Model Checking For Fault Explanation

Shengbing Jiang and Thomas E. Fuhrman

GM R&D, MC: 480-106-390
30500 Mound Road
Warren, MI 48090-9055

Email: shengbing.jiang, thomas.e.fuhrman@gm.com

Abstract— Model checking is very effective at finding out even
subtle faults in system designs. A counterexample is usually
generated by model checking algorithms when a system does
not satisfy the given specification. However, a counterexample
is not always helpful in explaining and isolating faults in
a system when the counterexample is very long, which is
usually the case for large scale systems. As such, there is
a pressing need to develop fault explanation and isolation
techniques. In this paper, we present a new approach for the
fault explanation and isolation in discrete event systems with
LTL (linear-time temporal logic) specifications. The notion of
fault seed is introduced to characterize the cause of a fault.
The identification of the fault seed is further reduced to a
model checking problem. An algorithm is obtained for the fault
seed identification. An example is provided to demonstrate the
effectiveness of the approach developed.

I. INTRODUCTION

Model checking ([3]) of a faulty system against a suite
of temporal logic specifications produces a counterexample
to those specifications which are not satisfied by the system.
The counterexample produced by model checking algorithms
has traditionally been accepted as the final result of the
“bug-finding” mission. However, it is now being realized that
the counterexample is not always helpful in explaining and
isolating faults in a system when the counterexample is very
long, which is usually the case for large scale systems. As
such, there is a pressing need to develop fault explanation
and isolation techniques.

It has been shown in [1] that correct execution traces can
be used to localize the cause of the fault in a counterexample
trace. The use of the closest correct trace to a counterexample
trace for isolating the fault has also been suggested in [5],
[6]. There has also been an attempt ([2]) to generate abstract
explanations for the faults by using the predicates involved
in the abstraction instead of the actual values of the atomic
propositions in each state of the counterexample trace.

In this paper, we present a new approach for the fault
explanation and isolation in discrete event systems with LTL
(linear-time temporal logic) ([3]) specifications. Generally
speaking, the fault explanation and isolation is to identify
the cause of a fault. In other words, we have the relation of
cause = fault, and now we have a fault, which is represented
by the counterexample, and we want to identify the cause.
Then the question comes to the definition of the cause, i.e.,
what is the cause and how to characterize the cause.

Sumit K. Jha
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Email: jha+@cs.cmu.edu

In discrete event systems, a fault is usually caused by the
execution of a small set of transitions in a certain order.
With the above observation, we use the notion of fault seed
to characterize the cause of a fault. Intuitively, a fault seed is
an ordered set of transitions such that any trace of the system
containing these transitions in the set by the given order is a
faulty trace, where a trace is called a faulty trace if it violates
the given specification. Now the fault explanation becomes
the identification of the fault seed. The identification of the
fault seed is further reduced to a model checking problem.
More precisely, given a candidate for the fault seed, we first
encode the candidate by a LTL formula (called candidate
formula), and then model check the system for the property
of “candidate formula = —Specification”. A candidate is
a real fault seed if and only if the system satisfies the
property candidate formula = —Specification. To obtain the
candidates for the fault seed, we use a brute-force approach
based on the facts that the length of a fault seed is usually
short and a long fault seed will not provide much help for the
explanation of the fault. So we list all possible ordered sets
of transitions up to a given length bound as the candidates
for the fault seed and then perform the model checking for
each candidate until a real fault seed is found.

Note that the problem of fault explanation and isolation
studied here is different from the problem of failure diagnosis
studied in [8]. In [8], the failure diagnosis problem of discrete
event systems with LTL specifications was studied; and
the problem was to diagnosis the occurrence of the faults
(violations of the LTL specification) while the system is
in operation based on limited observations of the system
behavior. For the problem of fault explanation and isolation
studied here, we already know that there is a fault in
the system (represented by the counterexample), but we
do not know what and where the actual fault is, and we
need to identify what and where the fault is based on the
counterexample and the model of the system, and there is
no issue of partial observation.

The rest of the paper is organized as follows. In Section 2,
we present some notations and preliminaries. In Section 3,
we study the problem of fault explanation. We first introduce
the notion of fault seed and then reduce the fault seed
identification problem to a model checking problem. In
Section 4, we provide an illustrative example.

II. NOTATIONS AND PRELIMINARIES

In this paper, we use LTL temporal logic to express the
specifications of discrete event systems. In the following,
we give the definition of LTL. For a complete introduction
to temporal logic, readers may refer to [4].

Let AP be a finite set of atomic proposition symbols.
Using the atomic propositions and boolean connectives such
as conjunction, disjunction, and negation, one can construct
more expressions describing properties of states. However
one is also interested in describing the properties of se-
quences of states. Such properties are expressed using fem-
poral operators of a temporal logic. LTL temporal logic is a
specific temporal logic formalism. The following temporal
operators are used in LTL for describing the properties
along a specific state-trace: X (“next time”), U (“until”), F'
(“eventually” or “in the future”), G (“globally” or “always”),
and B (“before”).

LTL formulae are generated by rules P1-P3 given below.

P1 If p € AP, then p is a LTL formula.

P2 If f; and f5 are LTL formulae, then so are —f1,

1V f2, and fi A fo.

P3 If f1 and fo are LTL formulae, then so are X f1,

[Uf2, Ff1, Gfi, and f1Bfs.

Next we give the semantics of LTL, which is defined over
infinite proposition-traces. Let X 4p = 247, then X% be
the set of all finite proposition-traces over AP, and X% , be
the set of all infinite proposition-traces over AP. For a LTL
formula f and m € ¥4 p, the notation 7 |= f (resp., w = f)
means that f holds (resp., does not hold) along the infinite
proposition-trace 7. The relation = is defined inductively as
follows, where we assume that f; and fo are LTL formulae,
and for m = (Lo(m)Lq (7)) € 24 p, m° = (L;(m)---) for
any ¢ > 0.

l) If f1 S AP, then ’: fl <~ f1 S L()(ﬂ').

2) nlEfi = (1 E f).

3) 7T’:_‘f1 < W%fl.

4) W}:fl\/fg <~ ﬂ":fl Orﬂ}:fg.

5) W):fl/\fg < 7T|:f1 and7r|:f2.

6) W):Xfl <~ ml ':fl

N 7alE filfs <= 3k >0, 7" f, and Vj €

{0,1,---,k =1}, ¥ = fi.

8) 7T):Ff1 < szo,ﬂ'k):fl

9) T=Gfi <= Vk>0,7FE fi.

100 7 = fiBfs <= Vk > 0 with 7% | fo, 3j €
{0,1,---,k =1}, ¥ = fi.

A discrete event system is a 6-tuple Mpgps =
(S8,%, R, s0, L, AP), where S is the state set, X is the event
set, R C S x ¥ x S is the transition relation, s is the initial
state, AP is the set of atomic propositions, and £ : S — QAP
is the labeling function that labels each state to a set of
atomic propositions held in the state. Let S be a given LTL
specification over the atomic proposition set AP.

A state trace (either finite or infinite) of the system Mpgg
is a sequence of states ¢t = (s, s1, S2,---) such that Vi =
1,--- do;, (87;,1,02', Si) eER. (0’170'2, B) is called the X

trace (also called event trace) associated with the state trace
t; and (L(sp),L(s1),--) is called the AP trace associated
with .

The system Mpgs can be transferred into a standard
Kripke structure M ([3]) as follows:

M = (X, Rs, o, Lx, APx),

where X = S x (¥ U {¢}) is the state set (¢ is the null
event), Ry;y C X x X is the transition relation with Ry =
{((s,0),(s',0"))|(s,0',s") € R}, o = (s0,€) is the initial
state, APy, = AP|JX is the new atomic proposition set,
Ly : X — APy is the labeling function such that V(s, o) €
X, Lx((s,0)) = L(s)U{o}.

For a state trace t = ((so,€),(s1,01),) in M, its
associated ¥ event trace is t~ = (¢, 01,09, - - +), its associated
AP trace is t4T = (L(so),L(s1),---), and its associated
APs trace is t47= = (L(sg), L(s1) U {o1},--+),

It is not difficult to find out that the o labeled Kripke
structure M has the same sets of ¥ and AP traces as the
original discrete event system Mpgs. Thus, from now on,
we only consider the o labeled Kripke structure system M.

Let T); denote the set of all infinite length state traces of
M. ¥t € Ty, t is said to be a faulty trace with respect to
the LTL specification S if t4” [~ S, which is also denoted
as t = S. (Note that in this paper we require that the system
M is non-terminating, i.e., at every state of the system there
exists at least one out-going transition. This is because the
semantics of LTL is defined over the traces of infinite length.)

A finite trace ce = (o, 21,22, -, Tm) of M is called
a counterexample with respect to the LTL specification S if
the trace is a witness of the violation of the specification
S. More precisely, if S is a safety specification then ce is a
counterexample if and only if any arbitrary infinite extension
of ce’ violates the specification S, ie., Yty € (24F)«,
ceP .ty = S, if S specifies some liveness property then
ce is a counterexample for S if and only if there is a x;
(0 < i < m) in ce such that z; = z,, and the infinite
extension of ce along the cycle (z;,Tit1, *, Tm—1,Tm =
x;) violates the specification S, i.e., ce(xiy1, -, Tm)*
S. In order to distinguish the above two cases, if S is a
safety specification then the counterexample ce is written as
ce = cesqfe = (X0, -+, Tm); otherwise ce is written as ce =
celive = (o, 1, -+, 7)), (Tig1, -+, Tm)) With T, = 2.

III. FAULT EXPLANATION

As we stated above, when a system fails the model
checking, a counterexample will be generated by the model
checker. To explain the violation of the specification based
on the counterexample generated, we want to identify those
transitions (represented by the transition labels) in the coun-
terexample such that any trace including the ordered exe-
cutions of those transitions is faulty. Those transitions are
captured by the notion of fault seed defined below.

Definition 1: Given a system M, a LTL specifica-
tion S, a counterexample ce, and an event trace sd
(Sd = (617 A ek) if ce = Cesafe — (:EOa T 7xm);
sd = ((e1, - ,eq), (eg1, -+ ex)) if ce = celpe =

((xo, -+, 24), (Tiw1, -+, Tm))), sd is called a fault seed for
the counterexample ce if the following holds:

1) sd is orderly executed by ce.
The orderly execution of sd by ce is defined as follows.
For the case of ce = cesqfe, let (01, -, 0m) be the
event trace associated with ce, then sd = (e1,- -, ex)
is called orderly executed by ce if there exists a
sequence of integers 1 < 41 < iy < --- < i < msuch
that Vj =1,---,k, 0, =e;and Vj =1,--- k-1

{041, 00,42, 00 1y N {ej €41, ent =0
For the «case of ce = Celive, Sd =
((e1,---,eq), (eqe1,- - ex)) is called orderly
executed by ce if (e1,---,eq) is orderly executed by
(xo,--+,m;) and (eq41,---,ex) is orderly executed
by (xi,xi_H, cee ,J?m).

2) For any infinite trace ¢ in the system, if sd is orderly
executed by ¢ as by ce, then ¢ is faulty.

The orderly execution of sd by an infinite trace ¢
as by ce is defined as follows. For the case of
ce = Cesqfe, Sd is said to be orderly executed by
t as by ce if there exists a finite prefix of ¢ such
that sd is orderly executed by the finite prefix as
defined above for the case of ce = cesqp.. For the

case of ce = cejipe = ((To, -+, i), (Tig1, +, Tm)),
sd = ((e1,---,eq),(eq41, - €x)) is said to be
orderly executed by ¢ as by ce if ¢t is in
the form of t = (wo,y, -, 2}) (2}, 2p,)”
with z/, = a/, and sd is orderly executed by
((wo, @y, -+, %), (2, -+, 27,)) as defined above for

the case of ce = cejjpe.

In the above definition, the orderly execution of sd =
(e1,---,ex) means that after the execution of e;, e;41 is the
first one to be executed next among the events {e;,-- -, eg}.
Also note that in Definition 1, event labels are used to
identify the transition executions instead of the state atomic
proposition labels. This is because the event labels could help
us to locate those transitions.

The fault seed sd defined in Definition 1 can be encoded
by the LTL formula fs; over the atomic proposition set X
(i.e., each event o € ¥ is viewed as an atomic proposition),
which is described below.

e For a safety specification, let ce = cegqfe =

(zo,"++,zm) and sd = (eq,- -, ek), then fyq is defined
as:
Jsa=Ffi
fi=e; NX(N_j=e,Ufjs1), j=1,--+ k-1
Tk = e
o For a liveness specification, let ce = ceppe =
(($07"'axi)a(xi+1v"'axm)) and sd =
((e1,-,eq), (Eqs1,- -+ yex)), then foq is defined

as:

fsd = Ffl
fi=ej NX(NS_j=eUfi1),1 < <k,j#q
fo=¢eg N GFf;
fa=¢eq A X(/\’::qﬁerquJrl)
e =ex
From the semantics of LTL and Definition 1, we have the
following result.

Theorem 1: Given a system M, a LTL specifica-
tion S, a counterexample ce, and an event trace sd

(sd = (e1, --,e) if ce = cesare = (Toy "+, Tm);

sd = ((e1, - ,eq), (eg+1, -+, ex)) if ce = celpe =

((xo, -+, 24), (Tig1,*+,Tm))), the following results hold:

1) sd is orderly executed by ce if and only if t.= =

fsa» Where toos = (01--05,)0° if ce = cegqpe =

(3707 te 7xm)a and t..» = (0'1 ce Ui)(0i+1 te O'm)w

if ce = Celive = ((I07 e 7'Ti)7 (Ii+17 e 7$m)) with

(01, +,0m) is the ¥ event trace associated with

(1, ,Tm), (01,--+,0;) and (041, -,0p,) are

the 3 event traces associated with (x1,---,2;) and
(i1, ,Tm) respectively.

2) For any infinite trace ¢ in the system, the following
two statements are equivalent:
o If sd is orderly executed by ¢ as by ce, then ¢t is
faulty.
e M | (fsa = —S). More precisely, Vt € Ty,
1APS | (fog =).

From Theorem 1, we know that a fault seed can be
identified by model checking. We have the following al-
gorithm for the identification of a fault seed with a given
length. Given a system M, a LTL specification .S, a coun-
terexample ce (either ce = cegqre = (To, -+, Tm) OF
ce = Celive = ((xﬂv e 71'1')7 (xiJrla T 7xm)))a a Pair of
integers (k1, ko) specifying the length of the fault seed to
be identified in ce (k3 = 0 for the case of ce = cesqpe),
and let (01, --,0.,) be the ¥ event trace associated with
(z1,- -, m), then the algorithm for identifying a fault seed
sd = ((ei, - €iy,)(ej, -+ €j,,)) in ce is given below.

Algorithm 1: Algorithm for identifying a fault seed with
the length (k1, k2)

1) Let Candidatefzhkz) be the set of candidates for

the fault seeds with the length of (k1,k2) in ce,
then initially we have Candidatefy; , , = {0;,j =

1L---,m} if ce = Césafe, and Candidatefihkz) =
{oj,j=1,---,i}"{oj,j =i+ 1,---,m}= if ce =
Celive-

2) If Candidate(y, , .\ = () then stop the algorithm
and output that no fault seed exists with the given
length; otherwise pick a sd € Candidate‘(zzl_’ ko) and let
Candidate(y, , = Candidate(y , ,— {sd}. Check

whether t..» = fsq. If the answer is yes then go to

next step; otherwise repeat this step.

To check whether t..= |= fsq, we first construct a

system M; = (X1, Ry, 21, L1, AP1) that can generate

the trace t..=. M; is constructed as follows: X; =
{Il, e 'axm7$5}9 AP, = {01, ce 70771}7 £1(Ie) =0,
Li(zj) ={o;}forj=1,---,m, (z;,x;41) € Ry for
j=1,--m—1, (xm,zi41) € Ry if ce = cepipe =
((xOv T 7xi)’ (xi-‘rl’ T 7xm))’ {(xmv x€)7 (xev xe)} C
Ry if ce = cesqpe = (z0,- -+, Tm). It is not difficult
to check that t,.= is the only AP, trace generated by
M. Next, toes | fsa is the same as M = fqq, i€,
model checking M; against the specification fg4.

3) For the candidate sd, check whether M | (fsq =

—.5), i.e., model checking M against the specification
(fsa = —S). If the answer is yes then stop the
algorithm and output sd as a fault seed with the length
(K1, k2); otherwise go to Step 2.

Algorithm 1 can be used to find a fault seed sd with the
length of (ki,k2) in a counterexample ce (if a fault seed
with such a length exists). Since our goal is to find a fault
seed in the counterexample irregardless of its length, we can
use Algorithm 1 to search for a fault seed with different
lengths exhaustively, i.e., trying all possible (ki,ks) such
that 1 < k1 + ko < |ce| — 1, where |ce| is the length of the
counterexample ce. We can proceed from the shortest length
of k1 + ko = 1 to the longest length k; + ko = |ce| — 1 until
we find a fault seed. With the observations that a long fault
seed cannot provide much help for the fault explanation and
in real applications the root cause of a fault usually can be
identified by a limited number of transition executions, we
can restrict the range of the lengths to be searched, i.e., we
only search for all possible (kq, ko) with 1 < ky + ko < K,
where K is a reasonable small integer serving as the upper
length bound of the fault seeds to be searched. Then the
complexity of the above search for a fault seed with a length
1 <ky+ ko < K is O(|X|[min(|Z], |ce| — 1)]¥).

IV. AN ILLUSTRATIVE EXAMPLE

In this section we use an example to illustrate our
approach for the fault explanation and isolation. We consider
a communication application in the automotive CAN (con-
troller area network) systems. An automotive CAN system
consists of a number of ECUs (electrical control unit) that
are connected by a CAN bus. In most cases, an ECU on
the low-speed network with Single-Wire CAN is powered
permanently. To save the battery power, such an ECU must
enter a low power mode to reduce power consumption.
Mostly, the STOP instruction of a micro-processor is used
to enter a low power mode. But the STOP instruction must
be executed in a way that an external interrupt can wakeup
the micro-processor from this mode.

As identified in an application note ([7]), if a wakeup
interrupt is used, which occurs only once after it has been
enabled, the micro-processor may enter the STOP mode after
this interrupt has been generated; and then there will be
no further wakeup interrupt while the micro-processor is in
STOP mode. In this case, the micro-processor will stay for-
ever in the STOP mode, which is a malfunction of the system.
Such a one-time wakeup interrupt is the wakeup interrupt
from the CAN-controller, because the CAN-controller only

generates the wakeup interrupt in the sleep-state and leaves
immediately this state after a wakeup interrupt is generated.
The explanation for the micro-processor could enter the
STOP mode after the wakeup interrupt has been generated
is given below as in [7]. When the application software on
the ECU issues the STOP instruction to the micro-processor,
the application software needs to enter a critical section to
perform some non-interruptive tasks. After finishing those
non-interruptive tasks, application software issues the STOP
instruction to the micro-processor, and the micro-processor
enters the STOP mode and stays there. So there is a short
time window for the critical section. If the wakeup interrupt
comes to the application during the short time window of the
critical section, it will not be taken care of. As a result, the
system continues to enter the STOP mode after the wakeup
interrupt was generated. The reason for the above fault is
that the wakeup interrupt comes while the system is in the
critical section.

The above scenario is conceptually captured in Figure 1.
There are four main parts in the system: Application on the

Application Node Management CAN-Driver CAN-Controller

! COMM_OFF |

I —

: ! CanSleep

e

- i AppINwmSleep

Start to enter critical v

section of Stopmode

l
I
i
]
|
I
i
|
!
: High_Voltage
I
I
I
i
I
I
i
I

AppINwmWakeup Wakeup_Interrupt

NmCanWakeUp
MsgRecv

PPttt S |

Leave critical section
Entered Stopmode

Fig. 1. A faulty scenario for the system

ECU to issue the STOP instruction, Node Management to
manage the sleep and wakeup, CAN-Driver to interact with
the CAN-Controller, and the CAN-Controller to connect to
the CAN bus. The first three parts are software running on
the micro-processor and the last part CAN-Controller is a
hardware independent of the micro-processor. Suppose under
certain conditions (such as no bus communication for some
time), the system needs to go to sleep, which is represented
as an input of COMM_OFF to the Node Management.
Then the Node Management asks the CAN-Driver and the
Application to go to sleep by calling the functions CanSleep
and AppINwmSleep respectively. Next, In the function call
of CanSleep, the CAN-Driver asks the CAN-Controller to
go to sleep by sending it Sleep; and in the function call
of AppINwmSleep, the Application asks the micro-processor
to enter the STOP mode, and there is a critical section for
entering the STOP mode. After receiving Sleep, the CAN-
Controller goes to the sleep-state and could be waked up by
a high level voltage from the bus when there is a need for
bus communications. Once the CAN-Controller is waked up,
it sends Wakeup Interrupt to the CAN-Driver; and then the
CAN-Driver calls the function NmCanWakeUp, in which the
Node Management calls AppINwmWakeupMsgRecv to inform
the Application of the wakeup. If the Application takes care
of the interrupt then the micro-processor will be waked up.

However, as shown in Figure 1, the AppINwmWakeupM:s-
gRecv of the wakeup interrupt arrives while the Application
is in the critical section, so the interrupt is not taken care
of by the Application and the micro-processor continues to
enter the STOP mode and stays there without any further
Wakeup Interrupt to wake it up.

To apply our approach to the above example, we first need
to model the system. The system is modeled in three mod-
ules: the STOP-WakeUp Control module, the CAN-Controller
module, and the Wakeup-Interrupt Handler module, which
are shown in Figure 2. The STOP-WakeUp Control module

\
S lcc’f/o Wakeup_Interrupt
O

High_Voltage

g Active
COMM_OFF

AppINwmWakeup
MsgRecv

O

* CanSleep
O

y Sleep (b) CAN-Controller

AppINwmSleep

\
Enter_CS AppINwmWakeup

Wakeup,lnterruiyO XMngecv

Leave_CS @]

AppINwmWakeup
MsgRecv

STOP NmCanWakeUp

(a) STOP-Wakeup Control (c) Wakeup Interrupt Handler

Fig. 2. Three modules in the system

combines the functions of Application, the Node Manage-
ment, and the CAN-Driver for the control of entering the
STOP mode and waking up to the active mode. The CAN-
Controller module models the behavior of the CAN con-
troller. The Wakeup-Interrupt Handler module models the
handling of the Wakeup Interrupt from the CAN-Controller.

The model for the whole system can be obtained from
the composition of the above three module models, which
is shown in Figure 3, where Active is the only atomic
proposition, which holds only at the initial state. In the

\‘ Active

AppINwmWakeup
I MsgRecv

CHM

Sleef@

Q High_Voltage Qdeeup Interrupt X
N\

ApplemS]eepi AppINwmSleep ApplemS]eepi

NmCanWakeUp_ 7%

&y

ApplemSleepi

NmCanWakeU

X, High_Voltage X Wakeup_Interrupt X

Enter_CS Enter_CS Enter_CS Enter_CS
@ High Vollage % ‘Wakeup_Interrupt X, NmCanWakeUp @
Leave_CS i Leave_CS Leave_CS Leave_CS,

@ High_Voltage @Wakeup,lnlerrupl m NmCanWakeUp,
N> g

(e @

AppINwmWakeup
MsgRecv

Fig. 3. The system model

model, there is self-loop labeled by ¢ at the state z99. The
€ is the null event and the loop is added to keep the system
to be non-terminating. The specification of the system is
given by the LTL formula “GF Active”, which requires the

system to be always able to return to active mode. Note that
the specification represents a liveness property. The above
system model can be transferred into a standard Kripke
structure as described earlier, in which we basically remove
the event label for each transition, add the event to the label
of the destination state of the transition, and let the event be
an atomic proposition that holds at the destination state of
the transition. The detailed Kripke structure model is omitted
here.

Next, we model check the system against the specification
“GF Active”. As expected, the system does not satisfy the
specification and a counterexample is generated. Suppose the
counterexample obtained is

= (((xo,€), (x1, COMM _OFF),
(z2,CanSleep), (x3, Sleep), (x4, Appl NwmSleep),
(x5, Enter_CS), (xg, High_Voltage),

(213, Wakeup_Interrupt), (x17, NmCanWakeUp),
(219, ApplNwmW akeupM sgRecv),

(220, Leave_C'S), (x20,¢€)), ((x20,€)))

Now we can apply our approach to the above example. To
find a fault seed for the above counterexample, Algorithm 1
is used. We use the length of the counterexample as the
upper length bound for the fault seeds to be searched. Note
that in the counterexample the first part contains 10 non-
e events (COMM_OFF, CanSleep, Sleep, AppINwmSleep,
Enter_CS, High_Voltage, Wakeup_Interrupt, NmCanWakeUp,
AppINwmWakeupMsgRecv, Leave_CS) and the second part
does not contain any non-e¢ event. So we only need to
consider the fault seeds of the length (ki, k2) with &y < 10
and ko = 0.

From Algorithm 1, we obtain the following fault seed
for the counterexample: sd=(Enter_CS, AppINwmWakeupM:s-
gRecv, Leave_CS). From the fault seed it is clear that the fault
is caused by the coming of the AppINwmWakeupMsgRecv
between Enter_CS and Leave_CS, which means the wakeup
interrupt comes while the application is in the critical section.
Thus, our approach provides good fault explanation for the
example.

V. CONCLUSION

In this paper, we studied the fault explanation and
isolation problem for discrete event systems with LTL
specifications. The notion of fault seed was introduced to
characterized the cause of a fault. The fault seed was further
encoded into LTL formula, and then the fault seed identifica-
tion problem was reduced to a model checking problem. An
algorithm based on model checking was developed for the
fault seed identification. The effectiveness of the algorithm
was demonstrated by an automotive communication example.
For further research, one interesting topic would be to extend
the approach to concurrent systems.

(1]

(2]

(3]
[4]

(5]

(6]

(71
(8]

REFERENCES

T. Ball, M. Naik, and S.K. Rajamani. From Symptom To Cause:
Localizing Errors in Counterexample Traces. In Proceedings of 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’03), New Orleans, LA, January 2003.

S. Chaki, A. Groce, and O. Strichman. Explaining Abstract Coun-
terexamples. In Foundations of Software Engineering (SIGSOFT FSE),
pages: 73-82, Newport Beach, California, October-November 2004.
E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

E. A. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science. Elsevier Science
Publishers, 1990.

A. Groce. Error Explanation with Distance Metrics. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
pages: 108-122, Barcelona, Spain, March-April 2004.

A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error Explanation
with Distance Metrics. International Journal on Software Tools for
Technology Transfer, accepted for publication.

A. Happel. Application Note: Enter Stopmode in a GMLAN environ-
ment. Vector Informatik GmbH, 2002.

S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with
linear-time temporal logic fault specifications. IEEE Transactions on
Automatic Control, 49(6):934-945, 2004.

