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Abstract— This paper presents the development and demon-
stration of non-Gaussian, decentralised state estimatiomising
an outdoor sensor network consisting of an autonomous air ve
hicle, a manual ground vehicle, and two human operators. The
location and appearance of landmarks were estimated using
bearing only observations from monocular cameras. We show
that inclusion of visual and identity information aids validation
gating for data association when geometric information alae
cannot discriminate individual landmarks. The combination of
geometric, appearance, and identity information provided a
common description (or map) of natural features for each of
the nodes in the network. We also show the final map from
the live demonstration which includes position estimates rad
classification labels of the observed features.

. INTRODUCTION

This paper aims to demonstrate non-Gaussian algorithms
for decentralisedstate estimation using geometric informa-
tion with the aid of visual and identity information for _ _ N

. . . N, . .. Fig. 1. The platforms used in the network: autonomous aifclehground
validation gating and data association. A common desonpti vehicle, and human operator. Close-ups of the sensor pig/lage shown
(or map) of natural features in an unstructured environmefithe insets.
was created online by an outdoor sensor network consisting
of an autonomous air vehicle, a manual ground vehicle,
and two human operators (Fig. 1). Unique aspects of thig,oyledge only of its immediate neighbours - there is no
demonstration were (1) use of colour information from wuisio global knowledge of the network topology.
sensors to augment geometric information resulting infa ric” preyious approaches to robust decentralised data fusion
world map, (2) integration of human operators as informmatiop e included tracking position features provided by range
sources, and (3) decentralised operation enabling a paacti yeyices such as radar or laser [2], tracking artificial visua
system which was robust, modular, and scalable. _ features with known range [7], monitoring temperature [t1] o
. Appllcathns that beneflt_ from mu_Itl—sensor data fus'orbeople movement [8] in an office environment. Nettlegn
include environmental sensing, surveillance, and seanth- 5| showed that scalable decentralised state estimation with
rescue [1], [2], [3]. In each of these problems, individ-Ga,ssian noise can be achieved in outdoor environments
ual nodes of the network make local measurements Qing autonomous air vehicles observing features with know
observations of the common environment and attempt {§mensions [7]. Through the information (canonical) form
combine the measurements to produce a global estimale  Gaussian, it was shown that local and communicated
pf the_ observed state. The fusion approach adopted h‘?ﬁ?ormation can be fused at any time and any order us-
is motivated by the need to survey and map large outdog{y aqditive information matrices. However, these additiv
natural environments in which distributed sensor networkgysorithms are only valid for Gaussian representations and
are prone to node and/or communication failure. In contragly not extend to general probabilistic distributions. Rask
to hierarchical and centralised distributed methods [8], [ ot a1 also demonstrated a DDF framework using a general
decentralised architectures ensure robustness to thksesa algorithmic architecture applicable to many multi-sensior
while allowing scalability and modularity [6]. Three basic ,4tions. They implemented a Mote network for temperature

constraints are required to guarantee these properties: s@nsing although only Gaussian noise was considered and a
There is no single central fusion centre and no node should,e topology over the network was enforced [1].

be central to the operation of the network, 2) There iS N0 hjer ot a1, demonstrated that non-parametric distributions

common communications facility - communication must b4 pe used for sensor-calibration in a network with non-
kept on a strictly node-to-node basis, and 3) Each node hgs s metric belief propagation [9]. Although this algorith

Australian Centre for Field Robotics, University of Sydnéyustralia converges t.O the true_State 'n. a number of cases, .'t can
b. upcroft @as. edu. au also result in overconfident estimates due to the fusion of




common information. Rosencran& al. also showed that | et |
decentralised state estimation can be performed with non-
Gaussian representations where range and bearing observa
tions from a laser were fused with a particle filter [2]. ’
Unlike the above approaches, we concentrate on modelling

natural features at three levelggeometri¢ identity, and
appearancq10]. At the geometric level we have extended
previous decentralised research to include bearing only,
visual observations of natural features rather than range-| (——
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these ideas to multi-target identification [13]. I “sensor I
Observations of identity states (class labels), with corre | T

sponding geometric observations, allowed human perceptua NS

information to be fused into the network. Probabilistic fu- | tocalFler

sion of human and robotic information sources has been

previously addressed only in theory or with non-probatidlis Fig. 2. Flow chart of the operations performed in distrilbutestimation.

human observations [14], [15], [16]. Identity could also be

inferred from appearance states which improved classifi-

cation and hence data association. Real-time classifitatiehe posterior over the previous state, @l = {z;, Z* '}

using non-Gaussian probabilistic, visual/appearanceefsod is the set of observations from all nodes in the DDF network.

has recently proven to be accurate [17], [18], [19]. We The local prediction step is given by the Chapman-
show that augmenting the geometric states of features wikbimogorov equation:

these models increases the robustness of validation gating

for track-track association. p(xp|ZF 1) = /p(xk|xk,1)p(xk,1|Zk_1,xo)dxk,l @)
The following sections detail the algorithms and illus-

trate results from a live demonstration. Sections Il and IWwherep(xy|xx—1) is the transition probability density, and

describe the decentralised non-Gaussian fusion algosithm(xz_1|Z"~!, x¢) is the updated estimate from the previous

used in this work. Sec. IV describes the feature extracticime step.

and appearance modelling of landmarks observed through a

monocular camera. Sec. V shows the addition of class labefs

to the appearance model allowing human operators to inputlt can be shown that fusion of the raw correlated informa-

information into the network. Finally results are shown irtion between nodesand is [20], [21]

Sec. VI with conclusion and future work in Sec. VII. B 1p(x|Zi)p(x|Zj)

p(x|Z; UZj;) = c PXZiNZ) 3

— - — =

Node-to-Node Fusion

Il. DECENTRALISEDBAYESIAN ESTIMATION

The algorithmic structure in decentralised estimatiomés t WhereZ;;) are all the observations available to nodg),
same for every node in the network and is outlined in Fig. 22(x|Zi UZ;) is the posterior probability over the unknown
Each sensor makes an observation over which a likelihood$ate given information from both nodes(x|Z;;)) are
generated. Data association is then performed with egistiin® posteriors based only on locally available information
local tracks where either fusion or track initialisatiokea P(X1Z: N Z;) is the information the two nodes have in
place. Information can then be communicated to other nod€8mmon, and: is a normalising constant.
via the channel filter and subsequently assimilated. Thus the problem of constructing the unidh U Z;,

The following sections describe the general Bayesian filtdfduces to finding the common informatiéh N Z; and
so as to introduce notation and from which specific GMMS thekeyto the decentralised communication problem. The
algorithms can be derived. incorporation of redundant information in DDF systems may

lead to bias, over-confidence, and divergence in estimates.
A. Local Filter

The recursive update after an observation is given by
Bayes theorem:

IIl. GAUSSIAN MIXTURE MODEL BAYESIAN FILTER

A number of representations have previously been used
for multi-modal stochastic models in filtering and tracking
X p(z = Zk|Xk)p(Xk|Zk_1) These include particles [22], kernel density estimated, [23
p(xk|Z7) = k—1 () and mixture models [11]. Although particle representation
p(zk]|Z77) ! )
are powerful non-Gaussian representations, they sufben fr
whereZ* are observations of a state. at timety, p(z|x;) the curse of dimensionality. Kernel density estimates also
is the likelihood modelp(xk|Zk*1) is the prediction from require many components for accuracy in high dimensions.




In this work, we use Gaussian mixture models (Gaussian 1) Covariance Intersect Filter:Consider two estimates
sum approximations) which require fewer components far, and u;, with covariancesy, and X, respectively. The
accurate estimation but have the disadvantage of full ¢covaCl algorithm computes an updated covariance matrix as a
ances needing to be specified. Additionally, GMMs provideonvex combination of the two initial covariance matrices i
a basis for analytical solutions to the general Bayesiathe form
filtering problem [11]. The following will briefly describe 1 1 1
the algorithms for DDF with GMMs. N o= wES +H(1-w) @)
ian mi is defi i S e = w3 e+ (1 -w)zt (8)
A Gaussian mixture model is defined for a random variable c He a Ma b Mo

X as where0 < w < 1 with w computed so as to minimise a

N chosen measure for the size of the covariance matrix.
p(x) = Z mil (x|pi, i) ) The resultant estimate is based on all possible correkgtion
=t and thus removes the need for the division in Eq. 3.

wherex are the observations d, m; are positive weights ~ 2) GMM CI: An extension to the CI algorithm involves
with the propertyzz»\il m =1, N(x|u, S;) is a Gaussian @ pairwise Cl update between each of the Gaussian compo-
probability density (also known as a Gaussian mixture conflents in the two mixtures that are to be fused. The weight
ponent) with meanu; and full covariance;, and N is the Update for each component is given by

number of mixture components. T, = QT (9)

A. Local Filter where
o= ! e 1/2(na—p) "5 (pa—ps) (10)

Substitution of GMMs into Bayes Theorem (Eg. 1) gives (27)P/2 |3 |1/2

M N is the scaling constant resulting from the multiplicatioh o
pxklzi) = A miNo Y miNoy (5)  two GaussiansD is the dimension of the space, abid =
i=1 =1 Ya/w~+ Sp/(1 —w).

We have found that this update remains non-divergent
for all the practical scenarios we have encountered and is
. R always better than a straight multiplication in which the
represent the predictignix |zx—1). Similarly for 7. and7...  5mmon information is not accounted for at all. Although

~ Expanding Eq. 5 results i/ x N terms, each which g conservative behaviour is not guaranteed we hope that
involve a multiplication of two weighted Gaussians. Thus;, future work convergence bounds can be defined.

the posterior distribution is represented bfyx N weighted

Gaussians. IV. FEATURE EXTRACTION AND MODELLING

GMMs also allow an analytical solution to the Chapman- Monocular vision sensors were used as the only robotic
Kolmogorov equation. Substituting GMMs into Eq. 2 resultdnformation sources in our demonstrations. This resulted i
in a convolution betweed/ x N weighted Gaussians with difficulties discriminating between landmarks due to captl

whereA = 1/p(zy|zx—1) is a normalising constant, th€,’s
represent the likelihood distribution(z,, |x;), and theMN,'s

each term a Gaussian of the form [24] ping bearing-only observations. Thus, validation gatiagdd
only on position information had a high likelihood of faigin
TN (pa + po, 2 + X7) (6) We show here that a visual representation of the landmarks

can be maintained in addition to a position representation
where the subscripts denote the variables for the two Gaugproving track-track association. The following secton
sians andr is a constant weighting term. outline the feature extraction preprocessing stage and how
The multiplicative expansion in parameters requires the features can be used to estimate position and appearance
component merging technique to keep the above operations i
tractable. We use Salmond’s algorithm [25] which results iff- Feature Extraction
relatively accurate estimates. Feature extraction was performed with colour template
matching [28]. Off-line, 3-D template colour histograms
were created from manually selectetix 11 image patches.
Online, each image was scanned for matching patches. A
A non-optimal solution for node-to-node fusion of Gausthreshold for the value of the Bhattacharyya coefficien{ [29
sian representations is the Covariance Intersect (ClY filtevas used to determine how closely a given patch resembled
which conservatively combines the information in two in-the template. The left hand side of Fig. 3 illustrates theieal
coming channels assuming that the correlation is unknowaf the Bhattacharyya coffficient for a “tree” template and al
[26]. Here, we use Gaussian mixture models (GMMs) and the patches in the image on the right hand side.
variant of the Covariance Intersect algorithm [27]. Howeve Contiguous patches above a given threshold were deemed
as in the work of Ihleret al. [9] and Rosencrantet al. [2] a landmark of which the centroid was assigned bearing and
divergent solutions are possible. elevation coordinates. The geometric states could then be

B. Fusion - Pairwise Component Covariance Intersect
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Fig. 4. Graphical model depicting the dependencies in the yobability
distribution for appearance.

Fig. 3. Left: The value of the Bhattacharyya coefficient gised to . . . . . .
each patch from the image on the right using a template pidkest  discrete hidden variabkeintroduced in the model physically

a tree (red indicates a value of 1 while blue indicates a valti®). represents a specific neighbourhood on the manifold over
Right: An example image obtained from a UAV. The arrows iatic \ynich g mixture component is representative. This repre-
the correspondence between the Bhattacharyya coeffic@oess and the . . ) . .
extracted patches marked with squares. sentation conveniently handles highly nonlinear man#gold
through the capability of modelling the local covariance
structure of the data in different areas of the manifold. It

estimated using a bearing-only likelihood model [30]. ThSan be trained with very large datasets and the computétiona

model was approximated in Cartesian space with a GMM ancd)st of inference is independent of the number of training

was learnt off-line using Expectation-Maximisation (EM)sampIes. . . o o
. . . : The following outlines the specific parameterisation for

[27]. Online observations only required rotation of the GMM .

i ) k : . he model:
to the specific bearing and elevation coordinates whichctou
then be locally fused using the equations outlined in Séc. II p(z,x,8) = p(z|x,s)p(x|s)p(s) (11)

1

B. Appearance Model p(z|x,s)

| | CoREARE
The colour histograms from the feature extraction also o b= Aux— i) TV (2 Ax—pa) (12)

doubled as appearance observatiankach histogram con-

tained 93 bins (729 dimensions) representing the RGB in- p(x|s) = %e*%(x*”sfx?l(x*”s) (13)
formation. The high dimensionality of these observations (2m)2 [5s]2

required a compression step which could be achieved throughwhere ;i and U are the means and covariances of the
a number of dimensionality reduction algorithms includingmixture describing the high dimensional spacg,and %
principal components analysis (PCA) [31], multidimensibn are their counterparts in the low dimensional spatgeare
scaling (MDS) [32], Locally Linear Embedding [33], Isomapknown as the loading matrices and model the transformation

[34], and many variants. We chose Isomap as it preservggtween the two spaces,e {1,...,N} where N is the
the neighbourhood of points in the low dimensional maninymber of components of the mixture.

fold and automatica”y estimates the number of dimensions Given the results of |50map, the parameters for the joint

required to retain relevant information. _ . _ distribution p(z, x, s), can be learnt off-line using Expecta-
However, Isomap and indeed most nonlinear dimensiofion Maximisation (EM) [36], [37]. Note that learning with

ality reduction algorithms are inherently determinisitiley  poth low and high dimensional data and z, appears to

do not provide a measure of the uncertainty of the underlyingnprove the solution compared to just high dimensional data

statesx, from noisy high dimensional observations. In addi{3g].

tion, all the original training data must be stored to coreput  Once the model has been learnt, real-time inference can

the embeddings for new observations. We overcome this Iys performed online. A threshold for a given probabilistic

using the results of Isomap to train a generative probaioilis distance measure (in our case the Bhattacharyya coefiicient
model which encapsulates the uncertainties inherent in t@n then be used for validation gating.

inference of a low dimensional state, from noisy high
dimensional observations V. HUMAN OPERATORS

The probabilistic model can be used to map inputs to Human operators are considered an integral part of the
outputs and vice versa by computing the expected valussnsor network. They can play several roles when inteictin
E[z|x] and E[x|z]. We define a joint distribution similar to with the network [10]. Here, we regard the operator as an
a mixture of factor analysers, commonly used in the machiriaformation source contributing both geometric and visual
learning community to perform simultaneous clustering andbservations [39]. Two methods for location entry were
local dimensionality reduction [35]. The only differenca® used: 1) Operators entered observations on a graphical user
that the low dimensional variabte is observed, not hidden, interface (GUI) displaying an aerial map obtained prior to
and the Gaussian distributiongx|s) have nonzero mean the actual demonstration and 2) by estimating the range and
vectorsv,, and full covariance matrices,. The graphical bearing of a feature relative to their own position. Raw kng
model in Fig. 4 depicts the assumed dependencies. Thad bearing observations were converted using a human



sensor model learnt off-line and thus both location entrgddition to a single vision sensor. The two human operators
methods resulted in a probabilistic estimate of the sanma forwere able to input and receive information using tablet PCs
as the robotic representation. with attached hand-held GPS units. Physical communication
Entry of visual information ultimately influenced the inrfer between nodes was achieved with standard IEEE 802.11b
ence in the joint probabilistic model. Visual informatiomsv wireless network adaptors using the UDP protocol. The sys-
entered in the form of identity state observations represkn tem architecture as a whole was developed using the Active
by a random variables, as shown in Fig. 5. The sensorSensor Network framework [40] while the software imple-
model P(o|s) was specified manually [39]. Here we showmentation of the system adopted the component paradigm of
the Orca robotics projektThis ensured a modular approach
@ to development and ease of software component interaction
" and communication which is essential in such a system.
Decentralised communication and testing of various prob-
/ abilistic representations also required the developmént o
a low-level communication software libr&ryand a general
library for probabilistic algorithm&s
The experiments were performed at an outdoor test facility
over an area of a few square kilometres. The position of
Fig. 5. Graphical model with the additional identity obseions. each of the vehicles and the fused estimates at each of the
nodes could be monitored with an online GUI overlaying

a correspondence between mixture components and feat@r§€o-referenced aerial image taken prior to the demonstra-
identity leading to the interpretation of the node as an tion. A number of objects such as trees, sheds, and cars
identity label. This enabled us to classify a subset of th&ere surveyed using differential GPS measurements alipwin
data a priori with human interpretable labels. Maximum¢omparisons to ground truth.
Likelihood could then be used to learn the parts of the model Each platform maintained a bank of decentralised, non-
with labelled data while EM could still be used for unlabelle Gaussian Bayesian filters for the features it observed, and
data. With the addition of identity labels, human operator§ansmitted the information to all other platforms. The net
could input meaningful observations aiding inference fofesult was that each platform maintained a complete map of
appearance. all features observed by all nodes in the network. Multiple
Figure 6 shows low-dimensional data points for outdoopbservations of the same feature, possibly by differertt pla
features from Isomap with the learnt covariances from thfrms, resulted in an increasingly accurate estimate of the
above model. Each 729-dimensional patchvas reduced to feature location foall nodes.

A. Accuracy of Position Estimates

Fig. 7 illustrates GUI screenshots of a sequence of map
== updates for observations of a tree from a ground vehicle.
The camera was mounted sideways so forward movement
automatically increased the baseline between obsengation
Treounk comptent As the vehicle moved past the tree, the updated estimate
increased in accuracy and converged to the true location of
the object (indicated by the white cross). Note that thellabe

: representing the component with the highest probability
“ inferred from the appearance model, also correctly ideatifi
the object.

o

White car component
Y1

Fig. 6. The low dimensional embedding from Isomap with tharré

covariances from the probabilistic model. The data corthihi2388 patches B, Improved Track-Track Association using Appearance
from outdoor features. The Isomap residual also indicdtati3 dimensions

would be adequate for retaining the relevant information. The ground vehicle shown in Fig. 1 circled around the
tree and the red car displayed in Fig. 8(a). Fig. 8 illustate

. . . - . the difficulty in track to track association when position
a 3-dimensional representatiaras indicated by the residual : . .
bservations are the only source of information. As can

of Isomap. The number of components was chosen to tge

27 with 17 of them manually assigned a label. Two of thee seen in Fig 8(b), observ_gﬂon_s of the_tree and the red
. . car overlap. Based on position information only, all the
labelled components are shown in the figure.

observations were fused into one single estimate (Fig).8(c)
VI. RESULTS However, when the visual states of the tree and the car were
The algorithms were demonstrated using a four nod@cluded, two different tracks were maintained (Fig. 8(d))
network _vvith three of .the pIaFforms iIIustraFer ?n Fig. 1. Ihttp://orca-robotics.sf.net
Both vehicles were equipped with Global Positioning System 2xty://crud.sf.net
(GPS) and Inertial Measurement Unit (IMU) sensors in 3hitp://spasm.sf.net



Fig. 7. Surveyed differential GPS locations are marked agewdrosses on the aerial photograph. Ellipses of the sarmeircare 2-D projections of
a Gaussian mixture representing the position estimate dafiglesfeature. Labels indicate the component with the rsgtpeobability inferred from the
appearance model. The ellipses and labels combine to makeeugntire map. The red line represents the trajectory thlgetihe vehicle.

(G (b) (© (d)

Fig. 8. (@) The two landmarks: a tree and a red car. (b) beanig observations of these landmarks. (c) Position eséméthe two landmarks without
appearance discrimination. Note that only one track watalisied. (d) Position estimate with appearance discrétim. Two tracks were maintained
although the locations of the landmarks were very close.drband vehicle is represented by a red rectangle and iectoay indicated by the red curve.

Fig. 9. RHS: The belief of one of the nodes in the network. Esehof coloured ellipses corresponds to a particular featund the labels represent
the identity state with highest probability. The icons egant each of the different nodes in the network; UAV = airicleh GV = ground vehicle, HO =
human operator. LHS: the original aerial image with arroughlighting a few of the correspondences with the belieftef hode.



C. Decentralised Fusion Map [17]

The map shown in Fig. 9 is a live screenshot of the belief
of one of the platforms after multiple nodes entered th&S8]
network. Each set of coloured ellipses with a corresponding
label represents a different feature. Qualitatively, ib d® [19]
seen that an accurate map with correct feature classificatio

was achieved. [20]

VIl. CONCLUSION [21]

We have shown decentralised state estimation with Gaulg2]
sian mixture models in combination with appearance models
to aid in validation gating for data association. The algops]
rithms were demonstrated on a network involving hetero-
geneous platforms in a large outdoor area. In the future 4]
hope to continue investigating conservative fusion teghes
for non-Gaussian representations and define non-divergd#fi
bounds for these methods.

[27]
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