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Abstract— Optimal distributed parameter control and a
Galerkin finite element method are used to develop procedures
for an ideal model of optimal drug delivery to brain tumors.
The mathematical model comprises of a system of three coupled
reaction diffusion models, involving the density of tumor cells,
normal tissue and also the drug concentration. An optimal
control problem is formulated with the goal of minimizing the
tumor cell density and reducing the side effects of the drug. A
distributed parameter method based on a simple application of
variational calculus is used on a pseudo-Hamiltonian, which is
then used to obtain a coupled system of forward state equations
and backward co-state equations. The Galerkin finite element
method is used to realistically represent the brain structure.
Finally, an ideal three dimensional test case is considered and
partitioned into a set of brick finite elements in spherical
coordinates, with tri-linear basis functions. Non-uniqueness of
nodes in spherical coordinates is removed by combining like
nodes, such as at the origin, at the poles and at the polar angle
discontinuity. The Galerkin ODEs are solved by a combination
of Crank-Nicolson and predictor-corrector methods.

I. INTRODUCTION

Various kinds of cancerous growth have been studied
not only from the medical perspective, but also from the
mathematical point of view. One such kind is the brain
tumor, which like most cancerous cells originates from a
single cell and proliferates into the neighboring normal cells.
Understanding the mechanism behind the growth of tumors
is necessary for designing an optimal treatment. Gliomas, a
very deadly form of brain tumors, account for a majority
of the cases, according to Murray [11] and Swanson [13].
Despite the advanced disgnostic procedures available, their
benefits have been limited due to various impedimets like
the existence of the blood brain barrier (BBB) [4]. The
commonly used forms of drug delivery are drugs congugated
with polymer and delivery by optimal distribution of drugs
about the original tumor site. Wang et al. [14], [15] have
worked extensively on drug delivery to tumors in three
dimensions. The focus is on post-operative treatment of the
resection arising from the removal of the bulk of the tumor.

The tumor-drug model here is from Chakrabarty and
Hanson [2], [3], which was influenced by Gatenby et al. [5]
and Mansuri [9]. Murray’s fine text [10] is a good source of
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different types of growth mechanisms. The emphasis is on
the development of analytical and computational techniques
for future, larger inhomogeneous brain models with complex
geometries.

The paper is organized in the following manner. In section
II, we have the reaction diffusion mathematical model. In
section III, the optimal distributed parameter control problem
is formulated, a pseudo-Hamiltonian is defined and then
calculus of variations [6] is applied to it to obtain a forward
state equation and a backward co-state equation. In the next
two sections we present the Galerkin finite element method
and finite element test configuration using the spherical co-
ordinates. Finally we present the computational results of
numerical implementation of this finite element formulation.

II. MATHEMATICAL MODEL

In the distributed parameter control model of Chakrabarty
and Hanson [2], [3], the tumor cell and normal cell density
and the drug concentration at any position vector x and time
t ∈ [0, tf ], in the interior Ω of the domain, denoted by
n1(x, t), n2(x, t) and c(x, t) respectively, are taken as the
state variables. Defining the global state vector as

Y(x, t) ≡ [n1(x, t) n2(x, t) c(x, t)]> , (1)

the governing nonlinear vector PDE is given by

Yt(x, t) = D∇2
x[Y] + (A+B)(Y)Y + U, (2)

where the nonlinearities are given by

A(Y) = a1(1− Y1/k1)e1e
>
1 + a2(1− Y2/k2)e2e

>
2 − a3e3e

>
3 ,

B(Y) = −(α1,2Y2 + κ1,3Y3)e1e
>
1 − (α2,1Y1 + κ2,3Y3)e2e

>
2 ,

U(x, t) = U3(x, t)1x∈Ue3, (3)

where U ⊂ Ω is the localized drug bolus input subset and
1x∈U is the indicator function. Here, Di > 0 is the ith
component of the diagonal diffusion coefficient D (could
be inhomogeneous depending on the brain matter [13]),
Ai,i(Y)Yi is the ith growth rate (logistic for i = 1 : 2
and exponentially decaying for i=3 for our test case), αi,j
are death rates due to competition, κi,j are the death rates
due to treatment and u = U3(x, t) is the rate at which the
drug is being delivered and will be the control variable in an
optimal control system. Also, ei is the ith unit vector. The
initial conditions and the no-flux boundary conditions on the
boundary ∂Ω are, respectively,

Y(x, 0) = Y0(x), (4)

−D( bN · ∇x)[Y](x, t) = 0. (5)



III. THE OPTIMAL CONTROL PROBLEM

The quadratic objective functional for combined running
and terminal costs is given by,

J [Y,U] =
1

2

Z tf

0

dt

Z
Ω

dx
“
Y>RY+(U−U0)

>S (U−U0)
”

+
1

2

Z
Ω

dx
“
Y>QY

”
(x, tf ), (6)

where coefficients are R = r1e1e>1 for state costs, S =
s3e3e>3 for control costs and Q = q1e1e>1 +q3e3e>3 for final
costs, while U0 = U0,3(x, t)1x∈Ue3 is some threshold rate.
The goal is to minimize this functional with respect to the
drug input rate relative to a minimal effectiveness rate U0,3

and the terminal costs at tf , i.e., minu [J(u)] also reduces
the effects of toxicity. Note that here r1 > 0 is the tumor
burden cost coefficient and s3 > 0 is the drug delivery cost
coefficient, while q1 > 0 and q3 > 0 are the corresponding
final costs. In addition, no assumption is made about the
control constraints like physical restriction on the amount of
drugs that can be administered.

Using three Lagrange multiplier vectors, two of which are
functions of space and time and one is independent of time,
and letting Z = (Y,U, ξ,η,χ) be an extended state vector,
we define the pseudo-Hamiltonian as

H(Z) ≡ 1

2

Z tf

0

dt

Z
Ω

dx
“
Y>RY+(U−U0)

>S (U−U0)
”

+
1

2

Z
Ω

dx
“
Y>QY

”
(x, tf )

+

Z tf

0

dt

Z
Ω

dx ξ>
„
Yt−D∇2

x[Y]−(A+B)(Y)Y−U

«
+

Z tf

0

dt

Z
∂Ω

dΓ η>
“
−D

“ bN·∇x”
[Y]

”
+

Z
Ω

dx
“
χ>(Y−Y0)

”
(x, 0). (7)

The calculus of variations simplifies the analysis by using
it to determine the critical point necessary condition for the
first variation [6] of the pseudo-Hamiltonian H(Z). Let the
perturbation δZ about the optimal trajectory Z∗, be defined
as δZ = Z− Z∗. The pseudo-Hamiltonian is expanded as

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) +O((δZ)2).

The quadratic order terms of H are neglected. Also the
functional dependence of the higher derivatives in time and
state of the extended state perturbations must be eliminated
on lower order terms by one or two integrations by parts,
(using Green’s formula [7]). Rearranging inner products
and collecting terms, the extended state equations yields an
intermediate form (see [1], [2], [3] for details). The resulting
coefficients of independent variations are set to zero to obtain
the state, control and co-state equations.

A. State Equations
The optimal state equation is recovered by setting the

coefficient of (δξ)> to zero:

Y∗
t = D∇2

x[Y
∗] + (A+B)(Y∗)Y∗ + U∗ (8)

on Ω×(0, tf ], with boundary conditions on ∂Ω×[0, tf ] from
the coefficient of (δη)>, i.e.,

−D( bN·∇x)[Y∗](x, t) = 0, (9)

for (x, t) ∈ ∂Ω × [0, tf ] and with initial conditions on the
interior Ω from the coefficient of (δχ)>, i.e.,

Y∗(x, 0) = Y0(x) (10)

for x ∈ Ω. Due to the presence of the functions A(Y)Y and
B(Y)Y the forward PDE (8) will be nonlinear.

B. Regular Optimal Control
Since the control has been defined in (3) with only one

component, only the coefficient of δU3 is set to zero giving
the corresponding drug regular control

U∗
3 (x, t) = U0,3(x, t) + ξ∗3(x, t)1x∈U/s3, (11)

on Ω×[0, tf ], since δU3 ≡ 0 for x /∈ U and provided s3 6= 0.
Note that this control law only requires solving for the 3rd
component of ξ∗(x, t), since δU1 ≡ 0 and δU2 ≡ 0.

C. Co-State Equations
Setting the functional coefficient of (δY)> to zero yields

the primary co-state backward PDE:

0 = ξ∗t +∇2
x[Dξ∗] + (A+B)(Y∗)ξ∗ (12)

+∇Y [A+B](Y∗):(ξ∗(Y∗)>)−RY∗,

for (x, t) ∈ Ω × [0, tf ). This PDE (12) is unidirectionally
coupled to the state PDE (8). The boundary condition is
from setting the coefficient of δY(x, t) for x on Γ=∂Ω to
zero, so

( bN·∇x)[Dξ∗](x, t) = 0, (x, t) ∈ ∂Ω× [0, tf ) (13)

and the final condition for this backward PDE follows from
forcing the coefficient of δY(x, tf ) to be zero on Ω,

ξ∗(x, tf ) = −QY∗(x, tf ). (14)

The two other co-state vectors should not be needed, but
satisfy rather simple equations [2], [3]. However, in general,
there are 6 vector PDEs in 3 dimensional space, leading
to a very high computational complexity when converted to
numerical methods.

IV. GALERKIN FINITE ELEMENT METHOD

In [2], [3] the Crank-Nicolson implicit method combined
with predictor-corrector methods are used to study the prob-
lem numerically. However, using finite difference methods
like Crank-Nicolson implicit method alone and alternating
directions implicit method have serious drawbacks. Finite
difference techniques are more likely to have higher com-
putational requirements, i.e, more likely suffering from the
curse of dimensionality. Finite element methods require a
relatively smaller number of nodes as compared to the finite
difference methods while maintaining the same level of
accuracy. Also, the finite element method can better handle
irregular structure, such as a brain tumor or ventricles.
Hanson [8] has worked extensively in this area and has
made a comparative study of different numerical methods
for stochastic dynamic programming. For the problem under
consideration, the Galerkin finite element method is used so
as to reduce the number of state nodes. The following steps
can be used to get an numerical approximation.

1) The first forward step (δ = 1) of forward-backward
iteration is to guess an initial control U∗3 (x, t) '
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U
(1)
3 (x, t) for forward state equations and use the finite

element method to solve for the state Y∗(x, t) '
Y(1)(x, t) for t > 0. Initially, Y∗(x, 0) = Y0(x).
Let the Galerkin approximation for the optimal state
and control be

Y∗(x, t) ' bY(δ)(x, t) ≡
cMX
k̂=1

bY(δ)

k̂
(t) · φk̂(x), (15)

U∗(x, t) ' bU(δ)(x, t) ≡ 1x∈U

cMX
k̂=1

bU(δ)

k̂
(t) · φk̂(x), (16)

where, [φi(x)]cM×1
, is a set of M̂ linearly independent

continuous basis functions, with the interpolation con-
dition φk̂(xĵ) = δĵ,k̂, at the element node xĵ , implying

that Y∗(xĵ , t) = Ŷ(δ)

ĵ
(t) for ĵ = 1:M̂ element nodes.

2) Before applying the Galerkin approximations, the in-
tegral form of the state equation (8) with respect to a
basis test function φĵ(x) is needed,

0 =

Z
Ω

dxφĵ(x)
`
Y∗
t −D∇2

x[Y
∗]−(A+B)(Y∗)Y∗−U∗´

=

Z
Ω

dx
“
φĵY

∗
t +D∇>

x [φĵ ]∇x[Y
∗]

−φĵ ((A+B)(Y∗)Y∗+U∗)
´
,

for ĵ = 1:M̂ , where the 2nd order derivatives have
been reduced to 1st order derivatives by integration
by parts (Green’s formula [7]) and the exact no-flux
boundary condition has been used.

3) Now, the Galerkin approximations (15-16) are applied

0 '
cMX
k̂=1

Z
Ω

dx
“ bY′

k̂φĵφk̂+D bYk̂

“
∇>
x [φĵ ]∇x[φk̂]

”
−

“
(A+B)

“ bY” bYk̂+ bUk̂

”
φĵφk̂

”
,

for ĵ = 1 : M̂ . Futher reduction to finite element
integrals for ĵ, k̂, l̂ = 1:M̂ is accomplished by letting

cMĵ,k̂ ≡
Z

Ω

dxφĵ(x)φk̂(x) (17)

be an element mass integral

bKĵ,k̂ ≡ Z
Ω

dx∇>
x [φĵ ]∇x[φk̂] (18)

be an element stiffness integral and

bTĵ,k̂,l̂ ≡ Z
Ω

dxφĵ(x)φk̂(x)φl̂(x) (19)

be a triple basis element integral arising from the
purely bilinear terms in A(Y)Y and B(Y)Y. Thus,

the Galerkin equation becomes,

0 =

cMX
k̂=1

“ cMĵ,k̂

“ bY′
k̂(t)−

“
a1e1e

>
1 +a2e2e

>
2

−a3e3e
>
3

” bYk̂(t)− bUk̂(t)
”

+D bKĵ,k̂ bYk̂(t) (20)

+

cMX
l̂=1

bTĵ,k̂,l̂„a1

k1

bY1,k̂(t)
bY1,l̂(t)e1+

a2

k2

bY2,k̂(t)
bY2,l̂(t)e2

+
“
α1,2

bY2,l̂(t)+κ1,3
bY3,l̂(t)

” bY1,k̂(t)e1

+
“
α2,1

bY1,l̂(t)+κ2,3
bY3,l̂(t)

” bY2,k̂(t)e2

””
,

for ĵ = 1 : M̂ (dropping the (δ) superscript here
for brevity). This Galerkin ODE can be solved by
approximating the Galerkin basis integral coefficients
(M̂ĵ,k̂, K̂ĵ,k̂, T̂ĵ,k̂,l̂) using symbolic methods and two-
point Gaussian quadrature in case of singularities,
and then the ODE system is solved by the combined
Crank-Nicolson and predictor-corrector methods. The
coefficients can be computed for all double shots for
fixed finite elements off-line since they will be fixed.
These coefficients can be calculated on an element-by-
element decomposition and element results can later be
reassembled to form the global solution [12].

4) In the second, backward shot of the double shot
algorithm [2], the final condition (14),

ξ(δ)(x, tf ) ' −Q bY(δ)(x, tf )=−Q
cMX
k̂=1

bY(δ)

k̂
(tf )φk̂(x),

for δ = 1 ::L double shots, is used to start the back-
ward co-state solution. Similar to the state equation, a
Galerkin approximation for the co-state equation using
the same basis is given by,

ξ∗(x, t) ' bξ(δ)
(x, t) ≡

cMX
k̂=1

bξ(δ)

k̂ (t) · φk̂(x) (21)

for t < tf . Similar to the derivation of the
state Galerkin finite element ODEs (20), the co-state
Galerkin ODEs are

0 =

cMX
k̂=1

“ cMĵ,k̂

“bξ ′
k̂(t)+a1

bξ1,k̂e1+a2
bξ2,k̂e2

−a3
bξ3,k̂e3−R bYk̂(t)

”
−D bKĵ,k̂bξk̂(t)

−
cMX
l̂=1

bTĵ,k̂,l̂„2a1

k1

bY1,l̂(t)
bξ1,k̂(t)e1 (22)

+
2a2

k2

bY2,l̂(t)
bξ2,k̂(t)e2

+α1,2

“ bY2,l̂(t)e1 + bY1,l̂(t)e2

” bξ1,k̂(t)
+κ1,3

“ bY3,l̂(t)e1 + bY1,l̂(t)e3

” bξ1,k̂(t)
+α2,1

“ bY2,l̂(t)e1 + bY1,l̂(t)e2

” bξ1,k̂(t)
+κ2,3

“ bY3,l̂(t)e2 + bY2,l̂(t)e3

” bξ2,k̂(t)””
,
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for ĵ = 1 :: M̂ . This Galerkin ODE (22) may be
computed by the appropriate numerical methods using
the same Galerkin integral basis coefficients.

5) For each completed double shot for δ = 1:L, the co-
state approximation ξ̂

(δ)
(x, t) (21) is for the regular

optimal control (11) Û3 update,bU (δ+1)
3 (x, t) = U0,3(x, t) + bξ(δ)3 (x, t)/s3, x ∈ U . (23)

6) This process is repeated for δ = 2 : L double shot
iterations until a convergence criterion for a sufficient
L is reached, e.g., the relative criterion for the control
and the state˛̨̨˛̨̨

U
(δ)
3 (x, t)−U (δ−1)

3 (x, t)
˛̨̨˛̨̨
<tolu

˛̨̨˛̨̨
U

(δ−1)
3 (x, t)

˛̨̨˛̨̨
,˛̨̨˛̨̨

Y(δ)(x, t)−Y(δ−1)(x, t)
˛̨̨˛̨̨
<toly

˛̨̨˛̨̨
Y(δ−1)(x, t)

˛̨̨˛̨̨
,

respectively, for δ = 2 : L until satisfied, provided
||U (δ−1)

3 (x, t)|| 6= 0 and ||Y(δ−1)(x, t)|| 6= 0, where
tolu > 0 and toly > 0 are relative prescribed
tolerances.

V. SPHERICAL FINITE ELEMENT TEST CONFIGURATION

Consider a three dimensional test configuration that is a
sphere of radius Rr. Transforming the spherical coordinates
in space as usual,

(x, y, z) = r(cos(θ) sin(ψ), sin(θ) sin(ψ), cos(ψ)) (24)

where r, θ, ψ are the radius, polar angle and azimuthal angle,
respectively. Also, 0 ≤ r ≤ Rr , 0 ≤ θ ≤ 2π and 0 ≤ ψ ≤ π.
The brick element grid in spherical coordinates is constructed
of Mr radial sectors of width ∆r = Rr/Mr, Mθ polar
sectors of width ∆θ = 2π/Mθ and Mψ azimuthal sectors
of width ∆ψ = π/Mψ . The nodal values are given by
(θie , ψje , rke) = ((ie − 1)∆θ, (je − 1)∆ψ, (ke − 1)∆r)for ie =

1:Mθ + 1, je = 1:Mψ + 1 and ke = 1:Mr + 1. The elements
are numbered in (θ, ψ, r) linear priority order like the nodal
values, eie,je,ke = ie + (je − 1) ·Mθ + (ke − 1) ·Mθ ·Mψ,for
ie = 1 : Mθ, je = 1 : Mψ and ke = 1 : Mr. Within element
eie,je,ke

, the element primary node with local node number
i = 1 has the same global node number k̄e = {ie, je, ke}
as the element, i.e., nk̄e,1 = eie,je,ke for ie = 1 : Mψ ,
je = 1:Mθ , ke = 1:Mr. The element local node numbering is
i = 1:8 as shown in the Figure 1. The formulation is given in

eie,je,ke

�
�

��

�
�

��

�
�

��

�
�

��

1

2

3

4

5

6

7

8

r -

6

θ �
ψ

Fig. 1. Local node numbering with i = 1:8 for general element eie,je,ke .

some detail here, since hardy any useful details on spherical
elements are given in the literature to our knowledge.

For simplicity, trilinear basis functions are used for all
brick elements in spherical coordinates. The trilinear bases
are constructed from the more basic one-dimensional linear
bases with only two nodes labeled 1 and 2:

φ
(ke)
1r (r) =

“rke+1 − r

∆r

”
, φ

(ke)
2r (r) =

“r − rke

∆r

”
; (25)

φ
(ie)
1θ (θ) =

„
θie+1 − θ

∆θ

«
, φ

(ie)
2θ (θ) =

„
θ − θie

∆θ

«
; (26)

φ
(je)
1ψ (ψ) =

„
ψje+1 − ψ

∆ψ

«
, φ

(je)
2ψ (ψ) =

„
ψ − ψje

∆ψ

«
; (27)

For the general element eie,je,ke on [θie , θie+1]×[ψje , ψje+1]×
[rke , rke+1], for ie = 1 :Mθ , je = 1 :Mψ and ke = 2 :Mrin the
i = 1:8 element node numbering,

φ
(ie,je,ke)
1 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

1θ (θ) · φ(je)
1ψ (ψ); (28)

·φ(ie,je,ke)
2 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

2θ (θ) · φ(je)
1ψ (ψ); (29)

φ
(ie,je,ke)
3 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

1θ (θ) · φ(je)
2ψ (ψ); (30)

φ
(ie,je,ke)
4 (r, θ, ψ) = φ

(ke)
1r (r) · φ(ie)

2θ (θ) · φ(je)
2ψ (ψ); (31)

φ
(ie,je,ke)
5 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

1θ (θ) · φ(je)
1ψ (ψ); (32)

φ
(ie,je,ke)
6 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

2θ (θ) · φ(je)
1ψ (ψ); (33)

φ
(ie,je,ke)
7 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

1θ (θ) · φ(je)
2ψ (ψ); (34)

φ
(ie,je,ke)
8 (r, θ, ψ) = φ

(ke)
2r (r) · φ(ie)

2θ (θ) · φ(je)
2ψ (ψ) . (35)

The mapping (24) from spherical to cartesian coordinates
is not unique since the mapping is a many-to-one. The non-
unique nodes arise at the origin for r = r1 = 0 and any
(θ, ψ) or at the poles for ψ = 0, π and any (r, θ) or at the
periodic boundary condition when θ = 2π for any (r, ψ) The
non-uniqueness or resulting over-determinism can simply be
removed by adding together the appropriate bases in (28)-
(31) corresponding to the same non-unique nodes, using the
identities for the one-dimensional bases and their derivatives,

φ
(`e)
1ρ (ρ) + φ

(`e)
2ρ (ρ) = 1, φ

(`e) ′
1ρ (ρ) + φ

(`e) ′
2ρ (ρ) = 0; (36)

for ρ = r, θ or ψ and `e = ke, ie or je. While it may appear
awkward to have to make this adjustment, the disadvantage
is out-weighed by the ease of deforming a sphere into a brain
geometry than deforming a brick or rectangular solid into a
brain geometry. Another advantage of spherical coordinates
is the ease of imposing the no-flux boundary condition (BC)
at r = Rr, since on the element eie,je,ke the isth state
solution for is = 1:3 is expressed as a preliminary Galerkin
approximation,

Y
(ie,je,ke)
is

(r, θ, ψ, t) '
8X
j=1

eY (ie,je,ke)
is,j

(t)φ
(ie,je,ke)
j (r, θ, ψ), (37)

so the normal gradient, at boundary element ke = Mr
with rMr+1 = Rr for local nodes j = 5 : 8, yields
Y

(ie,je,Mr)
is,r

(Rr, θ, ψ, t) so that

eY (ie,je,Mr)
is,j

(t) = eY (ie,je,Mr)
is,j−4 (t) (38)

for j = 5:8 and arbitrary (θ, ψ) if Y (ie,je,Mr)
is,r

(Rr, θ, ψ, t) =
0 with no-flux.This version of the no-flux condition is much
better and simpler to use than that in [3], even when dealing
with a deformed sphere in the form of a brain case.

The element matrices for node numbers i, j, k = 1:8 are

4



M(ie,je,ke)
i,j =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i φ

(ie,je,ke)
j

”
(r, θ, ψ),

K(ie,je,ke)
i,j =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i,r φ

(ie,je,ke)
j,r +

1

r2
φ

(ie,je,ke)
i,ψ φ

(ie,je,ke)
j,ψ

+
1

r2 sin2(ψ)
φ

(ie,je,ke)
i,θ φ

(ie,je,ke)
j,θ

«
(r, θ, ψ),

T (ie,je,ke)
i,j,k =

Z θie+1

θie

dθ

Z ψje+1

ψie

dψ

Z rke+1

rke

drr2 sin(ψ)“
φ

(ie,je,ke)
i φ

(ie,je,ke)
j φ

(ie,je,ke)
k

”
(r, θ, ψ),

dropping the matrix “̂” notation, where φ
(ie,je,ke)
i,ρ (ρ) de-

notes the partial derivative of φ(ie,je,ke)
i (ρ) with respect to

generic spherical coordinate ρ. In the stiffness matrix K,
the mapping singularities of the gradient lead to recipro-
cal factors in r and sin(ψ), but the r factors are simply
cancelled by the Jacobian r2 sin(ψ) and leave uncanceled
sin(ψ)-denominators in the θ-derivative term. However, these
sin(ψ)-denominators are completely eliminated in later anal-
ysis upon eliminating non-unique nodes by combining terms
and associated ODEs.

VI. COMPUTATIONAL RESULTS

The double shot iteration algorithm using the finite el-
ement method outlined in Section IV is implemented on
three-dimensional space with the three states and the drug
input control. The implementation is more similar to the
two-dimensional problem treated in [3], except that the
complexity of the mapping from spherical to cartesian is
much greater than the polar mapping due to the degeneracy at
the poles. Once the non-unique degeneracies of states and co-
states due to aliases and boundary conditions are eliminated
so that there are only M̂ = (Mr − 1)(Mθ(Mψ − 1)+2)+1
linearly independent Galerkin coefficients, Ŷk̂(t) in ODE
(20), ξ̂k̂(t) in ODE (22) and control Ûk̂(t). This non-
uniqueness elimination keeps the system of ODEs from
being over-determined, preserving the symmetry of the mass
and other coefficient arrays, and eliminating the 1/ sin(ψ)
singularity in the stiffness integrals. For more details, see
Chakrabarty’s thesis [1].

The general method uses a combination of Crank-Nicolson
and predictor-corrector methods developed in [8] for solving
high dimensional stochastic control problems on supercom-
puters. The general method can handle both implicit and
nonlinear terms. For simplicity, the forward ODE (20) for
the isth-state Ŷis,ĵ at node ĵ, with the degeneracies removed,
is written symbolically, for is = 1:3 and nodes ĵ = 1:M̂ ,P cM

k̂=1Mĵ,k̂
bY ′
is,k̂

(t) =P3
js=1

P cM
k̂=1Ais,js,ĵ,k̂( bY(t))bYjs,k̂(t)−P cM

k̂=1Mĵ,k̂
bUk̂(t),

where Ais,js,ĵ,k̂(Ŷ(t)) represents the right-hand-side ma-
trices including nonlinear terms and Ŷ(t) represents the
combined states and nodes array. A similar backward ODE

is written for the co-state ξ̂isk̂(t) while Bis,js,ĵ,k̂(Ŷ(t))
represents the nonlinear coefficients in (22), i.e.,P cM

k̂=1Mĵ,k̂
bξ ′
is,k̂

(t) = +
P cM
k̂=1Mĵ,k̂R

bYisk̂(t)
−

P3
js=1

P cM
k̂=1 Bis,js,ĵ,k̂( bY(t))bξjs,k̂(t).

The essential setup for a general Crank-Nicolson method is
to use the midpoint approximation on the integral form of the
differential equations followed by an average approximation
of the midpoint values, producing from the state ODE for
Ŷis,k̂,`+1 at time t` = (`− 1) ∗∆t with ` = 1:Nt,P cM

k̂=1Mĵ,k̂

“ bYis,k̂,`+1− bYis,k̂,`”=−∆t
P cM
k̂=1Mĵ,k̂

bUk̂,`+0.5

+∆t
P3
js=1

P cM
k̂=1Ais,js,ĵ,k̂,`+0.5

bYjs,k̂,`+0.5,

where the average approximation at the midpoint isbYjs,k̂,`+0.5 ' 0.5 ∗
“ bYis,k̂,`+1+ bYis,k̂,`” and bUk̂,`+0.5 ' 0.5 ∗“ bUk̂,`+1+ bUk̂,`”, compatible with the midpoint approximation

in accuracy. The approximation Ais,js,ĵ,k̂,`+0.5 is similarly
computed. Also, except for backward integration, the co-state
ξ̂is,k̂,`−1 satisfiesP cM

k̂=1Mĵ,k̂

“bξis,k̂,`−1−bξis,k̂,`”=−∆t
P cM
k̂=1Mĵ,k̂R

bYk̂,`−0.5

+∆t
P3
js=1

P cM
k̂=1Bis,js,ĵ,k̂,`−0.5

bξjs,k̂,`−0.5,

with average approximation at the midpoint, bξjs,k̂,`−0.5'0.5∗“bξis,k̂,`−1+bξis,k̂,`”.
Next the predictor-corrector procedure is used to handle

the remaining implicit and nonlinear terms. The zeroth
corrector, given the final correction Ŷis,ĵ,`+1 at time stage
`+ 1 is the predictor, YC

(0)

is,ĵ,`+1
= bYis,ĵ,`. This initialization

permits finding the (γ + 1)th correction YC(γ+1)

ĵ,`+1
fromP cM

k̂=1Mĵ,k̂

“
YC

(γ+1)

is,k̂,`+1
−YC

(γ)

is,k̂,`

”
=−∆t

P cM
k̂=1Mĵ,k̂

·UC
(γ)

k̂,`+0.5
+∆t

P3
js=1

P cM
k̂=1AC

(γ)

is,js,ĵ,k̂,`+0.5
YC

(γ)

js,k̂,`+0.5
,

where Y C(γ)

js,k̂,`+0.5
and other midpoint terms are evaluated

as before by averaging. The final correction at the final
time of the state-shot forward iteration, Ŷĵ,Nt+1 yields the
starting or final-time condition for ξ̂is,k̂,Nt+1 using (14).
Then the final correction at the initial time of the costate-
shot backward iteration produces the initial control condition
(23) when is = 3 which is used to begin another double for
δ = 2 :L. The algorithm is implemented in MATLABTM on
a desktop computer.

The data for the numerical parameters are drawn from
various sources including Wang et al. [14], [15], Swanson
[13] and Murray [11], while unavailable parameters were
estimated. The diffusion diagonal vector is D = [4.2e-3, 1.e-
15, 0.216] cm2 per day. The quadratic cost coefficients are
r1 = 0.1 = q1 = q3 and s3 = 0.2. The net growth coefficient
is a =[1.2e-2, 8.64e-7, 11.3] per day. The other coefficients
are ki = 1, i = 1 : 2, α1,2 = α2,1 = κ2,3 =1.e-4 and
κ1,3 = 0.5. The initial tumor spread and drug concentration
are assumed to be Gaussian with scale and state dependent
means, spread and weights. MapleTM 9.5 was used to exactly
evaluate the integrals of the element matrices off-line.

A sample history of the optimal relative tumor density
Y ∗1 (r, θ, ψ, t) for r over [0, 5] in centimeters at fixed (θ, ψ) =
(π, π/2) in radians and at quartiles in time of a 5 day
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treatment schedule is given in Figure 2. The initial tumor
peak is at (r, θ, ψ) = (2.5, π, π/2). This test case shows
significant reduction of the tumor density over the treatment
schedule. The computations took 7 hours on a Mac G5 dual
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Fig. 2. The optimal, relative tumor density Y ∗1 (r, θ, ψ, t) versus r at time,
t = 0 days, as a cross-section at (θ, ψ) = (π, π/2) radians, with the initial
tumor density peak location with (r, θ, ψ) = (2.5, π, π/2). The grid size
is (Mr,Mθ,Mψ) = (8, 8, 4).

2GHz, using 2 double shots and a maximum of 2 corrections
per shot. Nevertheless, the grid is somewhat coarse due to the
high computational complexity of the numerical problem, so
more high performance computing [8] would be needed for
greater grid refinement.

A more detailed presentation of the initial and final tumor
densities are presented for t= t0 = 0 and t= tf = 5 days is
given in Figs. 3(a)–3(b) over the larger (r, θ) plane section
with fixed ψ = π/2 showing that the final peak value is
small and the tumor has not spread significantly through the
rest of the plane in spherical coordinates, although somewhat
in the θ–direction but not much in the r–direction. The final
peak to peak tumor density reduction is 55.3%.
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(a) Initial state at t = 0.
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(b) Final state at t = 5.

Fig. 3. The initial and final relative tumor densities Y ∗1 (r, θ, ψ, t) when
t = 0 and t = 5 days, respectively, over (r, θ) plane ψ = π/2The FEM
grid size is (Mr,Mθ,Mψ) = (8, 8, 4).

VII. CONCLUSION AND FUTURE DIRECTIONS

The theory of Galerkin finite elements is used to develop
approximations to the distributed parameter optimal control
problem of cancer drug delivery to the brain governed by a
coupled set of three reaction diffusion PDEs in three space
dimensions. The three state variables are the tumor cell
density, normal cell density and cancer drug concentration.
While the tumor and normal cells are highly coupled through
competitive interactions, the concentration is directly con-
trolled by the drug delivery control rate. The optimally con-

trolled distributed parameter system is derived by a straight-
forward calculus of variations technique without resort to an
extremely abstract formulation, and that should be useful in
other similar scientific or engineering applications.

The system of optimal PDEs is reduced by Galerkin
approximations of the state, co-state and control vectors to a
system of six ODEs in time with three fundamental element
integral coefficient forms: the mass, the stiffness and non-
linear coefficients. The finite element configuration is given
for a spherical geometry that can be used to test the optimal
drug delivery computations. This finite element configuration
will be more amenable to complex brain structures and three-
dimensional geometries than the finite difference method and
low dimension of our earlier work.

Future directions include application to more realistic
brain geometries and inhomogeneities.
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