex pivot. In order to obtain a unique lexico
optimal basis, we incorporate lexico rules into the algorithm.
Detailed explanation of the algorithm can be found in [15].

In theory, the presented Criss-Cross pivoting scheme could
also be used for the cases when the initial basis is primal or
dual lexico feasible for the parameter θ̂. However, practical
experience shows that the Criss-Cross algorithm typically
requires more pivoting iterations compared to the primal or
dual simplex pivoting procedures.

VI. CONCLUDING REMARKS

A novel, computationally efficient algorithm for solving
RIM multi-parametric linear programs is presented. The
algorithm uses the concept of lexicographic perturbation
for resolving problems related to degeneracy. The result-
ing solution procedure amounts to enumerating the bases
defining full dimensional critical regions by simple pivoting
operations. The algorithm presented in this paper guarantees
completeness of the obtained solution.
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