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Abstract

The aim of this paper is to give some approximation results for a class of nonlinear filtering problems
with delay in the observation. First, we point out some general results on the approximation problem
for the filter in nonlinear filtering. In particular we give a general procedure to obtain some upper
bounds for the different approximations we consider. This procedure is then applied in the case
of nonlinear filtering problems with delay (X, Y ), which can be represented by means of a Markov
system (X, Ŷ ), in the sense that Yt = Ŷa(t). Finally these upper bounds are computed explicitly in
the particular case of Markov jump process with counting observations.

Key Words: Nonlinear Filtering, Jump Processes, Markov Processes, Approximation of Stochastic
Processes

AMS Classification: 93E11, 60G35, 60J75, 65C50, 62M20

1 Introduction

Consider a partially observed stochastic system (X, Y ) = (Xt, Yt)t≥0, that is a state process X = (Xt)t≥0,
which cannot be directly observed, and a completely observable process Y = (Yt)t≥0, which is referred
to as the observation process. The aim of stochastic nonlinear filtering is to compute the conditional law
πt of the state process at time t, given the observation process up to time t, i.e. the computation of the
so called filter

πt(ϕ) = E
[
ϕ(Xt)/FY

t

]
, (1)

for all functions ϕ belonging to a determining class, i.e. the best estimate of ϕ(Xt) given the σ−algebra
of the observations up to time t, FY

t = σ{Ys, s ≤ t}.

A classical model of partially observed systems arises when both the state and the observation are
diffusion processes. In this case it has been shown that the filter solves a stochastic partial differential
equation known as the Kushner-Stratonovich equation (see e.g. Pardoux [20] and the references therein).

Filtering problems involving jump-diffusion processes have been studied by many authors. In partic-
ular the jump system

xt = x0 +
∫ t

0

∫

D0(xs− ,ys− )

K0(xs− , ys− ; ζ)N (ds, dζ) +
∫ t

0

∫

D1(xs− ,ys− )

K1(xs− , ys− ; ζ)N (ds, dζ) (2)

yt =
∫ t

0

∫

D1(xs− ,ys− )

N (ds, dζ) (3)

where
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• N (ds, dζ) is a Poisson measure on R× Σ with mean measure ds× ν(dζ),

• the random variable x0 has values in Rk and probability distribution µx
0 ,

• the random variable x0 and the Poisson random measure N (ds, dζ) are independent,

• the sets D0(x, y) and D1(x, y) are disjoint,

enters in the more general framework studied by Kliemann, Koch and Marchetti [15]. Under suitable
hypotheses (see [15]), the above system has a unique solution (xt, yt)t≥0, which is a Markov process with
formal generator L given by

Lf(x, y) =
∫

D0(x,y)

[f(x + K0(x, y; ζ), y)− f(x, y)] ν(dζ)

+
∫

D1(x,y)

[f(x + K1(x, y; ζ), y + 1)− f(x, y)] ν(dζ). (4)

Then the filter πx
t (ϕ) = E[ϕ(xt)/Fy

t ] can be obtained via the following normalization procedure:

• let s = {si}i≥0 be an increasing sequence of times such that s0 = 0,

• define

Byϕ(x) =
∫

D0(x,y)

[ϕ(x + K0(x, y; ζ))− ϕ(x)] ν(dζ) (5)

and

Ryϕ(x) =
∫

D1(x,y)

[ϕ(x + K1(x, y; ζ))− ϕ(x)] ν(dζ), (6)

• the unnormalized filter ρ̂t(dx|s) is given by the following self-contained procedure

ρ̂t(ϕ|s) = E

[
ϕ(Xi

t−si
(s)) exp

{
−

∫ t−si

0

λ1(Xi
u(s), i)du

}]
si ≤ t < si+1, (7)

where λ1(x, i) = ν(D1(x, i)), and {Xi
t(s); t ≥ 0} is a Markov process with generator Bi and initial

distribution ρ̂si(dx|s) defined inductively by

ρ̂s0(ϕ|s) = µx
0(ϕ) ρ̂si+1(ϕ|s) =

ρ̂s−i+1
(Qiϕ|s)

ρ̂s−i+1
(λ1(·, i)|s)

(8)

with Qiϕ(x) = Riϕ(x) + λ1(x, i)ϕ(x) =
∫

D1(x,i)
ϕ(x + K1(x, i; ζ)) ν(dζ).

Setting

Π̂t(ϕ|s) :=
ρ̂t(ϕ|s)
ρ̂t(1|s)

, (9)

we have

πx
t (ϕ) = E[ϕ(xt)/Fy

t ] = Π̂t(ϕ|s)
∣∣∣
s={Ti}i≥0

(10)

where Ti are the observed jump times.

Different approximation procedures and numerical schemes have studied by many authors in the past
years (see for example among others Kushner [17], Di Masi, Pratelli and Runggaldier [12], Le Gland
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[18], Elliott and Glowinski [13], Lototsky, Mikulevicius and Rozovskii [19], Del Moral [11], Calzolari and
Nappo [8] or Ceci, Gerardi and Tardelli [9] and the references therein).

In this paper we are interested in the approximation of the filter when dealing with the following
nonlinear filtering problem with delay in the observation: (X, Ŷ ) is a Markov process with generator L,
and the observation process Y satisfies

Yt = Ŷa(t),

where a(·) is a nondecreasing continuous function, such that a(0) = 0, a(t) ≤ t for all t ≥ 0.
For this system the following result has been proved by the authors in [4].

Theorem 1.1. The filter πt associated with the system (X, Y ) described above can be represented as

πt(ϕ) = E
[(

exp{L(t− a(t))}φ)
(Xa(t), Ŷa(t))/F Ŷ

a(t)

]
,

where φ(x, y) = ϕ(x).
Moreover, if the conditional law of Xs given F Ŷ

s is known and denoted by π̂s, then

πt(ϕ) = π̂a(t)

(
(exp{L(t− a(t))}φ)(·, Ŷa(t))

)
. (11)

Remark 1.2. As an example we can take (X, Ŷ ) = (xt, yt)t≥0, with xt and yt defined as in (2) and (3),
respectively. In this case the generator L coincides with the one given in (4).

Remark 1.3. The case when the state process solves the stochastic differential equation

Xt = X0 +
∫ t

0

b(Xs)ds +
∫ t

0

σ(Xs)dBs, t ≥ 0,

and the observation is given by




Yt = 0, 0 ≤ t ≤ τ ;

Yt =
∫ t

τ
h(Xs−τ )ds + Wt −Wτ , t ≥ τ

(12)

corresponds to a(t) = (t− τ)+ and to the system (X, Ŷ ) with the generator

Lf(x, y) = b(x)∇xf(x, y) + h(x)∇yf(x, y) +
1
2
tr{σ(x)σ∗(x)∇2

xf(x, y)}+
1
2
∆yf(x, y)

in the above theorem. On the other hand, by applying a shift in time of size τ to the system (X, Y ), we
get a stochastic delay system: indeed setting X(τ)(s) := Xs+τ and Y(τ)(s) := Ys+τ , we have

dX(τ)(s) = b
(
X(τ)(s)

)
ds + σ

(
X(τ)(s)

)
dB̃s, s ≥ 0, X(τ)(s) = ξ(s), −τ ≤ s ≤ 0 (13)

Y(τ)(t) =
∫ t

0

h
(
X(τ)(s− τ)

)
ds + Ŵt, t ≥ 0, (14)

where B̃s = Bs+τ , and ξ(s) is the solution of the stochastic differential equation

dξ(s) = b(ξ(s))ds + σ(ξ(s))dB̃s, for − τ ≤ s ≤ 0, with ξ(−τ) = X(0).

Clearly, in the above system the delay is present only in the observation.

The approximation problem we consider is interesting due to the fact that partially observed systems
with delay in the observations appear in stochastic finance. For instance, in [21], Schweizer has given an
example of information with delay for a financial model. From [21] one can easily deduce that when the
market is incomplete the risk minimization criterion leads to a filtering problem with delayed observation.
Risk minimization criterion corresponds to a quadratic loss function, and this is criticized as it implies
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the minimization of both earnings and losses. This leads to use different loss functions and to consider
the hedging problem as an optimal control problem. Then, from a Bayesian point of view, filtering may
appear in the case of partial observations, and in this direction diffusion-type models are mainly studied
in the literature. More recently, in [14], Kirch and Runggaldier have studied a control problem with
partial observation when the stock price evolves as

St = s0 eaN+
t −bN−

t ,

where a, b > 0 are constants, and N+ and N− are counting processes with random unobservable intensities
Λ+ and Λ−.

The observation of the stock price is equivalent to the observation of the couple of counting processes
N+ and N−.

In [14], N+ and N− are assumed to be conditionally independent Poisson processes given their random
time constant intensities Λ+ and Λ−, which are independent and with prior distribution Gamma. In this
case the filter of (Λ+, Λ−) given N+ and N− up to time t can be reduced to a couple of filtering problems,
each with one counting observation process, and can be computed explicitly.

If the time constant assumption on the intensities were dropped, then the explicit computation of
the filter would not be any more feasible, and a filtering approximation problem would naturally arise.
Considering also a delay in the information would then lead to an example fitting the framework of
Section 4. Another related situation fitting the same framework could arise if the interest were focused
on a fixed strike lookback call option, that is

(
max

t∈[0,T ]
St −K

)+

.

In this case, instead of the price, a natural process to observe could be the running maximum of the price
maxu∈[0,t] Su, the observation of which is equivalent to the observation of one counting process.

This paper is divided into four sections and is organized as follows. In Section 2, we introduce dif-
ferent kinds of approximation for the filter that we will use in the sequel. These approximation schemes
rely on the actually observed trajectories, and upper bounds for these approximations are obtained in
Theorem 2.3. A relation between these upper bounds and weak convergence of the sequence of filters is
presented in Theorem 2.6. In Section 3, we consider the approximation of filter for Markov models with
delayed observations for which we obtain upper bounds depending on the actually observed trajectory
(see Proposition 3.1). In Section 4, the approximation results obtained in Section 2 together with the
representation for the filter in Theorem 1.1 will be applied to obtain some explicit upper bounds in the
counting observation case as in Remark 1.2 (see Theorem 4.5).

Some approximation results can be obtained for different systems and by making use of different
techniques. As an example we can consider the simple stochastic delay system of Remark 1.3. Taking
into account this remark, the computation of the filter is equivalent to the computation of the filter of
the stochastic delay system (13) and (14), for which the convergence result obtained in [5] can be applied.
To our knowledge there are only two other papers dealing with the approximation of nonlinear filtering
for delayed diffusion systems: Chang [10], and Twardowska, Marnik and PasÃlawaska-PoÃluniak [22].

2 General considerations on approximation for filters

2.1 Different kinds of approximation

Suppose that a sequence of stochastic systems (Xn, Y n) with values in Rk × Rd converges to a system
(X, Y ). Then a natural question arising is whether the corresponding sequence of filters πn converges to
the filter of the limit system π.
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Different kinds of convergence can be considered for both the systems and the filters. Convergence of
their distributions is the first one, and moreover the only one, that can be considered when the systems
(Xn,Y n) are defined on different probability spaces. The most frequently used is weak convergence
of their distributions. In this case one can furthermore distinguish between convergence of πn

t to πt as
random probability measures on Rk, for each t, and convergence of the processes πn = (πn

t ; t ≥ 0) to
π = (πt; t ≥ 0), as càdlàg measure-valued processes. Finally one can consider different metrics dist(ν1, ν2)
on the space P = P(Rk) the space of probability measures on Rk, such as the the total variation, i.e.

‖ν1 − ν2‖TV = sup
{ |ν1(ϕ)− ν2(ϕ)|

‖ϕ‖ ;ϕ bounded
}

,

the Kantorovitch metric, i.e.

κ
(
ν1, ν2

)
= sup

{ |ν1(ϕ)− ν2(ϕ)|
Lϕ

; ϕ Lipschitz
}

,

or the bounded-Lipschitz metric, i.e.

dBL(ν1, ν2) = sup
{ |ν1(ϕ)− ν2(ϕ)|

‖ϕ‖ ∨ Lϕ
; ϕ bounded and Lipschitz

}

where ‖ϕ‖ denotes the sup-norm, and Lϕ is the Lipschitz constant of ϕ. We recall that the bounded-
Lipschitz metric induces the weak convergence topology on the space of probability measures P.

In the following we will consider P endowed with one of the above metrics.
When instead all the processes are defined on the same probability space (Ω,F , P ), then one can

also consider other kinds of convergence such as convergence in probability, convergence in Lp([0, T ]×Ω,
dt⊗ dP ), and so on.

This situation arises typically when one is interested in the limit system, and the sequence (Xn, Y n)
is constructed pathwise starting from the path (X, Y ), such as for instance in the Euler approximations
of diffusive systems.

When the filters πn and π have a robust version, that is when for suitable deterministic measure
valued functionals Un and U , with paths in the Skorohod space DP([0, T ]),

Un, U : [0, T ]×DRd([0, T ]) 7→ P

such that Un
(
t,y

)
= Un

(
t, y(· ∧ t)

)
and U

(
t,y

)
= U

(
t, y(· ∧ t)

)
,

πn
t (dx) = Un

(
t,Y n; dx

)
and πt(dx) = U

(
t,Y ; dx

)
,

then, in order to consider convergence in probability, one only needs to assume that the processes Y n

and Y are defined on the same probability space. Such deterministic functionals Un and U satisfying the
above properties always exist under very general conditions (see Kurtz and Ocone [16])). Note that the
functionals Un and U depend on the joint distribution of (Xn, Y n) and (X, Y ) respectively, and that
are defined in DRd([0, T ]) almost surely with respect to PY n , the law of Y n, and with respect to PY , the
law of Y , respectively.

As an example one can consider approximating and limit models like the jump model with counting
observations as given by (2) and (3), for which the functionals U and Un can be computed as in (9), or
like the classical diffusive model, for which the functionals U and Un are also computable as exposed in
[16], for example.

A different approach to the problem of the approximation of the filter takes into account that a realistic
approximation depends on the actually observed trajectory and uses the robust representation described
above. Two different types of situations can arise:

1. ) the true model is (X, Y ), and therefore we observe Y , while the models (Xn, Y n) are more
manageable approximations,
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2. ) the true model is (Xn,Y n), depending on a large parameter n, and therefore we observe Y n,
while (X,Y ) is a more manageable limit model.

In these situations

1. ) the true filter is πt, and it is natural to consider

π̃n
t = Un

(
t,Y

)
(15)

as an approximation of πt, depending on the actually observed trajectory,

2. ) the true filter is πn
t , and it is natural to consider

πn
t = U

(
t,Y n

)
(16)

as an approximation of πn
t , depending on the actually observed trajectory.

The functional Un is defined PY n-almost surely, therefore in order to define π̃n = {π̃n
t ; t ≥ 0} almost

surely it is natural to assume that PY is absolutely continuous with respect to PY n . Indeed when the
functional Un is defined PY n-almost surely, there exists a set Dn ⊂ DRd([0, T ]) with PY n(Dn) = 1, such
that the filter πn

t is almost surely equal to 1Dn(Y n)Un(t,Y n)+
(
1−1Dn(Y n)

)
δ{x0}, for any fixed point

x0, and one could always define

π̃n
t = 1Dn(Y )Un

(
t,Y

)
+

(
1− 1Dn(Y )

)
δ{x0}.

Furthermore if PY (Dn) = 0, as an extreme example, then the chosen approximation would be clearly
useless: indeed, in this case π̃n

t = δ{x0} almost surely, and this is clearly not a good approximation, while
if PY (Dn) = 1, then the approximation coincide almost surely with Un

(
t,Y

)
.

In analogy, the functional U is defined PY -almost surely, and to define πn = {πn
t ; t ≥ 0} almost surely

it is natural to assume that PY n is absolutely continuous with respect to PY .

When using these kinds of approximations one is interested in evaluating

dist(πt, π̃
n
t ) = dist

(
U

(
t,Y

)
, Un

(
t,Y

))
, (17)

when we observe Y (situation 1), or

dist(πn
t , πn

t ) = dist
(
Un

(
t, Y n

)
, U

(
t,Y n

))
(18)

when we observe Y n (situation 2). Here the dist(ν1, ν2) can be, for example, the total variation, the
Kantorovitch metric or the bounded-Lipschitz metric.

Note that, in contrast to the approximations previously considered, neither π̃n
t nor πn

t are conditional
laws. Moreover, with this kind of approximation it is not even necessary that the sequence of processes
{Y n} and Y are defined on the same probability space, and both the almost sure convergence and the
convergence in probability can be considered.

For instance, in situation 1, the convergence in probability is implied by the convergence to zero of

E
[
dist(πt, π̃

n
t )

]
= E

[
dist

(
U

(
t,Y

)
, Un

(
t,Y

)) ]
(19)

=
∫

DRd ([0,T ])

dist
(
U

(
t,y

)
, Un

(
t, y

))
dPY (y),

while, in situation 2, the convergence in probability is implied by the convergence to zero of

E
[
dist(πn

t , π̄n
t )

]
= E

[
dist

(
Un

(
t,Y n

)
, U

(
t,Y n

)) ]
(20)

=
∫

DRd ([0,T ])

dist
(
Un

(
t,y

)
, U

(
t,y

))
dPY n(y).

6



Finally note that when the distance between πt and π̃n
t is given in terms of one of the integral metrics

quoted at the beginning of this section, then

E
[
dist(πt, π̃

n
t )

]
= E

[
sup
ϕ∈K

|πt(ϕ)− π̃n
t (ϕ)|] (21)

and

E
[
dist(πn

t , πn
t )

]
= E

[
sup
ϕ∈K

|πn
t (ϕ)− πn

t (ϕ)|] (22)

where K is a suitable class of functions: the class KTV of functions ϕ with ‖ϕ‖ ≤ 1 for the total variation,
the class KBL of functions ϕ with ‖ϕ‖ ∨ Lϕ ≤ 1 for the bounded Lipschitz metric, and the class KK of
functions ϕ with Lϕ ≤ 1 for the Kantorovitch metric.

2.2 General upperbounds for the approximations of the filters

In the following we study the approximation problem for the filter by using a general procedure leading
to a partial result, which is summarized in Theorem 2.3. Moreover in the following we also consider the
connections with weak convergence of the filters (cf. Theorem 2.6 and Remark 2.7). However, since as
it will become clear in Section 3, these results are not sufficient to apply to the models with delayed
observations, we conclude this section with two results (cf. Theorem 2.9 and Proposition 2.11). These
results will be applied to the Markov jump models with delayed counting observations in Section 4.

Assume that it is possible to construct copies (X̃n, Ỹ n) and (X̃, Ỹ ) of the pairs (Xn, Y n) and
(X, Y ) on the same measurable space (Ω,F), equipped with different probability measures P and Pn and
with the property that Ỹ n = Ỹ , i.e.

(a) on (Ω,F ,P) the model (X̃, Ỹ ) has the same law as the model (X, Y )

(an) on (Ω,F ,Pn) the model (X̃n, Ỹ n) = (X̃n, Ỹ ) has the same law as the model (Xn,Y n).

Remark 2.1. In particular, when the systems (X,Y ) and (Xn, Y n) are Markovian, condition (a)
means that under P the pair (X̃, Ỹ ) has the generator L of (X, Y ), and the initial condition µ = µX,Y

0 ,
while condition (an) means that under Pn the pair (X̃n, Ỹ ) has the generator Ln of (Xn, Y n), and the
initial condition µn = µXn,Y n

0 . Moreover if the systems are Markov with generators L and Ln and initial
conditions µX,Y

0 = δ{x,y} and µXn,Y n

0 = δ{x,y}, then the semigroups can be represented respectively as

exp{Lt}φ(x, y) = E
[
φ(X̃t, Ỹt)

]
and exp{Lnt}φ(x, y) = En

[
φ(X̃n

t , Ỹt)
]
.

As it will become clear in the application to the jump models in Section 4, it is natural to construct
the probability spaces (Ω,F ,P) and (Ω,F ,Pn) starting from a given probability space (Ω,F ,Q), in such
a way that

(b1) P and Pn are absolutely continuous w.r.t. Q on F̃t = F X̃,X̃n,Ỹ
t , for all t ≥ 0.

The above condition implies that P and Pn are absolutely continuous w.r.t. Q on F Ỹ
t . For technical

reasons it is more convenient to assume the further condition

(b2) the probability measures Q, P and Pn are equivalent on F Ỹ
t , for all t ≥ 0.

Indeed, if the previous conditions (a), (an), and (b2) hold, then

U(t, Ỹ ; ϕ) = E
[
ϕ(X̃t)/F Ỹ

t

]
, P− a.s. (and therefore also Q− a.s. and Pn − a.s.),

and analogously

Un(t, Ỹ ; ϕ) = En
[
ϕ(X̃n

t )/F Ỹ
t

]
, Pn − a.s. (and therefore also Q− a.s. and P− a.s.).
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Therefore

E
[
dist(πt, π̃

n
t )

]
= E

[
sup
ϕ∈K

|πt(ϕ)− π̃n
t (ϕ)|] (23)

= E
[

sup
ϕ∈K

|U(t,Y ;ϕ)− Un(t,Y ; ϕ)|] (24)

= E
[

sup
ϕ∈K

|U(t, Ỹ ; ϕ)− Un(t, Ỹ ;ϕ)|]

= E
[

sup
ϕ∈K

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]|
]

where we stress that, under P, the law of Un(t, Ỹ ; ϕ) = En
[
ϕ(X̃n

t )/F Ỹ
t

]
is the same as the law of π̃n

t (ϕ),
and therefore not the law of πn

t (ϕ), the filter of the approximating system, evaluated at ϕ. Analogously

E
[
dist(πn

t , πn
t )

]
= E

[
sup
ϕ∈K

|πn
t (ϕ)− πn

t (ϕ)|] (25)

= E
[

sup
ϕ∈K

|Un(t, Y n;ϕ)− U(t, Y n;ϕ)|]

= En
[

sup
ϕ∈K

|Un(t, Ỹ ;ϕ)− U(t, Ỹ ; ϕ)|]

= En
[

sup
ϕ∈K

|En
[
ϕ(X̃n

t )/F Ỹ
t

]− E[
ϕ(X̃t)/F Ỹ

t

]|
]
.

So our aim is equivalent to prove the convergence to zero of either E
[
dist

(
Un(t, Ỹ ), U(t, Ỹ )

)]
, or

En
[
dist

(
Un(t, Ỹ ), U(t, Ỹ )

)]
, depending on which metric and situation we are interested in. In any case

it is natural to start by looking for Q-a.s. upper bounds of

sup
ϕ∈K

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]|,

with K depending on the metric, and then to take the expectation with respect to either E or En,
depending on the situation we are interested in.

Furthermore, if condition (b1) holds, it can be shown (e.g. by Lemma 4.1 of [8]) that, for any bounded
function ϕ,

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| (26)

is bounded above by either

2‖ϕ‖ EQ
[|(dPn/dQ)| eFt

− (dP/dQ)| eFt
|/F Ỹ

t

]

EQ
[
(dPn/dQ)| eFt

/F Ỹ
t

] + En
[|ϕ(X̃t)− ϕ(X̃n

t )|/F Ỹ
t

]
,

Q− a.s., and therefore also P− a.s. and Pn − a.s., or

2‖ϕ‖ EQ
[|(dP/dQ)| eFt

− (dPn/dQ)| eFt
|/F Ỹ

t

]

EQ
[
(dP/dQ)| eFt

/F Ỹ
t

] + E
[|ϕ(X̃t)− ϕ(X̃n

t )|/F Ỹ
t

]
,

Q − a.s., and therefore also P − a.s. and Pn − a.s.. Again we use the first or the second upper bound,
depending on which situation we are interested in.

Taking into account that
|ϕ(X̃t)− ϕ(X̃n

t )| ≤ 2‖ϕ‖ I{X̃t 6=X̃n
t },

or that, if ϕ is also a Lipschitz function,

|ϕ(X̃t)− ϕ(X̃n
t )| ≤ Lϕ

∣∣∣X̃t − X̃n
t

∣∣∣ ,
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the previous observations can be used to get upper bounds for E
[
dist(πt, π̃

n
t )

]
and for E

[
dist(πn

t , πn
t )

]
,

when using the total variation or the bounded Lipschitz metric. Indeed, if one is interested in total
variation one has the following upper bounds depending on the actually observed trajectories: either

sup
ϕ∈KT V

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zn
t + 2Pn

({X̃t 6= X̃n
t }/F Ỹ

t

)
,

or

sup
ϕ∈KT V

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zt + 2P
({X̃t 6= X̃n

t }/F Ỹ
t

)
,

where, as in the rest of this paper, the following notations are used

Zn
t =

EQ
[|(dPn/dQ)| eFt

− (dP/dQ)| eFt
|/F Ỹ

t

]

EQ
[
(dPn/dQ)| eFt

/F Ỹ
t

] (27)

and

Zt =
EQ

[|(dPn/dQ)| eFt
− (dP/dQ)| eFt

|/F Ỹ
t

]

EQ
[
(dP/dQ)| eFt

/F Ỹ
t

] . (28)

If one is interested in bounded Lipschitz metric one has either

sup
ϕ∈KBL

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zn
t + En

[∣∣X̃t − X̃n
t

∣∣/F Ỹ
t

]
,

or

sup
ϕ∈KBL

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zt + E
[∣∣X̃t − X̃n

t

∣∣/F Ỹ
t

]
.

Remark 2.2. Considering that

|ϕ(X̃t)− ϕ(X̃n
t )| ≤ max(2‖ϕ‖, Lϕ)

(∣∣X̃t − X̃n
t

∣∣ ∧ 1
)
≤ 2max(‖ϕ‖, Lϕ)

(∣∣X̃t − X̃n
t

∣∣ ∧ 1
)

,

one can also have the bounds with either

sup
ϕ∈KBL

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zn
t + 2En

[∣∣X̃t − X̃n
t

∣∣ ∧ 1/F Ỹ
t

]
,

or

sup
ϕ∈KBL

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ 2Zt + 2E
[∣∣X̃t − X̃n

t

∣∣ ∧ 1/F Ỹ
t

]
.

Moreover, an easy computation gives

En
[Zn

t

]
= E

[Zt

]
= EQ

[∣∣(dPn/dQ)| eFt
− (dP/dQ)| eFt

∣∣
]
.

Indeed

En
[Zn

t

]
= EQ

[
(dPn/dQ)|F Ỹ

t

EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣/F Ỹ
t

]

EQ
[
(dPn/dQ)| eFt

/F Ỹ
t

]
]

= EQ
[
I{

(dPn/dQ)|FỸ
t

6=0
}EQ

[∣∣(dPn/dQ)| eFt
− (dP/dQ)| eFt

∣∣/F Ỹ
t

]]

= EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

(29)

where in the last equality we have used condition (b2), and analogously we get

E
[Zt

]
= EQ

[∣∣(dPn/dQ)| eFt
− (dP/dQ)| eFt

∣∣
]
.

As a consequence of the above analysis, by taking (23) and (25) into account, we get the following
upper bounds.
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Theorem 2.3. Under conditions (a), (an), (b1), and (b2),

E
[‖πt − π̃n

t ‖TV

] ≤ 2EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

+ 2P
({X̃t 6= X̃n

t }
)
, (30)

or

E
[‖πn

t − πn
t ‖TV

] ≤ 2EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

+ 2Pn
({X̃t 6= X̃n

t }
)
, (31)

and

E
[
dBL(πt, π̃

n
t )

] ≤ 2EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

+ E
[∣∣X̃t − X̃n

t

∣∣], (32)

or

E
[
dBL(πn

t , πn
t )

] ≤ 2EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

+ En
[∣∣X̃t − X̃n

t

∣∣]. (33)

Remark 2.4. It is clear from the proof that we can rewrite the above inequalities (30)−(33) by substituting
En

[Zn
t

]
or E

[Zt

]
to the first addend. Moreover when in addition P is absolutely continuous w.r.t. Pn on

F̃t we can substitute E
[∣∣∣dP

n

dP
∣∣ eFt

− 1
∣∣∣
]

to the first addend, since

En
[∣∣∣1− dP

dPn

∣∣ eFt

∣∣∣
]

= EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]
.

An analogous substitution can be done when in addition P is absolutely continuous w.r.t. Pn on F̃t, since

EQ
[∣∣(dPn/dQ)| eFt

− (dP/dQ)| eFt

∣∣
]

= E
[∣∣∣dP

n

dP
∣∣ eFt

− 1
∣∣∣
]
.

Remark 2.5. By taking into account the estimates obtained in Remark 2.2 one can substitute in (32)
and (33) the expectations of

∣∣X̃t − X̃n
t

∣∣ with the corresponding expectations of 2
∣∣X̃t − X̃n

t

∣∣ ∧ 1.

In the following theorem and remark we highlight the connections of the above considerations with
the weak convergence of the sequence of filters πn

t to πt (see [1] and [2] for similar considerations).

Theorem 2.6. Assume that

1. (a), (an) and (b2) are satisfied,

2. the sequence Un(t, Ỹ ) converges in Q-probability to U(t, Ỹ ), as random variables with values in P,
the space of probability measures endowed with the metric dist, that is, for all ε > 0

lim
n→∞

Q
(
An

ε

)
= 0, where An

ε :=
{

dist
(
Un(t, Ỹ ), U(t, Ỹ )

) ≥ ε
}

,

3. lim
n→∞

EQ
[ ∣∣∣ (dP/dQ)|F Ỹ

t
− (dPn/dQ)|F Ỹ

t

∣∣∣
]

= 0.

Then, the filters converge in distribution for each t as random variables with values in P, i.e.

πn
t ⇒ πt.
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Remark 2.7. I) It is important to stress the connection with the convergence in probability of (17) and
(18). Indeed conditions 2 and (b2) imply that P

(
An

ε

)
converge to zero, so that by condition (a)

P
(
dist

(
π̃n

t ; πt)
) ≥ ε

)
= P

(
dist

(
Un(t, Y ), U(t,Y )

) ≥ ε
)

= P
(
An

ε

) → 0.

Similarly, by condition (an),

P
(
dist

(
πn

t ; πn
t )

) ≥ ε
)

= P
(
dist

(
Un(t,Y n), U(t, Y n)

) ≥ ε
)

= Pn
(
An

ε

)
,

and, by conditions 2, 3 and (b2), Pn
(
An

ε

)
converge to zero: the set An

ε =
{
dist

(
Un(t, Ỹ ), U(t, Ỹ )

) ≥ ε
}

is F Ỹ
t −measurable, and by condition (b2)

Pn(An
ε ) = EQ

[
(dPn/dQ)|F Ỹ

t
IAn

ε

]

= EQ
[

(dP/dQ)|F Ỹ
t
IAn

ε

]
+ EQ

[ [
(dPn/dQ)|F Ỹ

t
− (dP/dQ)|F Ỹ

t

]
IAn

ε

]

≤ EQ
[

(dP/dQ)|F Ỹ
t
IAn

ε

]
+ EQ

[ ∣∣∣ (dPn/dQ)|F Ỹ
t
− (dP/dQ)|F Ỹ

t

∣∣∣
]
.

The first addend in the last line, i.e. EQ
[

(dP/dQ)|F Ỹ
t
IAn

ε

]
= P(An

ε ) converges to zero, by conditions 2

and (b2), while condition 3 asserts that the second addend converges to zero.

II) Note that if condition (b1) also holds then condition 3 is implied by the stronger condition

3’ lim
n→∞

EQ
[| (dP/dQ)|F̃t

− (dPn/dQ)|F̃t
|] = 0,

that is to say the convergence to zero of the first addend in all the upper bounds (30)−(33).
Therefore, if we can prove that the second addends in the upper bounds (30) or (32), depending on

the chosen metric, also converge to zero, we get the convergence to zero of P
(
An

ε

)
. As a consequence

condition 2 is automatically satisfied and, provided condition 1 is enforced, we get the weak convergence
of the filters. The convergence to zero in condition 3’ can also be used to get the upper bounds for the
second addends, as we do in Section 4 for the counting observation case.

An analogous result holds for the convergence to zero of Pn
(
An

ε

)
, when assuming that the second

addends in the upper bounds (31) or (33), depending on the chosen metric, also converge to zero, since
one can prove that P

(
An

ε

)
converge to zero.

Proof. (of Theorem 2.6)
For any bounded function G : P → R, continuous w.r.t. dist,

E[G(πn
t )] = En

[
G

(
Un(t, Ỹ )

)]
= EQ

[
(dPn/dQ)|F Ỹ

t
G

(
Un(t, Ỹ )

)]

→ EQ
[

(dP/dQ)|F Ỹ
t

G
(
U(t, Ỹ )

)]
= E

[
G

(
U(t, Ỹ )

)]
= E[G(πt)]

All the equalities in the above relations are obvious, we only need to prove the convergence result.
We can restrict to G uniformly continuous, with modulus of continuity wG(ε)

∣∣EQ
[

(dPn/dQ)|F Ỹ
t

G
(
Un(t, Ỹ )

)]− EQ
[

(dP/dQ)|F Ỹ
t

G
(
U(t, Ỹ )

)]∣∣

≤ EQ
[∣∣ (dPn/dQ)|F Ỹ

t
− (dP/dQ)|F Ỹ

t

∣∣ ∣∣G(
Un(t, Ỹ )

)∣∣]

+ EQ
[

(dP/dQ)|F Ỹ
t

∣∣G(
Un(t, Ỹ )

)−G
(
U(t, Ỹ )

)∣∣]

≤ ‖G‖EQ
[∣∣ (dPn/dQ)|F Ỹ

t
− (dP/dQ)|F Ỹ

t

∣∣]

+ EQ
[

(dP/dQ)|F Ỹ
t

(
2‖G‖1{dist

(
Un(t,Ỹ ),U(t,Ỹ )

)
≥ε} + wG(ε)

)]
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The first addend converges to zero by condition 3 . The second addend is equal to

2‖G‖P(An
ε ) + wG(ε)

and converges to zero by conditions 2 and (b2), and the arbitrariness of ε.

This result has been obtained by using the same kind of techniques as in [1]. In the latter paper the
context is more general in the sense that the state space S is a complete separable metric space, and the
filters converge weakly as measure valued processes in DP(S)([0, T ]). However in [1], the space P(S) is
always endowed with the Prohorov topology while in this paper we consider different kinds of metrics.

Remark 2.8. If one is interested in weak convergence of the filters πn to π as random processes in
DP [0, T ], then condition 2 can be replaced by

2’ lim
n→∞

Q
(

sup
t∈[0,T ]

dist
(
Un(t, Ỹ ), U(t, Ỹ )

) ≥ ε
)

= 0,

and condition 3 must be satisfied for t = T :

lim
n→∞

EQ
[| (dP/dQ)|F Ỹ

T
− (dPn/dQ)|F Ỹ

T
|] = 0.

Indeed, if for any bounded function G : DP [0, T ] → R, continuous w.r.t. Dist, the Skorohod metric,

E[G(πn)] = En
[
G

(
Un(·, Ỹ )

)]
= EQ

[
(dPn/dQ)|F Ỹ

T
G

(
Un(·, Ỹ )

)]

→ EQ
[

(dP/dQ)|F Ỹ
T

G
(
U(·, Ỹ )

)]
= E

[
G

(
U(·, Ỹ )

)]
= E[G(π)]

All the equalities in the above relations are obvious, we only need to prove the convergence result.
We can restrict to G uniformly continuous, with modulus of continuity wS

G(ε) w.r.t. Skorohod metric
∣∣EQ

[
(dPn/dQ)|F Ỹ

T
G

(
Un(·, Ỹ )

)]− EQ
[

(dP/dQ)|F Ỹ
T

G
(
U(·, Ỹ )

)]∣∣

≤ EQ
[∣∣ (dPn/dQ)|F Ỹ

T
− (dP/dQ)|F Ỹ

T

∣∣ ∣∣G(
Un(·, Ỹ )

)∣∣]

+ EQ
[

(dP/dQ)|F Ỹ
T

∣∣G(
Un(·, Ỹ )

)−G
(
U(·, Ỹ )

)∣∣]

≤ ‖G‖EQ
[∣∣ (dPn/dQ)|F Ỹ

T
− (dP/dQ)|F Ỹ

T

∣∣]

+ EQ
[

(dP/dQ)|F Ỹ
T

(
2‖G‖1{Dist

(
Un(·,Ỹ ),U(·,Ỹ )

)
≥ε} + wS

G(ε)
)]

The first addend converges to zero by condition 3 for t = T . The second addend is equal to

2‖G‖P(Dist
(
Un(·, Ỹ ), U(·, Ỹ )

) ≥ ε) + wS
G(ε)

≤ 2‖G‖P(sup
[0,T ]

dist
(
Un(t, Ỹ ), U(t, Ỹ )

) ≥ ε) + wS
G(ε)

and converges to zero by conditions 2’ and (b2), and the arbitrariness of ε.

2.3 Further upperbounds

In the next section we will use a slight modification of the above procedure, taking into account the
delay structure of the model we are dealing with in order to prove our approximation results. Indeed for
technical reasons we will need the following obvious observation

sup
ϕ∈K

|E[
ϕ(X̃t)/F Ỹ

t

]− En
[
ϕ(X̃n

t )/F Ỹ
t

]| ≤ sup
φ∈K′

|E[
φ(X̃t, Ỹt)/F Ỹ

t

]− En
[
φ(X̃n

t , Ỹt)/F Ỹ
t

]|
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whenever K′ contains all functions φ(x, y) such that φ(x, y) = ϕ(x), with ϕ ∈ K. The r.h.s. of the last
inequality being equal to

sup
φ∈K′

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))|,

which coincides with

sup
φ∈K′

|πt

(
φ(·, Ỹt)

)− π̃n
t

(
φ(·, Ỹt)

)|, P− a.s.,

and with

sup
φ∈K′

|π̄n
t

(
φ(·, Ỹt)

)− πn
t

(
φ(·, Ỹt)

)|, Pn − a.s.,

our aim will be accomplished once we prove the convergence to zero of the expectation of the later
quantity for a suitable choice of K′, the expectation being taken w.r.t. P or Pn depending on which
situation we are interested in. With this aim, denote by KTV (α) the class of measurable functions ϕ(x)
bounded above by α, and KBL(α, Λ) the class of measurable functions ϕ(x) bounded above by α, and
such that for all x, x′

|ϕ(x)− ϕ(x′)| ≤ Λ|x− x′|,
so that KTV = KTV (1), and KBL = KBL(1, 1). K′TV (α) is the class of measurable functions φ(x, y)
bounded above by α, and K′BL(α, Λ) is the class of measurable functions φ(x, y) bounded above by α,
and such that for all x, x′, and y

|φ(x, y)− φ(x′, y)| ≤ Λ|x− x′|.

Note that K′TV (α) contains all functions φ(x, y) = ϕ(x), with ϕ ∈ KTV (α), and that analogously
K′BL(α, Λ) contains all functions φ(x, y) = ϕ(x), with ϕ ∈ KBL(α, Λ).

Theorem 2.9. Assume that conditions (a), (an), (b1) and (b2) are satisfied, then the following in-
equalities hold

En
[

sup
φ∈K′T V (α)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))|
]
≤ 2αEn

[Zn
t

]
+ 2αPn

({X̃t 6= X̃n
t }

)
,

E
[

sup
φ∈K′T V (α)

|U(t, Ỹ ;φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))|
]
≤ 2αE

[Zt

]
+ 2αP

({X̃t 6= X̃n
t }

)
,

En
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))|
]
≤ 2αEn

[Zn
t

]
+ ΛEn

[∣∣X̃t − X̃n
t

∣∣],

E
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))|
]
≤ 2αE

[Zt

]
+ ΛE

[∣∣X̃t − X̃n
t

∣∣],

where Zn
t and Zt are defined in (27) and (28), respectively.

Proof. It can be shown (e.g. by Lemma 4.1 of [8]) that, for any bounded function φ,

|E[
φ(X̃t, Ỹt)/F Ỹ

t

]− En
[
φ(X̃n

t , Ỹt)/F Ỹ
t

]| ≤ 2‖φ‖Zn
t + En

[|φ(X̃t, Ỹt)− φ(X̃n
t , Ỹt)|/F Ỹ

t

]
,

and

|E[
φ(X̃t, Ỹt)/F Ỹ

t

]− En
[
φ(X̃n

t , Ỹt)/F Ỹ
t

]| ≤ 2‖φ‖Zt + E
[|φ(X̃t, Ỹt)− φ(X̃n

t , Ỹt)|/F Ỹ
t

]
,

Q− a.s., and therefore also P− a.s. and Pn − a.s..
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Taking into account that, if φ ∈ K′TV (α) we have

|φ(X̃t, Ỹt)− φ(X̃n
t , Ỹt)| ≤ 2α I{X̃t 6=X̃n

t },

or that, if φ ∈ K′BL(α; Λ), we have

|φ(X̃t, Ỹt)− φ(X̃n
t , Ỹt)| ≤ Λ

∣∣∣X̃t − X̃n
t

∣∣∣ ,

the previous observations can be used to get upper bounds for E
[
dist(πt, π̃

n
t )

]
and for E

[
dist(πn

t , πn
t )

]
,

when using the total variation or the bounded Lipschitz metric. Indeed, if we are interested in total
variation one has either

sup
φ∈K′T V (α)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))| ≤ 2αZn
t + 2αPn

({X̃t 6= X̃n
t }/F Ỹ

t

)
,

or

sup
φ∈K′T V (α)

|U(t, Ỹ ;φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))| ≤ 2αZt + 2αP
({X̃t 6= X̃n

t }/F Ỹ
t

)
,

and, if we are interested in bounded Lipschitz metric one has either

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))| ≤ 2αZn
t + ΛEn

[∣∣X̃t − X̃n
t

∣∣/F Ỹ
t

]
,

or

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))| ≤ 2αZt + ΛE
[∣∣X̃t − X̃n

t

∣∣/F Ỹ
t

]
.

Taking the expectation we get the stated inequalities.

Remark 2.10. Noting that K′BL(α, Λ) is contained in K′TV (α) from the upper bounds in the last two
inequalities in the above Theorem 2.9 we get

En
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ; φ(·, Ỹt))|
]

≤ 2αEn
[Zn

t

]
+ min

(
2αPn

({X̃t 6= X̃n
t }

)
; ΛEn

[∣∣X̃t − X̃n
t

∣∣]
)
,

E
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))|
]

≤ 2αE
[Zt

]
+ min

(
2αP

({X̃t 6= X̃n
t }

)
; ΛE

[∣∣X̃t − X̃n
t

∣∣]
)
.

Furthermore, observing that for any φ ∈ K′BL(α, Λ),

|φ(x, y)− φ(x′, y)| ≤ max(2α; Λ)
(|x− x′| ∧ 1

)
,

by similar arguments as in the proof of the above Theorem 2.9 we get

En
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))|
]

≤ 2αEn
[Zn

t

]
+ max(2α; Λ)En

[∣∣X̃t − X̃n
t

∣∣ ∧ 1
]
,

E
[

sup
φ∈K′BL(α,Λ)

|U(t, Ỹ ; φ(·, Ỹt))− Un(t, Ỹ ;φ(·, Ỹt))|
]

≤ 2αE
[Zt

]
+ max(2α; Λ)E

[∣∣X̃t − X̃n
t

∣∣ ∧ 1
]
.
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Moreover in the next section we will also use the following result.

Proposition 2.11. Assume that conditions (a), (an), (b1) and (b2) are satisfied, then the following
inequalities hold

sup
φ∈K′T V (α)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEn

[Zn
t

]
+ 2αPn

({X̃t 6= X̃n
t }

)
,

sup
φ∈K′T V (α)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αE

[Zt

]
+ 2αP

({X̃t 6= X̃n
t }

)
,

sup
φ∈K′BL(α,Λ)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEn

[Zn
t

]
+ ΛEn

[∣∣X̃t − X̃n
t

∣∣],

sup
φ∈K′BL(α,Λ)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αE

[Zt

]
+ ΛE

[∣∣X̃t − X̃n
t

∣∣],

where Zn
t and Zt are defined in (27) and (28), respectively.

Proof. For any φ ∈ K′TV (α)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣

≤
∣∣∣E

[
φ(X̃t, Ỹt)

]− E[
φ(X̃n

t , Ỹt)
]∣∣∣

+
∣∣∣E

[
φ(X̃n

t , Ỹt)
]− EQ

[
(dPn/dQ)|FX̃n,Ỹ

t

φ(X̃n
t , Ỹt)

]∣∣∣

≤
∣∣∣E

[
φ(X̃t, Ỹt)

]
− E

[
φ(X̃n

t , Ỹt)
]∣∣∣ + αEQ

[ ∣∣∣(dP/dQ)|FX̃n,Ỹ
t

− (dPn/dQ)|FX̃n,Ỹ
t

∣∣∣
]
.

Since, by Jensen inequality, |E(Z/G)| = |E(E(Z/H)/G)| ≤ E(|E(Z/H)|/G) for any integrable random
variable Z and σ-algebras G ⊆ H ⊆ F , we have

EQ
[ ∣∣∣(dP/dQ)|FX̃n,Ỹ

t

− (dPn/dQ)|FX̃n,Ỹ
t

∣∣∣
]
≤ EQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]
,

and therefore
∣∣∣E

[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤

∣∣∣E
[
φ(X̃t, Ỹt)

]
− E

[
φ(X̃n

t , Ỹt)
]∣∣∣ + αEQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]
.

As a consequence

sup
φ∈K′T V (α)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]

+ 2 αP
({X̃t 6= X̃n

t }
)
.

Interchanging the role of P and Pn we get

sup
φ∈K′T V (α)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]

+ 2 αPn
({X̃t 6= X̃n

t }
)
.

By using similar arguments it is easy to get

sup
φ∈K′BL(α,Λ)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]

+ ΛE
[|X̃t − X̃n

t |
]

and

sup
φ∈K′BL(α,Λ)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣ ≤ αEQ

[ ∣∣(dP/dQ)|F̃t
− (dPn/dQ)|F̃t

∣∣
]

+ ΛEn
[|X̃t − X̃n

t |
]
.
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Remark 2.12. As in the previous Remark 2.10 by similar arguments as in the proof of Theorem 2.9 we
also get

sup
φ∈K′BL(α,Λ)

∣∣∣E
[
φ(X̃t, Ỹt)

]− En
[
φ(X̃n

t , Ỹt)
]∣∣∣

≤ αEQ
[ ∣∣(dP/dQ)|F̃t

− (dPn/dQ)|F̃t

∣∣
]

+ max(2α; Λ) min
(
En

[|X̃t − X̃n
t | ∧ 1

]
; E

[|X̃t − X̃n
t | ∧ 1

])

3 Approximation in filtering for Markov models with delayed
observations

In this section we show how to use the approximations π̃n
t and πn

t introduced in Section 2 for the filter in
the case of Markov models with delayed observations, in order to obtain upper bounds for the expectations
in (19) and (20) when dealing with the bounded Lipschitz distance or the total variation distance. In this
purpose, we give some general upper bounds, depending on the actually observed trajectories (see (35)
and (38) below) which lead to the main results of this section stated in Proposition 3.1 and Proposition
3.2. In the next section we use these bounds and we exploit the results about the sensitivity of the
filter for Markov jump processes with counting observations given in [6], [7], and [8]. As we have already
noticed at the end of Section 1, some approximation results hold also for different systems and can be
obtained with different techniques.

Consider the systems (Xn, Y n) and (X, Y ), such that

(Xn, Ŷ n) is a Markov system with generator Ln,

and
Y n

t = Ŷ n
a(t),

and analogously
(X, Ŷ ) is a Markov system with generator L,

and
Yt = Ŷa(t),

where a(·) has the same properties as in Theorem 1.1.
As explained in Theorem 1.1 the filters πn

t and πt can be expressed in terms of the filters π̂n
t and

π̂t and the semigroups exp{Lns} and exp{Ls} of the corresponding Markovian systems. More precisely
(see (11))

πn
t (ϕ) = π̂n

a(t)

(
exp{Ln(t− a(t))}φ(·, Ŷ n

a(t))
)

and
πt(ϕ) = π̂a(t)

(
exp{L(t− a(t))}φ(·, Ŷa(t))

)
,

where φ(x, y) = ϕ(x), as in Theorem 1.1 and Section 2.3.
Therefore, on the one side, the convergence of the filters may be investigated in terms of the conver-

gence of π̂n
t to π̂t and of exp{Lns} to exp{Ls}. On the other side, we are interested in the approximations

(15) and (16) of the filter, and therefore we need a representation formula for the functionals Un and U .
These functionals can be expressed in terms of the corresponding functionals Ûn and Û of the underlying
Markov systems, i.e. the functionals such that

π̂n
t = Ûn

(
t, Ŷ n

)
and π̂t = Û

(
t, Ŷ

)
,

where the functionals Ûn and Û depend on the initial distributions and the generators of the corresponding
Markov systems.

As a consequence

πn
t (ϕ) =

∫

Rk

Ûn
(
a(t), Y n ◦ A−1; dx

)
exp{Ln(t− a(t))}φ(x, Y n

t )
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and
πt(ϕ) =

∫

Rk

Û
(
a(t), Y ◦ A−1; dx

)
exp{L(t− a(t))}φ(x, Yt),

where again φ(x, y) = ϕ(x) and hence, the right hand sides of the previous equalities define implicitly
the functionals Un and U , respectively.
Recalling that

(Y ◦ A−1)s = Ya−1(s) = Ŷa(a−1(s)) = Ŷs, (34)

since a(a−1(s)) = s, Yt = Ŷa(t) and Y n
t = Ŷ n

a(t), we can rewrite the above formulas as

πn
t (ϕ) =

∫

Rk

Ûn
(
a(t), Ŷ n; dx

)
exp{Ln(t− a(t))}φ(x, Ŷ n

a(t))

= Ûn
(
r,y; exp{Ln(t− r)}φ(·, yr)

)|r=a(t),y=Ŷ n

and

πt(ϕ) =
∫

Rk

Û
(
a(t), Ŷ ; dx

)
exp{L(t− a(t))}φ(x, Ŷa(t)),

= Û
(
r,y; exp{L(t− r)}φ(·, yr)

)|r=a(t),y=Ŷ .

Therefore, when we observe Y (situation 1 of Section 2), either the total variation distance or the
bounded-Lipschitz distance between πt and π̃n

t can be evaluated in terms of the supremum of

|πt(ϕ)− π̃n
t (ϕ)| =

∣∣U(
t,Y ; ϕ

)− Un
(
t,Y ; ϕ

)∣∣

=
∣∣∣Û

(
r,y; exp{L(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{Ln(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

,

over ϕ in the class of functions KTV or KBL respectively. When instead we observe Y n (situation 2 of
Section 2), the distance between πn

t and π̄n
t can be evaluated in terms of the supremum of

|πn
t (ϕ)− πn

t (ϕ)| = ∣∣Un
(
t, Y n;ϕ

)− U
(
t,Y n; ϕ

)∣∣

=
∣∣∣Ûn

(
r,y; exp{Ln(t− r)}φ(·, yr)

)− Û
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ n

,

over ϕ in the class of functions KTV or KBL respectively.
In situation 1 we have

|πt(ϕ)− π̃n
t (ϕ)| (35)

≤
∣∣∣Û

(
r,y; exp{L(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

(36)

+
∣∣∣Ûn

(
r,y; exp{L(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{Ln(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

(37)

and in situation 2,

|πn
t (ϕ)− πn

t (ϕ)| (38)

≤
∣∣∣Ûn

(
r,y; exp{Ln(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ n

(39)

+
∣∣∣Ûn

(
r,y; exp{L(t− r)}φ(·, yr)

)− Û
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ n

. (40)
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Note that the two previous upper bounds differ only from the fact that they are evaluated on y = Ŷ
and y = Ŷ n. Moreover natural upper bounds for (37) are

sup
x
|exp{L(t− r)}φ(x, yr)− exp{Ln(t− r)}φ(x, yr)|r=a(t),y=Ŷ (41)

≤ sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) . (42)

The same being valid for (39) when substituting y = Ŷ with y = Ŷ n.
Then in both situations the distance between the filter and the approximation can be expressed

by means of the distance between Ûn and Û and the distance between the semigroups exp{Lns} and
exp{Ls} as can be deduced by the following results.

Proposition 3.1. For the system with delayed observations described at the beginning of this section we
have

sup
ϕ∈KT V (α)

|πt(ϕ)− π̃n
t (ϕ)|

≤ sup
ψ∈K′T V (α)

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y;ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

(43)

+ sup
φ∈K′T V (α)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) , (44)

where KTV (α) and K′TV (α) are defined as in Section 2.3.
Furthermore, if for all u ≥ 0 there exists a constant Λ′(u, Λ) such that

exp{Lu}(K′BL(α, Λ)
) ⊆ K′BL(α, Λ′(u, Λ)), (45)

then we have

sup
ϕ∈KBL(α,Λ)

|πt(ϕ)− π̃n
t (ϕ)|

≤ sup
ψ∈K′BL(α,Λ′(t−r,Λ))

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y;ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

(46)

+ sup
φ∈K′BL(α,Λ)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) , (47)

where KBL(α, Λ) and K′BL(α, Λ) are defined as in Section 2.3.

Proof. Taking into account (35) to (37) we get

sup
ϕ∈KT V (α)

|πt(ϕ)− π̃n
t (ϕ)|

≤ sup
φ∈K′T V (α)

∣∣∣Û
(
r,y; exp{L(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

+ sup
φ∈K′T V (α)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t)

≤ sup
ψ∈K′T V (α)

∣∣∣Û
(
r,y;ψ(·, yr)

)− Ûn
(
r,y; ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

+ sup
φ∈K′T V (α)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t)
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Moreover we also have

sup
ϕ∈KBL(α,Λ)

|πt(ϕ)− π̃n
t (ϕ)|

≤ sup
φ∈K′BL(α,Λ)

∣∣∣Û
(
r,y; exp{L(t− r)}φ(·, yr)

)− Ûn
(
r,y; exp{L(t− r)}φ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

+ sup
φ∈K′BL(α,Λ)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t)

≤ sup
ψ∈exp{L(t−r)}K′BL(α,Λ)

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y; ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ

+ sup
φ∈K′BL(α,Λ)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) ,

and invoking (45) we get (46) by noticing that the supremum over exp{L(t − r)}(K′BL(α, Λ)
)

in the
bound given above can be replaced by the supremum over K′BL(α, Λ′(t− r,Λ)).

Taking into account (38) to (40) and changing Ŷ into Ŷ n we have the following result.

Proposition 3.2. For the system with delayed observations described at the beginning of this section we
have

sup
ϕ∈KT V (α)

|πn
t (ϕ)− πn

t (ϕ)|

≤ sup
ψ∈K′T V (α)

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y;ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ n

(48)

+ sup
φ∈K′T V (α)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) . (49)

Furthermore if condition (45) holds, then we have

sup
ϕ∈KBL(α,Λ)

|πn
t (ϕ)− πn

t (ϕ)|

≤ sup
ψ∈K′BL(α,Λ′(t−r,Λ))

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y;ψ(·, yr)

)∣∣∣
r=a(t),y=Ŷ n

(50)

+ sup
φ∈K′BL(α,Λ)

sup
x,y

|exp{L(t− r)}φ(x, y)− exp{Ln(t− r)}φ(x, y)|r=a(t) . (51)

The above upper bounds will be evaluated when studying filtering systems with counting observations
in the following section. In particular upper bounds for the expectations of (43) and (46) will be obtained
by a slight modification of the arguments used in the previous section (see Theorem 2.9). The same kind
of consideration holds for the expectations of (44) and (47) (see Proposition 2.11).

4 Counting processes observations

4.1 Main results

In this section, we accomplish the above exposed general program in the case of a Markov jump process
with counting delayed observations. More precisely we assume that the pairs (X, Ŷ ) and (Xn, Ŷ n) are
Markov systems in R×N, with respective initial conditions µX

0 ⊗δ{y} and µXn

0 ⊗δ{y}, and with respective
generators L and Ln, where

Lφ(x, y) = λ0(x, y)
∫ (

φ(x′, y)− φ(x, y)
)
µ0(x, y; dx′)

+ λ1(x, y)
∫ (

φ(x′, y + 1)− φ(x, y)
)
µ1(x, y; dx′),
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and

Lnφ(x, y) = λn
0 (x, y)

∫ (
φ(x′, y)− φ(x, y)

)
µn

0 (x, y; dx′)

+ λn
1 (x, y)

∫ (
φ(x′, y + 1)− φ(x, y)

)
µn

1 (x, y; dx′),

so that the predictable intensities of Ŷ and Ŷ n are λ1(Xt− , Ŷt−) and λn
1 (Xn

t− , Ŷ n
t−) respectively, and such

that the following hypotheses are satisfied

(H0) 0 ≤ λi ≤ λi(x, y), λn
i (x, y) ≤ λi, for i = 0, 1;

(H1) 0 < λ1(x, y), λn
1 (x, y);

(H2) ∆n
i := sup

x,y
κ

(
µi(x, y; ·), µn

i (x, y; ·)) < ∞, for i = 0, 1.

Note that the operator L given above can be expressed in the same form as the one defined by (4)
and viceversa.

From now on we will say that the operator L is bL-regular when it satisfies the following conditions

(R0) for every z the function x 7→ λi(x, z), i = 0, 1, is bounded Lipschitz continuous and the Lipschitz
constant is bounded from above by Lλi ,

(R1) sup
y

κ
(
µi(x, y; ·), µi(x′, y; ·)) ≤ Γµi |x− x′|, for i = 0, 1

(R2) sup
x,y

∫
|z − x|µ0(x, y; dz) ≤ b0,

∫
|z − x|µ1(x, y; dz) ≤ a1(|x|+ y) + b1.

It is important to stress that, if L is bL-regular, then exp{Lu}(K′BL(α, Λ)
) ⊆ K′BL(α, ΛeMu) (see

Corollary 4.9) for a suitable constant M (given in (67)), so that condition (45) is satisfied with

Λ′(u,Λ) = ΛeMu. (52)

Finally we will denote by ‖ · ‖∞ the norm defined by ‖µ‖∞ = supx,y ‖µ(x, y, ·)‖TV for any regular
nucleus µ(x, y; dz).

The central tool for the proofs of our bounds (see Theorem 4.5 below) is a particular construction
of the pairs (Xn, Ŷ n) and (X, Ŷ ) on the same measurable space (Ω,F), equipped with three different
probability measures Q, P and Pn, in a similar way to that used in Section 2, and such that

(â) under P the pair (X, Ŷ ) has generator L and initial condition µ = µX
0 ⊗ δ{y},

(ân) under Pn the pair (Xn, Ŷ ) has generator Ln and initial condition µn = µXn

0 ⊗ δ{y},

(b̂) the probability measures Q, P and Pn are equivalent on = FX,Xn,Ŷ
t .

Note that the use of (Xn, Ŷ n) and (X, Ŷ ) is a slight abuse of notation: as at the end of the previous

section we should write instead (X̃n, ˜̂Y n) and (X̃, ˜̂Y ). Nevertheless we prefer the slight abuse of nota-

tion, in order to avoid the notation ˜̂
Y .

Therefore, when dealing with the triplet (X, Xn, Ŷ ) instead of (X̃, X̃n, Ỹ ), conditions (a), (an),
(b1) and (b2) are satisfied. Then, in this framework, Theorem 2.9 applies with (X,Xn, Ŷ ) instead of
(X̃, X̃n, Ỹ ) and with Û and Ûn instead of U and Un, respectively, the same considerations being valid
for Proposition 2.11. The explicit expression of Û is given by

Û(t, y;ϕ) =

{
Π̂t(ϕ|s), for y(t) =

∑∞
i=1 I[0,si](t),

ϕ(x0), otherwise.

20



(see (9) and (10)). Obviously the definition of the probability measure Û(t, y; dx) on the complement of
the set {y such that y(t) =

∑∞
i=1 I[0,si](t)} is not unique. An analogous representation holds for Ûn.

Basically the above conditions coincide with Condition A of [8], and the construction we use is the
same as the one in Section 3 of [8], the only difference being that in [8] we assume Ŷ0 = 0. By this
construction the model (X, Y ) is defined on (Ω,F ,P) taking Yt = Ŷa(t) and the model (Xn, Y n) is
defined on (Ω,F ,Pn) taking Ŷ n = Ŷ and Y n

t = Ŷ n
a(t), so that (Xn,Y n) coincides with (Xn, Y ) on

(Ω,F ,Pn). Moreover if µX
0 = δ{x} and µXn

0 = δ{x}, then the semigroups can be represented respectively
as

exp{Lt}φ(x, y) = E
[
φ(Xt, Ŷt)

]
, (53)

and
exp{Lnt}φ(x, y) = En

[
φ(Xn

t , Ŷt)
]
. (54)

The construction of the triplet (X,Xn, Ŷ ) is possible under the assumptions (H0) and (H1).
The space (Ω,F ,Q) is a probability space on which two independent Poisson random measures are

defined: N0(ds, dζ) on [0, T ]× [0, λ̄0], with intensity measure ds dζ, and N1(ds, dζ) on [0, T ]× [0, 1], with
intensity measure ds dζ. Then for suitable functions K0,K1,K

n
0 ,Kn

1 the triplet (X,Xn, Ŷ ) is

Xt = X0 +
∫ t

0

∫ λ̄0

0

K0(Xs− , Xn
s− , Ŷs− ; ζ)N0(ds, dζ) (55)

+
∫ t

0

∫ 1

0

K1(Xs− , Xn
s− , Ŷs− ; ζ)N1(ds, dζ),

Xn
t = Xn

0 +
∫ t

0

∫ λ̄0

0

Kn
0 (Xs− , Xn

s− , Ŷs− ; ζ)N0(ds, dζ) (56)

+
∫ t

0

∫ 1

0

Kn
1 (Xs− , Xn

s− , Ŷs− ; ζ)N1(ds, dζ),

Ŷt = y +
∫ t

0

∫ 1

0

N1(ds, dζ) = y +N1((0, t]× [0, 1]), (57)

with initial conditions (X0, X
n
0 ) independent of N0 and N1, and

dP
dQ

∣∣∣∣
FX,Xn,Ŷ

t

= exp
{∫ t

0

log
(
λ1(Xs− , Ŷs−)

)
dŶs −

∫ t

0

(
λ1(Xs− , Ŷs−)− 1

)
ds

}
,

dPn

dQ

∣∣∣∣
FX,Xn,Ŷ

t

= exp
{∫ t

0

log
(
λn

1 (Xn
s− , Ŷs−)

)
dŶs −

∫ t

0

(
λn

1 (Xn
s− , Ŷs−)− 1

)
ds

}
.

Remark 4.1. By using Lemma 3.7 in [8], explicit expressions for the functions K0,K1, K
n
0 ,Kn

1 can be
given. In particular K0(x, x̃, y) and Kn

0 (x, x̃, y) are constructed using λ(x) = λ0(x, y), λ̃(x̃) = λn
0 (x̃, y),

λ̄ = λ̄0, µ(x; dz) = µ0(x, y; dz), and µ̃(x̃; dz) = µn
0 (x̃, y; dz). While K1(x, x̃, y) and Kn

1 (x, x̃, y) are
constructed using λ(x) = λ̃(x̃) = λ̄ = 1, µ(x; dz) = µ1(x, y; dz), and µ̃(x̃; dz) = µn

1 (x̃, y; dz).
Note that this construction relies on the fact that the state space is one dimensional. Similar expres-

sions could be obtained in higher dimensions.

Firstly, we deduce from the above Radon-Nikodym derivatives some upper bounds which will play a
key role in the sequel. By using Lemma 4.7 in [8] we have

En

[∣∣∣∣∣
dP
dPn

∣∣∣∣
FX,Xn,Ŷ

t

− 1

∣∣∣∣∣

]
= E

[∣∣∣∣∣
dPn

dP

∣∣∣∣
FX,Xn,Ŷ

t

− 1

∣∣∣∣∣

]

≤ 2E ∧ En

[∫ t

0

∣∣∣λ1(Xs, Ŷs)− λn
1 (Xn

s , Ŷs)
∣∣∣ ds

]
(58)

≤ 2
∫ t

0

E ∨ En
[∣∣∣λ1(Xs, Ŷs)− λn

1 (Xn
s , Ŷs)

∣∣∣
]
ds, (59)
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where E ∧ En[Z] = min{E[Z],En[Z]}, and E ∨ En[Z] = max{E[Z],En[Z]}, for any random variable Z.

Secondly, note that since in our construction Ŷ n = Ŷ , (43) and (48) coincide, and so the first upper
bounds in Proposition 3.1 and Proposition 3.2 also coincide, and the same holds for (46) and (50) and
consequently for the last upper bounds. Then, taking r = a(t), the following result can be used to obtain
upper bounds for the expectations of (43) and (46).

Proposition 4.2. Under the hypotheses (H0) and (H1)

E ∨ En
[

sup
ψ∈K′T V (α)

∣∣∣Û
(
r,y;ψ(·, yr)

)− Ûn
(
r,y; ψ(·, yr)

)∣∣∣
y=Ŷ

]
(60)

≤ α
[
4‖λ1 − λn

1‖r+

exp {(λ̄1 − λ1) r}
(
‖µX

0 − µXn

0 ‖TV

( 2λ1

λ̄1 − λ1

+ 1
)

+ (λ̄0 + λ̄1)Jn A(r)
)]

where

A(r) = 2r + 4λ̄1
exp {−(λ̄1 − λ1) r}+ (λ̄1 − λ1)r − 1

(λ̄1 − λ1)2
(61)

and
Jn = max(‖p0 − pn

0‖∞, ‖µ1 − µn
1‖∞)/2, (62)

with

p0(x, y; dx′) =
(
1− (λ0(x, y)/λ̄0)

)
δx(dx′) +

(
λ0(x, y)/λ̄0

)
µ0(x, y; dx′) (63)

pn
0 (x, y; dx′) =

(
1− (λn

0 (x, y)/λ̄0)
)
δx(dx′) +

(
λn

0 (x, y)/λ̄0

)
µn

0 (x, y; dx′). (64)

If furthermore, the operator L is bL-regular assumption (H2) holds, and the initial distributions µX
0

and µXn

0 have finite first moments, then

E ∨ En
[

sup
ψ∈K′BL(α,Λ′)

∣∣∣Û
(
r,y; ψ(·, yr)

)− Ûn
(
r,y;ψ(·, yr)

)∣∣∣
y=Ŷ

]
(65)

≤ 4α
[
‖λ1 − λn

1‖r + Lλ1H
n EM

2 (r)
]

+ Λ′Hn EM
1 (r)

+ κ
(
µX

0 , µXn

0

)(
4αLλ1EM

1 (r) + Λ′EM
0 (r)

)

where
Hn = λ̄0∆n

0 + b0 ‖λ0 − λn
0‖+ λ̄1∆n

1 , (66)

M = λ̄0(Γµ0 − 1)+ − λ0(1− Γµ0)
+ + b0Lλ0 + λ̄1(Γµ1 − 1)+ − λ1(1− Γµ1)

+, (67)

and

EM
k (t) :=

1
Mk

∞∑

h=k

(tM)h

h!
=

1
Mk

(
exp{tM} −

k−1∑

h=0

(tM)h

h!
)
. (68)

The proof of the above result is given in the next subsection.
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Remark 4.3. As a consequence, taking α = 1, we can obtain

E ∨ En
[‖Û(r,y)− Ûn(r,y)‖TV

∣∣∣
y=Ŷ

]
(69)

≤
[
4‖λ1 − λn

1‖r+

exp {(λ̄1 − λ1) r}
(
‖µX

0 − µXn

0 ‖TV

( 2λ1

λ̄1 − λ1

+ 1
)

+ (λ̄0 + λ̄1)Jn A(r)
)]

,

and similarly, taking Λ′ = 1,

E ∨ En
[
dBL

(
Û(r,y), Ûn(r,y)

)∣∣∣
y=Ŷ

]
(70)

≤ 4
[
‖λ1 − λn

1‖r + Lλ1H
n EM

2 (r)
]

+ Hn EM
1 (r)

+ κ
(
µX

0 , µXn

0

)(
4Lλ1EM

1 (r) + EM
0 (r)

)
.

The above upper bounds are interesting by themselves, since they correspond to upper bounds for the
approximations of the system without delay. The last bound was essentially obtained in [8], Remark 2.7.
However in that bound there was an imprecision, and (70) corrects it.

Note that the upper bound for (69) grows exponentially fast in r, and therefore is valid only in a finite
interval of time, namely when the l.h.s. is less or equal than 2. A similar consideration holds for the
upper bound for (60). Moreover note that we have used implicitly that λ1 − λ1 > 0. The upper bound
(69) grows exponentially fast also when L = Ln, i.e. when the approximating system and the limit one
differ only in the distribution of the initial condition, but it simplifies to

E ∨ En
[‖Û(r,y)− Ûn(r,y)‖TV

∣∣∣
y=Ŷ

] ≤ exp {(λ̄1 − λ1) r}
( 2λ1

λ̄1 − λ1

+ 1
)
‖µX

0 − µXn

0 ‖TV , (71)

since in this case ‖λ1 − λn
1‖ = 0 and Jn = 0.

As far as the bounds (70) and (65) are concerned, note that if L = Ln, then the bound (70) simplifies to

E ∨ En
[
dBL

(
Û(r,y), Ûn(r,y)

)∣∣∣
y=Ŷ

] ≤ κ
(
µX

0 , µXn

0

)(
4Lλ1EM

1 (r) + EM
0 (r)

)
, (72)

since in this case ‖λ1 − λn
1‖ = 0 and Hn = 0.

Moreover note that the constants Hn and M correspond to the constants defined in (2.9) and (2.10) of
Theorem 2.1 in [8] respectively, and that the constant M can be either positive or negative: for instance
if Γµ1 < 1, then for any λ0(x, y) and µ0(x, y; dx′), M = λ̄0(Γµ0−1)+−λ0(1−Γµ0)

+ +b0Lλ0−λ1(1−Γµ1),
so that for λ1 sufficiently large, the constant M is negative.
Furthermore it is interesting to note that in the case of the observation of a fixed parameter, i.e. Xt = X0,
and Xn

t = Xn
0 , observed at times which form a standard Poisson process independent of X then M = 0,

since in this case λ0(x) = λn
0 (x) = 0, Lλ0 = 0, λ1(x) = λn

1 (x) = 1, and Γi = 1.
The condition that the value of λ1 is sufficiently large can be interpreted as the condition that the times
of observation are sufficiently frequent. In this case the error evaluated in the bounded-Lipschitz metric
is of the same order of the error at time zero, evaluated in the Kantorovitch metric. If instead Γµ1 ≥ 1,
but Γµ0 < 1, then M = −λ0(1− Γµ0)

+ + b0Lλ0 + λ̄1(Γµ1 − 1), and so for λ0 sufficiently large, again M
is negative.

Finally note that for any k ≥ 0 and for positive M , EM
k (t) increases to infinity exponentially fast,

with EM
k (t) ≤ tk exp{tM}

k!
. Hence the bounds (70) and (65) are meaningful only in a finite interval of

time, as the bound for the total variation distance. When M is negative, we have that

lim
t→∞

EM
k (t) = ∞, for k ≥ 2,
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but the rate of convergence is polynomial (indeed limt→∞ EM
k (t)/tk−1 = (k − 1)!/|M |), while

lim
t→∞

EM
0 (t) = lim

t→∞
eMt = 0,

and

lim
t→∞

EM
1 (t) = lim

t→∞
eMt − 1

M
=

1
|M | .

Hence, for negative M , though the general bounds (70) and (65) are meaningful only in a finite interval
of time, when the systems differ only for the initial conditions, i.e. when L = Ln, we can use (72) and
get that

lim
r→∞

E ∨ En
[
dBL

(
Û(r,y), Ûn(r,y)

)∣∣∣
y=Ŷ

] ≤ κ
(
µX

0 , µXn

0

)4Lλ1

|M | . (73)

The latter result can be interpreted as a kind of stability property for the filter with respect to its initial
condition. Asymptotic stability properties with respect to the Hilbert projective metric have been studied
by Budhiraja and Kushner [3] in the case when X is an ergodic Markov process with generator A, and
the system (X, Y ) is described by Lφ(x, y) =

(
Aφ(·, y)

)
(x) + λ1(x, y)[φ(x, y + 1)− φ(x, y)]. Their result

does not require X to be a jump process, however when this is the case simultaneous jump times of X
and Y are not allowed. In order to compare their result with (73) note that on the one hand we need
X to be a jump process, while on the other hand simultaneous jump times are not prohibited and we do
not need X to be Markov.

The same kind of considerations hold for the next upper bounds and can be used to give upper bounds
for (44) and (47).

Proposition 4.4. Under the assumptions (H0), (H1) and the notations of Proposition 4.2,

sup
φ∈K′T V (α)

sup
x,y

|exp{Lt}φ(x, y) − exp{Lnt}φ(x, y)|

≤ α
(
2‖λ1 − λn

1‖ t + exp {(λ̄1 − λ1)t}(λ̄0 + λ̄1)Jn B(t)
)

(74)

where

B(t) = 2t + 2λ̄1
exp {−(λ̄1 − λ1) t}+ (λ̄1 − λ1)t− 1

(λ̄1 − λ1)2
= t + A(t)/2. (75)

If furthermore the operator L is bL-regular, assumption (H2) holds, and the initial distributions µX
0

and µXn

0 have finite first moments, then

sup
φ∈K′BL(α,Λ)

sup
x,y

|exp{Lt}φ(x, y)− exp{Lnt}φ(x, y)|

≤ 2α
[
‖λ1 − λn

1‖t + Lλ1H
n EM

2 (t)
]

+ ΛHn EM
1 (t). (76)

The proof of the above result is given in the next subsection.

Using the results and the notations of Proposition 3.1 and Proposition 3.2, with α = 1, Λ = 1 and
Λ′(t − r, 1) = eM(t−r) (see (52)), then using Proposition 4.2 with Λ′ = Λ′(t − r, 1) and Proposition 4.4,
we get immediately the main result of this section.
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Theorem 4.5. Under the assumptions (H0) and (H1), and the notations introduced in the previous
Propositions 4.2 and 4.4

E
[‖πt − π̃n

t ‖TV

] ∨ E
[‖πn

t − πn
t ‖TV

]

≤
[
2‖λ1 − λn

1‖(t + r) + ‖µX
0 − µXn

0 ‖TV exp {(λ̄1 − λ1) r}
( 2λ1

λ̄1 − λ1

+ 1
)
+ (77)

(λ̄0 + λ̄1)Jn
(
exp {(λ̄1 − λ1) r}A(r) + exp {(λ̄1 − λ1) (t− r)}B(t− r)

)]
r=a(t)

.

Furthermore assume (H2), the bL-regularity of L, and that the initial distributions µX
0 and µXn

0 have
finite first moments. Then

E
[
dBL(πt, π̃

n
t )

] ∨ E
[
dBL(πn

t , πn
t )

]

≤ 4
[
‖λ1 − λn

1‖r + Lλ1H
n EM

2 (r)
]

+ exp{M(t− r)}Hn EM
1 (r)

+ κ
(
µX

0 , µXn

0

)(
4Lλ1EM

1 (r) + EM
0 (t)

)
(78)

+ 2
(
‖λ1 − λn

1‖(t− r) + Lλ1H
n EM

2 (t− r)
)

+ Hn EM
1 (t− r)

∣∣∣
r=a(t)

.

To conclude this section we work out an example highlighting the bounds in (78) by using a particular
case of the model considered in Remark 2.5 in [8].

Example Assume that the measures µi(x, y, ·) are Gaussian with mean mi(x, y), and variance σ2
i (x, y),

and that the functions λi(z, y), mi(z, y), and σi(z, y) are Lipschitz in z, uniformly in y, with Lipschitz con-
stant Lλi , Lmi and Lσi , respectively. We assume also that the functions λi(z, y), σ0(z, y) and m0(z, y) :=
m0(z, y) − z are uniformly bounded by λi, σ0 and m0, respectively, and that σ1(0, y) ≤ Kσ

1 (y + 1) and
|m1(0, y)| ≤ Km

1 (y + 1).
Then conditions (R0), (R1) and (R2) are satisfied with

Γµi =
√

2/π Lσi + Lmi ,

b0 = σ0 + m0, b1 = Kσ
1 + Km

1 , and a1 =
(
Lσ1 + Lm1

) ∨ b1

as can be easily deduced by the assumptions, the upper bound

κ
(
µi(x, y; ·), µi(x′, y; ·)) ≤

√
2/π |σi(x, y)− σi(x′, y)|+ |mi(x, y)−mi(x′, y)|

≤
(√

2/π Lσi + Lmi

)
|x− x′|,

and the bound
∫

R
|z − x|µi(x, y; dz) ≤

∫

R
|z −mi(x, y)|µi(x, y; dz) +

∫

R
|mi(x, y)− x|µi(x, y; dz)

≤ σi(x, y) + |mi(x, y)− x|.

As far as the approximating process is concerned we define

λn
i (x, y) = λ

( bnxc
n , y

)
, µn

i (x, y; A) := T nµi(
bnxc

n , y; A), and πn
0 (A) = T nπ0(A)

where, for any probability measure ν,

T nν(A) =
∑

k

ν
([

k
n , k+1

n

))
δ{ k

n}(A).
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Then condition (H0) is obviously satisfied, condition (H1) is satisfied if we assume furthermore
λ1(x, y) to be strictly positive, and finally condition (H2) is satisfied with

∆n
i =

(√
2/π Lσi

+ Lmi
+ 1

) 1
n

since κ
(
ν, T nν

) ≤ 1
n , so that

κ
(
µi(x, y; ·), µn

i (x, y; ·)) ≤ κ
(
µi(x, y; ·), µi(

bnxc
n , y; ·)) + κ

(
µi(

bnxc
n , y; ·), T nµi(

bnxc
n , y; ·))

≤
(√

2/π Lσi + Lmi + 1
) 1

n
.

Then E
[
dBL(πt, π̃

n
t )

]
and E

[
dBL(πn

t , πn
t )

]
are of order 1

n , since the quantities involved in the upper
bound (78) are of order 1

n . Indeed

‖λi − λn
i ‖ ≤ Lλi

1
n

, κ(π0, π
n
0 ) ≤ 1

n

and finally, recalling (66) and the previously obtained upper bounds,

Hn ≤
[
λ̄0

(√
2/π Lσ0 + Lm0 + 1

)
+ (σ0 + m0) Lλ0 + λ̄1

(√
2/π Lσ1 + Lm1 + 1

)] 1
n

.

4.2 Proofs of Propositions 4.2 and 4.4

Using the construction of the triplet (X, Xn, Ŷ ), it is easy to prove the following auxiliary results. In
the first two results we need the processes

N0(t) = N0

(
(0, t]× [0, λ̄0]

)
, N1(t) = N1

(
(0, t]× [0, 1]

)
,

which are independent Poisson processes under Q, with parameter λ̄0 and 1, respectively.

Proposition 4.6. If the assumptions (H0), (H1) hold and if the initial conditions (X0, X
n
0 ) in (55) and

(56) are coupled in such a way that Q(X0 6= Xn
0 ) = ‖µX

0 − µXn

0 ‖TV /2 (see e.g. [8]), then

P ∨ Pn
(
Xt 6= Xn

t

) ≤ exp{(λ̄1 − λ1) t}
(
‖µX

0 − µXn

0 ‖TV /2 + (λ̄0 + λ̄1) tJn
)

where the constant Jn has been introduced in (62) of Proposition 4.2.

Proof. To get a bound for P ∨ Pn
(
Xt 6= Xn

t

)
observe that

P
(
Xt 6= Xn

t

)
= EQ

[
(dP/dQ)|FX,Xn,Ŷ

t

I{Xt 6=Xn
t }

]

and that

(dP/dQ)|FX,Xn,Ŷ
t

= exp
{∫ t

0

log
(
λ1(Xs− , Ŷs−)

)
dŶs −

∫ t

0

(
λ1(Xs− , Ŷs−)− 1

)
ds

}

= exp
{∫ t

0

log
(
λ1(Xs− , Ŷs−)

)
dN1(s)−

∫ t

0

(
λ1(Xs− , Ŷs−)− 1

)
ds

}

≤ (
λ̄1

)N1(t) exp{−(λ1 − 1)t}.
As a consequence

P
(
Xt 6= Xn

t

) ≤ EQ[ (
λ̄1

)N1(t) I{Xt 6=Xn
t }

]
exp{−(λ1 − 1)t}. (79)

In a similar way we prove that

Pn
(
Xt 6= Xn

t

) ≤ EQ[ (
λ̄1

)N1(t) I{Xt 6=Xn
t }

]
exp{−(λ1 − 1)t}. (80)

The result then follows immediately from the next lemma, which is proved in the Appendix.
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Lemma 4.7. Under the hypotheses and notations of Proposition 4.6

EQ
[ (

λ̄1

)N1(t) I{Xt 6=Xn
t }

] ≤ exp{(λ̄1 − 1) t}
(
‖µX

0 − µXn

0 ‖TV /2 + (λ̄0 + λ̄1) tJn
)
. (81)

The following result plays a key role in our analysis in order to get the upper bounds when dealing
with the bounded Lipschitz metric.

Proposition 4.8. If the operator L is bL-regular, the hypotheses (H0) − (H2) hold, and if the initial
conditions (X0, X

n
0 ) in (55) and (56) have finite first moments and are coupled in such a way that

EQ

[ |X0 −Xn
0 |

]
= κ

(
µX

0 , µXn

0

)
(see e.g. [8]), then

E ∨ En
[ |Xt −Xn

t |
] ≤ κ

(
µX

0 , µXn

0

)EM
0 (t) + HnEM

1 (t)

where the constants Hn, M and the functions EM
k have been introduced in Proposition 4.2.

Proof. The proof of this result is the same as the proof of Lemma 5.1 in [8], with obvious changes in the
notations, in particular we have to substitute X̃ with Xn. Indeed, as in that proof, one can show

E
[|Xt −Xn

t |
] ≤ E[|X0 −Xn

0 |
]
+

∫ t

0

E
[
H + M |Xs −Xn

s |
]
ds,

and a similar inequality w.r.t. En. Then the statement follows by Gronwall inequality. We note also that
there was a mistake in the statement of Lemma 5.1 of [8], and this result corrects it.

As a consequence of Proposition 4.8 we get immediately that the class of bounded functions ψ which
are Lipschitz in x for all y, uniformly in y is invariant under the action of the semigroup exp{Lt}.
Corollary 4.9. Let L be a bL-regular operator, with λi, i = 0, 1 satisfying hypotheses (H0) and (H1),
let ψ be a measurable bounded function such that, for all x, x′, y, |ψ(x, y)− ψ(x′, y)| ≤ Lψ|x− x′|.

Then
| exp{Lt}ψ(x, y)− exp{Lt}ψ(x′, y)| ≤ eMtLψ|x− x′|, for all x, x′, y,

and
exp{Lt}(K ′(α, Λ)

) ⊆ K ′(α, eMtΛ).

Proof. Assume that Ln = L, so that Hn = 0, and assume that µX
0 = δ{x}, µXn

0 = δ{x′}, so that
κ

(
µX

0 , µXn

0

)
= |x− x′|. Then

| exp{Lt}ψ(x, y)− exp{Lt}ψ(x′, y)|
=

∣∣∣E
[
ψ(Xt, Ŷt)

]− E[
ψ(Xn

t , Ŷt)
]∣∣∣ ≤ LψE[|Xt −Xn

t |],

and, observing that (H2) is trivially satisfied, and that EM
0 (t) = eMt, Proposition 4.8 implies the result.

The second statement is an immediate consequence of the first one.

Remark 4.10. We note that the boundedness condition on the function ψ is not necessary we could
ask for a bound of the kind |ψ(x, y)| ≤ A(|x| + y) + B: indeed, under the conditions of the previous
Corollary 4.9, exp(Lt)ψ(x, y) is finite for any ψ Lipschitz in x uniformly in y: in Proposition 4.8 the
condition on the first moments of (X0, X

n
0 ) guarantees the integrability of (Xt, X

n
t ) for all t ≥ 0, and when

(X0, X
n
0 ) = (x, x′) this condition is obviously satisfied and implies that exp(Lt)ψ(x, y) = E

[
ψ(Xt, Ŷt)

]
is

finite, for all such functions which are Lipschitz in x uniformly in y.
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Proof. (of Proposition 4.2)
In order to get the first estimate, we can use the first part of Theorem 2.9 with (X,Xn, Ŷ ) and r instead
of (X̃, X̃n, Ỹ ) and t, and get that (60) is bounded above by

2α max
(
E[Ẑr] + P(Xr 6= Xn

r ) ; En[Ẑn
r ] + Pn(Xr 6= Xn

r )
)
,

where Ẑr and Ẑn
r are defined as Zr and Zn

r , with obvious changes. Using Remark 2.4 we get E[Ẑr] and
En[Ẑn

r ] are equal to

En

[∣∣∣∣∣
dP
dPn

∣∣∣∣
FX,Xn,Ŷ

t

− 1

∣∣∣∣∣

]
= E

[∣∣∣∣∣
dPn

dP

∣∣∣∣
FX,Xn,Ŷ

t

− 1

∣∣∣∣∣

]
.

Therefore, by (59), (60) is bounded above by

2α
(
2

∫ r

0

E ∨ En
[∣∣∣λ1(Xs, Ŷs)− λn

1 (Xn
s , Ŷs)

∣∣∣
]
ds + P ∨ Pn(Xr 6= Xn

r )
)

≤ 4α

∫ r

0

(
‖λ1 − λn

1‖+ λ̄1P ∨ Pn (Xs 6= Xn
s )

)
ds + 2αP ∨ Pn (Xr 6= Xn

r ) .

The thesis is achieved by applying Proposition 4.6.
To obtain the second estimate, we can use the second part of Theorem 2.9, again with (X, Xn, Ŷ )

and r instead of (X̃, X̃n, Ỹ ) and t, and get that (65) is bounded above by

max
(
2αE[Ẑr] + ΛE(|Xr −Xn

r |) ; 2αEn[Ẑn
r ] + ΛEn(|Xr −Xn

r |)
)
.

Therefore, by (59), (65) is bounded above by

4α

∫ r

0

E ∨ En
[∣∣∣λ1(Xs, Ŷs)− λn

1 (Xn
s , Ŷs)

∣∣∣
]
ds + ΛE ∨ En[|Xr −Xn

r |]

≤ 4α

∫ r

0

(
‖λ1 − λn

1‖+ Lλ1E ∨ En [|Xs −Xn
s |]

)
ds + ΛE ∨ En [|Xr −Xn

r |] .

The thesis is achieved by applying Proposition 4.8, and using the fact that EM
k+1(r) =

∫ r

0
EM

k (s) ds.

The proof of Proposition 4.4 is similar to the previous one, but instead of using Theorem 2.9 we use
Proposition 2.11, with initial distributions µX

0 = µXn

0 = δ{x}. The last fact explains the similarity of the
upper bounds in Propositions 4.2 and Proposition 4.4.

Remark 4.11. When the first moments are not finite the result of Proposition 4.8 cannot be used.
However we can prove that

E ∨ En
[ |Xt −Xn

t | ∧ 1
] ≤ dBL

(
µX

0 , µXn

0

)EM̄
0 (t) + H̄nEM̄

1 (t) (82)

where M̄ = (M0)+ + λ̄1(Γµ1 − 1)+ and H̄n = Hn
0 ∧ λ̄0 + λ̄1(∆n

1 ∧ 1), with Hn
0 = λ̄0∆n

0 + ‖λ0−λn
0‖b0, and

M0 = λ̄0(Γµ0 − 1)+−λ0(1−Γµ0)
+ + b0Lλ0 . Indeed using the same techniques as in the proofs of Lemma

5.1 in [8] and Lemma 4.3 in [7] when setting g1(x, x′) = |x− x′| ∧ 1 we get

Lg1(x, x′) ≤ (
Hn

0 + M0|x− x′|+ λ̄0|x− x′|) ∧ λ̄0 − λ̄0(|x− x′| ∧ 1)
+ λ1(x, y) [(∆n

1 + Γµ1 |x− x′|) ∧ 1− |x− x′| ∧ 1] .

Then taking into account that M0 + λ̄0 ≥ 0, and that if a, b, λ ≥ 0, then (a + b) ∧ λ ≤ a ∧ λ + b ∧ λ, and
(ab) ∧ λ ≤ (a ∨ λ)(b ∧ 1), we have

Lg1(x, x′) ≤Hn
0 ∧ λ̄0 +

(
(M0 + λ̄0) ∨ λ̄0

)
(|x− x′| ∧ 1)− λ̄0(|x− x′| ∧ 1)

+ λ1(x, y)
[
∆n

1 ∧ 1 + (Γµ1 ∨ 1)(|x− x′| ∧ 1)− (|x− x′| ∧ 1)
]

=Hn
0 ∧ λ̄0 + λ1(x, y)(∆n

1 ∧ 1) +
(
(M0)+ + λ1(x, y)(Γµ1 − 1)+

)
(|x− x′| ∧ 1)

≤H̄n + M̄(|x− x′| ∧ 1).
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Therefore, when the hypothesis on the first moments does not hold, taking (82) and the estimates in
Remarks 2.5, 2.10 and 2.12 into account, the upper bound (78) of Theorem 4.5 remains valid with minor
changes in the constants, and substituting M and Hn with M̄ and H̄n, respectively.

4.3 Appendix: Proof of Lemma 4.7

In order to prove (81) it is sufficient to prove that

EQ
[ (

λ̄1

)N1(t) I{Xt 6=Xn
t }

] ≤ EQ[ (
λ̄1

)N1(t) ]‖µX
0 − µXn

0 ‖TV /2 + EQ
[(

N0(t) + N1(t)
) (

λ̄1

)N1(t) ]
Jn. (83)

Indeed the r.h.s. of (83) is equal to the r.h.s. of (81), since N0 and N1 are independent under Q and for any
Poisson process M(t) of parameter ρ, and for any a > 0, it holds E[M(t)] = ρ t, E

[
aM(t)] = exp{ρ(a−1)t},

E
[
M(t) aM(t)] = ρa t exp{ρ(a− 1)t}.

Let Tk denote the jump times of the Poisson process N(t) = N0(t) + N1(t), where we recall that
N0(t) = N0

(
[0, λ̄0]× (0, t]

)
and N1(t) = N1

(
[0, 1]× (0, t]

)
. Then the processes defined by (55), (56) and

(57), i.e. (
Xt, X

n
t , Ŷt

)
=

(
Xt, X

n
t , y + N1(t)

)

are obtained as a Markov chain (ηk, ηn
k , ŷk) evaluated at time k = N(t), so that (ηk, ηn

k , ŷk) =
(
XTk

, Xn
Tk

, ŶTk

)
.

Moreover the Markov chain and the Poisson process {N(t), t > 0} are independent.

Let S ∈ {Th, h ≥ 0} be the first time when {Xt 6= Xn
t }, then

EQ
[ (

λ̄1

)N1(t) I{Xt 6=Xn
t }

] ≤ EQ[ (
λ̄1

)N1(t) I{S≤t}
]

= EQ
[ (

λ̄1

)N1(t) I{X0 6=Xn
0 }

]
+

∞∑

k=1

EQ
[
I{N(t)=k}

k∑

h=1

(
λ̄1

)Ŷt−y I{S=Th}
]

= EQ
[ (

λ̄1

)N1(t) ]
Q(X0 6= Xn

0 ) +
∞∑

k=1

k∑

h=1

EQ
[
I{N(t)=k}

(
λ̄1

)ŷk−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
]
. (84)

The first addend is equal to the first addend in inequality (83), since Q(X0 6= Xn
0 )=‖µX

0 − µXn

0 ‖TV /2.
Moreover, for any k and 1 ≤ h ≤ k, we have

EQ
[
I{N(t)=k}

(
λ̄1

)ŷk−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
]

= Q(N(t) = k)EQ
[ (

λ̄1

)ŷk−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
]
,

since under Q the Poisson process N(t) and the Markov chain (ηk, ηn
k , ŷk) are independent.

Therefore, according to Lemma 4.12 below, the second addend in (84) is bounded above by

∞∑

k=1

Q(N(t) = k) kEQ
[ (

λ̄1

)ŷk−y
]

Jn

=
∞∑

k=1

EQ
[
I{N(t)=k} k

(
λ̄1

)ŷk−y
]

Jn = EQ
[
N(t)

(
λ̄1

)N1(t)
]

Jn,

and this ends the proof of inequality (83).

Lemma 4.12. For any k ≥ 1 and 1 ≤ h ≤ k,

EQ
[ (

λ̄1

)ŷk−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
] ≤ EQ

[ (
λ̄1

)ŷk−y
]

Jn. (85)

To prove this inequality we need the following technical result.
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Lemma 4.13. Under the hypotheses and notations of Proposition 4.6, the following upper bound holds
for any a > 0

EQ
[
aŷk+1−ŷkI{ηk+1 6=ηn

k+1}|ηk = z, ηn
k = z, ŷk = w

]

= a1 1
1 + λ̄0

‖µ1(z, w, ·)− µn
1 (z, w, ·)‖TV /2 (86)

+ a0 λ̄0

1 + λ̄0
‖p0(z, w, ·)− pn

0 (z, w, ·)‖TV /2

≤ EQ[
aŷk+1−ŷk

]
max(‖p0 − pn

0‖∞, ‖µ1 − µn
1‖∞)/2. (87)

Proof. Without loss of generality we can assume that N0 = {(T 0
k , ζ0

k), k ≥ 1} is the restriction to
(0,∞)× (0, λ̄0] of a Poisson measure N = {(Tk, ζk), k ≥ 1} on (0,∞) × (−1, λ̄0]. Moreover, if N 1 =
{(T̄ 1

k , ζ̄1
k), k ≥ 1} is the restriction of N to (0,∞) × (−1, 0], we can assume that N1 = {(T 1

k , ζ1
k), k ≥ 1}

is obtained by taking (T 1
k , ζ1

k) = (T̄ 1
k ,−ζ̄1

k).
We recall that under Q the processes

(
Xt, X

n
t , Ŷt

)
=

(
Xt, X

n
t , y + N1(t)

)

are constructed by defining K0, Kn
0 , K1 and Kn

1 as explained in Definition 3.8 of [8], that is K0 and Kn
0

are defined by means of Lemma 3.7 of [8] using the measures p0(x, y; dx′) and pn
0 (x, y; dx′) defined by

(63) and (64) respectively, while K1 and Kn
1 are defined using the measures µ1(x, y; dz) and µn

1 (x, y; dz).
Equality (86) can be derived as follows

EQ
[
aŷk+1−ŷkI{ηk+1 6=ηn

k+1}| ηk = z, ηn
k = z, ŷk = w

]

= EQ
[
a1 I{ζk+1∈(−1,0]} I{K1(z,z,w;−ζk+1)6=Kn

1 (z,z,w;−ζk+1)}
]

+ EQ
[
a0 I{ζk+1∈(0,λ̄0]} I{K0(z,z,w;ζk+1) 6=Kn

0 (z,z,w;ζk+1)}
]

= a1Q(ζk+1 ∈ (−1, 0],K1(z, z, w;−ζk+1) 6= Kn
1 (z, z, w;−ζk+1))

+ a0Q(ζk+1 ∈ (0, λ̄0],K0(z, z, w; ζk+1) 6= Kn
0 (z, z, w; ζk+1))

= a1 1
1 + λ̄0

∫ 1

0

I{u: K1(z,z,w;u)6=Kn
1 (z,z,w;u)}(v) dv

+ a0 λ̄0

1 + λ̄0

∫ λ̄0

0

I{u: K0(z,z,w;u)6=Kn
0 (z,z,w;u)}(v)

dv

λ̄0

= a1 1
1 + λ̄0

‖µ1(z, w, ·)− µn
1 (z, w, ·)‖TV /2 + a0 λ̄0

1 + λ̄0
‖p0(z, w, ·)− pn

0 (z, w, ·)‖TV /2,

where the last equality is due to the specific choice of K0, Kn
0 , K1 and Kn

1 . Observing that

a1 1
1 + λ̄0

+ a0 λ̄0

1 + λ̄0
= EQ

[
aŷk+1−ŷk

]
,

inequality (87) is an immediate consequence of (86).

Proof. (of Lemma 4.12)
We observe that

EQ
[ (

λ̄1

)ŷk−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
]

= EQ
[ (

λ̄1

)ŷh−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1} EQ
[ (

λ̄1

)ŷk−ŷh |Fη,ηn,ŷ
h

]]

= EQ
[ (

λ̄1

)ŷh−y I{ηh 6=ηn
h , ηl=ηn

l , l≤h−1}
]
EQ

[ (
λ̄1

)ŷk−ŷh
]

≤ EQ
[ (

λ̄1

)ŷh−y I{ηh 6=ηn
h , ηh−1=ηn

h−1}
]
EQ

[ (
λ̄1

)ŷk−ŷh
]
.
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Then (85) follows taking into account that

EQ
[ (

λ̄1

)ŷh−y I{ηh 6=ηn
h , ηh−1=ηn

h−1}
]

= EQ
[
I{ηh−1=ηn

h−1}
(
λ̄1

)ŷh−1−y EQ
[ (

λ̄1

)ŷh−ŷh−1 I{ηh 6=ηn
h} |F

η,ηn,ŷ
h−1

]]

= EQ
[ (

λ̄1

)ŷh−1−y I{ηh−1=ηn
h−1} E

Q[ (
λ̄1

)ŷh−ŷh−1 I{ηh 6=ηn
h} |ηh−1, η

n
h−1, ŷh−1

]]
,

and that, using inequality (87) of Lemma 4.13, with a = λ̄1, the above quantity is bounded above by

EQ
[ (

λ̄1

)ŷh−1−y I{ηh−1=ηn
h−1} E

Q[ (
λ̄1

)ŷh−ŷh−1
]
max(‖p0 − pn

0‖∞, ‖µ1 − µn
1‖∞)/2

]

≤ EQ
[ (

λ̄1

)ŷh−1−y
]
EQ

[ (
λ̄1

)ŷh−ŷh−1
]
Jn = EQ

[ (
λ̄1

)ŷh−y
]

Jn,

where in the last equality we have used the independence of the increments ŷh−1 − y and ŷh − ŷh−1

under Q.
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