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In an N-level quantum mechanical system, the problem of unitary feedback stabilization of mixed
density operators to periodic orbits admits a natural Lyapunov-based time-varying feedback design.
A global description of the domain of attraction of the closed-loop system can be provided based on
a “root-space”-like structure of the space of density operators. This convex set foliates as a complex
flag manifold where each leaf is identified with the coadjoint orbit of the eigenvalues of the density
operator. The converging conditions are time-independent but depend from the topology of the
flag manifold: it is shown that the closed loop must have a number of equilibria at least equal to
the Euler characteristic of the manifold, thus imposing obstructions of topological nature to global
stabilizability.

I. INTRODUCTION

The use of feedback in quantum mechanics is limited by the phenomenon of wavefunction collapse following
a measurement. In this work the problem is bypassed by considering density operators of quantum ensembles
and completely noninvasive measurements. This allows also to relax the requirement of commutativity of
the measured observables and in fact we shall assume to have a complete knowledge of the density operator
for all times. Although physically this set up is realistic only for some applications (typically nuclear spin
ensembles [14, 23]), it is of widespread use for the purposes of model-based quantum control (often under
the name “tracking control” [12, 38]), as it allows to generate control fields in spite of the high complexity
of open loop control [10, 16, 34]. Furthermore, while the formulation comes from quantum control, our
motivations for this work are mostly mathematical, namely feedback design and convergence analysis for a
class of bilinear control systems living on a particular family of compact manifolds and evolving isospectrally.
As the system has a drift term which cannot be canceled without incurring in singularities of the control
law, the most natural problem formulation is to seek for a stabilizer to the periodic orbit drawn by the drift.
Rather than studying this problem like an orbital stabilization problem [7], we reformulate and solve it as
a state tracking problem, thus avoiding the obstruction to semiglobal convergence of a periodic orbit, see
[37], Corollary 1.6 (where it is called stability in the large). In fact, with our feedback design the state will
converge to the orbit, but the entire orbit is not an invariant set, only a point moving along it is invariant.
As a matter of fact, by passing to a suitable rotating frame, our time-dependent trajectory tracking problem
can be reformulated completely in terms of time-varying feedback law for the fixed point of a nonautonomous
system. The Lyapunov design is essentially of the Jurdjevic-Quinn type [24], for which the usual LaSalle
invariance principle is applicable in spite of the time-dependence of the closed loop, and does not differ much
from what has already been proposed in the literature for wavefunctions [18, 21, 28, 36].
What is nontrival is to ascertain the convergence of certain initial conditions and to provide a global

description of the region of attraction. In fact, the sufficient condition used in [24] to prove asymptotic
convergence and based on the so-called ad-condition or Jurdjevic-Quinn condition [6], is never verified globally
for N > 2. This is due to the presence of an abelian subalgebra (Cartan subalgebra) that can never be fully
spanned by ad-commutators alone. It will be shown, however, that the undesired critical points are not only
unstable but also repulsive, meaning that the Jurdjevic-Quinn condition or, equivalently, the controllability
of the linearization along the desired orbit [28], guarantees convergence for all initial conditions outside the set
of equilibrium points. To attain a complete and time-independent description of the critical set and thus of
the domain of attraction, a thorough geometric and topologic characterization of the state manifold of mixed
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density operators is required. A unitary evolution like that appearing in a Liouville equation is isospectral,
as the eigenvalues of the density operator form a complete set of invariants. Unlike for a wavefunction, the
state space has dimension and structure which depend on the multiplicities of such eigenvalues. Since these
form a flag in dimension N , all complex flag manifolds obtained as homogeneous spaces of U(N) (or SU(N))
by the Cartesian products of subgroups of dimensions given by the multiplicities are admissible state spaces
[8, 31, 39]. Since the set of density operators up to the imaginary unit “overlaps” with the Lie algebra
u(N) (or su(N), excluding the constant trace), these complex flag manifolds can also be intended as the
orbits of the (co)adjoint action of U(N) (or SU(N)) on its Lie algebra. This is a well-studied action and the
structure of its orbits is well-known [19, 27]: for example a fundamental topological invariant like the Euler
characteristic acquires the meaning of number of nontrivial possible permutations of the eigenvalues of the
density operator, see also [8, 13, 17, 39]. For the purposes of stabilizability, this is an important feature,
because it will be shown that each complex flag manifold has a number of “antipodal” points equal to the
Euler characteristic, and that these points must be equilibria of the closed loop system. In order to give a
complete description of the region of attraction, we use the resemblance between the set of density operators
and the Lie algebra su(N), and a few tools deriving from the root space decomposition of a compact Lie
algebra, namely its orthogonal decomposition into Cartan subalgebra plus root spaces and the invariance
properties of the root spaces under certain commutators (like the ad-commutators) [3]. This “graph-like”
approach yields simple, time-independent characterizations of all converging initial conditions for a given
reference orbit and Hamiltonian. Also the Kalman controllability of the linearization admits an intrinsic
formulation in these terms. The formalism used gives insight into the problem of choosing reference orbits
having a large domain of attraction.
It is known [9, 26], that compact manifolds do not admit a global asymptotically stable equilibrium because

they are not contractible. This is a topological property and corresponds to a set being homotopy equivalent
to a point [22]. The region of convergence of an asymptotically stable attractor must be in such a homotopy
class [9, 37]. For our complex flag manifolds, it will be shown that the antipodal points represent topological
obstructions to global stabilizability.
In order to simplify the treatment, an equivalent real representation of density operators is used throughout,

given by the so-called coherence vector and corresponding to the vector of expectation values with respect
to a complete orthonormal set of Hermitian matrices [2, 8, 35]. It provides a linear representation of the
adjoint action occurring in a Liouville equation [4], and it allows to formulate the control system in terms of
standard bilinear systems on smooth manifolds which are real representations of the complex flag manifolds.

II. DRIVEN LIOUVILLE-VON NEUMANN EQUATION

With a given Hamiltonian H = HA + uHB, −iHA, −iHB ∈ su(N), u ∈ C∞(R) a control field, one can
form a Schrödinger equation for the wavefunction |ψ〉 (in atomic units, ~ = 1)

|ψ̇〉 = −i (HA + uHB) |ψ〉, |ψ(t)〉 ∈ S2N−1, (1)

or a Liouville-von Neumann equation for the density operator ρ

ρ̇ = −i[HA + uHB, ρ], ρ = ρ† > 0, tr(ρ) = 1, tr(ρ2) 6 1. (2)

Eq. (2) holds for a quantum ensemble, hence it is more general than (1); the two being equivalent only when
tr(ρ2) = 1 (i.e., ρ is a rank-one operator: ρ = |ψ〉〈ψ|).

A. Gell-Mann basis and adjoint representation

The left hand side of (2) contains a conjugation action on state matrices. In order to deal with it, we
can use one of the features of the adjoint representation, namely its providing a linear representation of
one-parameter groups of automorphisms of su(N) (see Appendix A), and reformulate (2) as a standard
bilinear control systems on a suitable manifold. To do that, we use the coherence vector representation of
ρ, whose key property is that both H and ρ are expressed in terms of the same complete orthonormal set
of Hermitian matrices. Let λ0 = 1√

N
11N and call λ the n-dimensional vector of N ×N Gell-Mann matrices
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[20], n = N2 − 1. Since su(N) contains traceless skew-hermitian matrices, span{−iλ} = su(N). Denote
with h the Cartan subalgebra of su(N), i.e., the maximally abelian subalgebra in su(N), dim(h) = N − 1. In
the Gell-Mann basis λ, h corresponds to the N − 1 diagonal matrices. Denote k the vector space such that
su(N) = h ⊕ k, with h ⊥ k in a standard biinvariant su(N) metric (e.g. the Killing metric). While h is an
abelian subalgebra, k is only a vector space. In correspondence of this direct sum, we have the decomposition
of λ into λh and λk so that h = span{−iλh} and k = span{−iλk}. If Ejℓ is the elementary N ×N matrix
having 1 in the (jℓ) slot and 0 elsewhere, then the matrices λ are given by

{λh,j , 1 6 j 6 N − 1} =
{
(E11 + . . .+ Ejj − jEj+1,j+1)/

√
j(j + 1), 1 6 j 6 N − 1

}
(3)

for the diagonal part, and

{λk,ℜ,jℓ, 1 6 j < ℓ 6 N} =
{
(Ejℓ + Eℓj)/

√
2, 1 6 j < ℓ 6 N

}
(4)

{λk,ℑ,jℓ, 1 6 j < ℓ 6 N} =
{
i(−Ejℓ + Eℓj)/

√
2, 1 6 j < ℓ 6 N

}
(5)

for the off-diagonal part. Calling kjℓ = span {−iλk,ℜ,jℓ,−iλk,ℑ,jℓ}, then we have the further splitting of k
into “root spaces”

k =
⊕

16j<ℓ6N

kjℓ (6)

with the following commutation relations (see for instance [3] for the details):

[h, kjℓ] = kjℓ, (7)

[kjℓ, kpq] =





∅ if ℓ 6= p and j 6= q

kjq if ℓ = p

kpℓ if j = q

⊆ h if j = p and ℓ = q.

(8)

Assume HA is diagonal

HA =



E1

. . .
EN


 , E1 + . . .+ EN = 0,

and nondegenerate, i.e., Ej 6= Eℓ, j 6= ℓ, where the Ej are supposed ordered: E1 < E2 < . . . < EN . The Ej ∈ R
are the energy levels of the (unforced) system (1), i.e., the eigenvalues of the stationary Schrödinger equation
HA|ψj〉 = Ej |ψj〉 of eigenstates |ψj〉 = ej (ej is the elementary basis vector), j = 1, . . . , N . Assume also
that the transition frequencies are nondegenerate, i.e., that the levels are not equispaced Ej − Eℓ 6= Ep − Eq,
(jℓ) 6= (pq) j 6= ℓ, p 6= q. Further standard assumptions are that HB is off-diagonal and Graph(HB)
connected. A stronger assumption we shall need is that HB enables all transitions among adjacent energy
levels: tr (HBkj,j+1) 6= 0 ∀ j = 1, . . . , N − 1. Beside connectivity of Graph(HB), it guarantees that all
“fundamental root spaces” (see [3]) are excited by the dynamics. Since HA is diagonal and traceless, −iHA ∈
su(N). A nondegenerate element of the Cartan subalgebra (like HA above) is called regular. It is called
strongly regular if in addition it has all nondegenerate transitions.
In terms of λ, HA = hA · λ and HB = hB · λ, with hA, hB ∈ Rn. Likewise ρ = ̺0λ0 + ̺ · λ, where

̺0 = 1√
N

and the coherence vector ̺ is composed of expectation values along the basis elements (3)-(5):

̺h,j = tr(ρλh,j) ∈ R, j = 1, . . . , N − 1, ̺k,ℜ,jℓ = tr(ρλk,ℜ,jℓ) ∈ R, ̺k,ℑ,jℓ = tr(ρλk,ℑ,jℓ) ∈ R, 1 6 j < ℓ 6 N .
Any density ρ can be split as ρ = ̺0λ0 + ρh + ρk, or in correspondence of (3)-(5), ρ = ̺0λ0 + ̺h · λh + ̺k ·
λk = ̺0λ0 +

∑
16j<N ̺h,jλh,j +

∑
16j<ℓ6N (̺k,ℜ,jℓλk,ℜ,jℓ + ̺k,ℑ,jℓλk,ℑ,jℓ). The nonzero components of the

coherence vector ̺ uniquely identify a subset of the kjℓ. Denote fk(ρ) the “support” of ρ in k, i.e., the set of
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root spaces “touched” by ρ: fk(ρ) = ρ ∩ k. Also let Fk(ρ) = {(jℓ) s.t. tr (ρkjℓ) 6= 0, 1 6 j < ℓ 6 N} be the
corresponding set of index pairs. When (jℓ) ∈ Fk(ρ), then (̺k,ℜ,jℓ, ̺k,ℑ,jℓ) 6= (0, 0). Likewise fh(ρ) = ρ ∩ h
and Fh(ρ) = {(j) s.t. ̺h,j 6= 0, 1 6 j < N}. In the following we shall use both symbols ρ and ̺ for densities
and we shall refer to “diagonal” and “off-diagonal” ̺ with an obvious abuse of notation. The Hilbert-Schmidt
norm on density operators induces for ̺ the standard Euclidean norm ‖ · ‖: tr

(
ρ2
)
= ̺20+〈〈̺,̺〉〉 = ̺20+‖̺‖2,

where we indicate with 〈〈 · , · 〉〉 the Rn-Euclidean inner product. Due to the trace-class constraint, the notion
of distance between the densities ρ1 and ρ2 having the same purity is d(ρ1, ρ2) = tr

(
ρ21
)
− tr (ρ1ρ2), see e.g.

[39], or in terms of ̺:

d(̺1,̺2) = ̺20 + ‖̺1‖2 − ̺20 − 〈〈̺1,̺2〉〉 = ‖̺1‖2 − ̺T
1 ̺2 ∈ [0, tr

(
ρ21
)
]. (9)

Thanks to the use of the same basis for ρ and the Hamiltonian, up to the imaginary unit the trajectories
of (2) can be identified with the adjoint orbits of SU(N) on its Lie algebra, see Section III for a thorough
description. Following Appendix A, we can replace the matrix ODE (2) with the linear vector ODE

˙̺ = (A+ uB)̺, (10)

where A = −iadHA
= −ihA · adλ, B = −iadHB

= −ihB · adλ and A,B ∈ adsu(N) ⊂ so(n). The Lie algebra
adsu(N) is the adjoint representation of su(N), hence dim(adsu(N)) = dim(su(N)) = n. Therefore, for N > 2,
adsu(N) ( so(n).
The isomorphism su(N) ≃ adsu(N) induces an orthogonal splitting also in the adjoint representation:

adsu(N) = adh⊕adk. Obviously relations similar to (7)-(8) still hold andA = −ihA,h·adλh
, B = −ihB,k·adλk

.
For C ∈ su(N), in components C =

∑
16j<N ch,jλh,j+

∑
16j<ℓ6N (ck,ℜ,jℓλk,ℜ,jℓ + ck,ℑ,jℓλk,ℑ,jℓ), we also shall

indicate with fh(C), fk(C) the support of C in, respectively, h, k, of indices Fh(C), Fk(C).
For later use, we need to compute some of the commutators of (7)-(8) more in detail.

[λk,ℜ,jℓ, λk,ℑ,jℓ] = i(Ejj − Eℓℓ) =





−
√

j−1
j
λh,j−1 +

∑ℓ
p=j

1√
p(p+1)

λh,p +
√

ℓ
ℓ−1λh,ℓ−1 if j > 1 and ℓ > 2

∑ℓ
p=j

1√
p(p+1)

λh,p +
√

ℓ
ℓ−1λh,ℓ−1 if j = 1 and ℓ > 2

√
ℓ

ℓ−1λh,ℓ−1 if ℓ = 2

(11)
For (jℓ) 6= (pq):

[λk,ℜ,jℓ, λk,ℜ,pq] =
i√
2
(δℓpλk,ℑ,jq + δjpλk,ℑ,ℓq + δjqλk,ℑ,ℓp + δlqλk,ℑ,jp)

[λk,ℜ,jℓ, λk,ℑ,pq] =
i√
2
(−δℓpλk,ℜ,jq − δjpλk,ℜ,ℓq + δjqλk,ℜ,ℓp + δlqλk,ℜ,jp)

[λk,ℑ,jℓ, λk,ℑ,pq] =
i√
2
(−δℓpλk,ℑ,jq + δjpλk,ℑ,ℓq − δjqλk,ℑ,ℓp + δlqλk,ℑ,jp)

(12)

B. Unforced equation

For pure states in an orthonormal basis, the eigenvectors |ψj〉 = ej of the stationary Shrödinger equation
are mapped into the diagonal density operator |ψj〉〈ψj | = Ejj . More generally, for quantum ensembles,

after a suitable diagonalization, ρ̃ = diag(w1, . . . , wN ), 0 6 wj 6 1,
∑N

j=1 wj = 1. The eigenvalues wj

represent the populations of the various energy levels and provide a complete set of invariants for (2), call it
J = {w1, . . . , wN}, since (2) is isospectral.

Proposition 1 Consider the system (10) with HA strongly regular. The state ̺ is an equilibrium point of
(10) for u = 0 if and only if ρ = ̺0λ0 + ̺hλh. Furthermore, if ̺k 6= 0, then for u = 0

1. fk(ρ(0)) = fk(ρ(t));

2. ̺2k,ℜ,jℓ + ̺2k,ℑ,jℓ = const;



5

3. for δt small, ̺k,ℜ,jℓ(t) 6= ̺k,ℜ,jℓ(t+ δt) and ̺k,ℑ,jℓ(t) 6= ̺k,ℑ,jℓ(t+ δt) ∀ (jℓ) ∈ Fk(ρ).

Proof. When u = 0, for a given ρ = ̺0λ0 + ρh + ρk,

− i[HA, ρh] = 0 (13)

−i[HA, ρ] = −i[HA, ρk] = −i[HA,
∑

(jℓ)∈Fk(ρ)

̺k,ℜ,jℓλk,ℜ,jℓ + ̺k,ℑ,jℓλk,ℑ,jℓ]

=
∑

(jℓ)∈Fk(ρ)

(Ej − Eℓ) (̺k,ℜ,jℓλk,ℑ,jℓ − ̺k,ℑ,jℓλk,ℜ,jℓ) . (14)

In terms of the coherence vector ̺ and using the isomorphism (A1) (meaning A̺(t) ≃ −i[HA, ρ]), from
(13) if ̺k = 0, A̺ = 0, i.e., ρ = ̺0λ0 + ρh is a fixed point. To show the other direction, notice that
in (14) Ej − Eℓ 6= 0 ∀ (jℓ) 1 6 j < ℓ 6 N − 1, since HA is nondegenerate. Hence whenever Fk(ρ) 6= 0,
A̺ = A̺k 6= 0, because of the invariance of the kpq subspaces under h, see also (7). Therefore when ̺k 6= 0
the unforced system flows along nontrivial periodic orbits. Condition 1 of the last part also follows from (7).
Since ̺h(t) = ̺h(0), it must be ‖̺k(t)‖ = const ∀ t. This, together with the invariance property (7) yields
2. Finally, Item 3 follows from ρk never being fixed under the flow of the drift. To see it, consider a small
time increment δt. In the first order approximation, one can write

̺(t+ δt) = eδtA̺(t) = (I + δtA)̺(t)

i.e., the increment at δt is given by (14) and the claim follows from the fact that HA is strongly regular, i.e.,
Ej − Eℓ 6= Ep − Eq, (jℓ) 6= (pq) j 6= ℓ, p 6= q. �

Since dim(A) = n > N , the stationary Liouville equation has more eigenvalues than those referable to
the eigenvalues of the corresponding Schrödinger equation. From A = −iadHA

, these are the roots of the
Lie algebra su(N) computed at the element HA of the Cartan subalgebra h, and, from (14), they correspond
to the transition frequencies Ej − Eℓ. The regularity of HA guarantees that these extra eigenvalues of A
are all nonzero: dim (ker(A)) = N − 1 = dim(h), thus providing an alternative proof of the first part of
Proposition 1.
For tr(ρ2) = 1, the mapping |ψ〉 → |ψ〉〈ψ| eliminates the ambiguity in the (unobservable) global phase:

|ψ〉〈ψ| = eiϕ|ψ〉〈ψ|e−iϕ ∀ϕ ∈ R and, as before, the same property holds also for mixed states. Proposition 1
affirms that, consequently, the corresponding one-parameter orbit passing through each eigenstate |ψj〉 (due
to the global phase) collapses into a fixed point of the unforced Liouville equation. Rephrasing in terms of
density operators (part of) Proposition 1, we have the following.

Corollary 1 Any diagonal density operator is a fixed point of (2) when u = 0. More generally, for any
density operator both the diagonal part and the trace square norm of the off-diagonal part are integrals of

motion of (2) when u = 0.

III. STRUCTURE OF THE STATE SPACE: COMPLEX FLAG MANIFOLDS

It is possible to give a more thorough interpretation of Proposition 1 by studying the structure of the
manifold in which ρ is living, call it S. S is a connected, simply connected submanifold of Sn−1 (the (n− 1)-
dimensional sphere of radius ‖̺‖) whose dimension depends on the multiplicities of the eigenvalues of ρ. For
N > 2, S ( Sn−1, since the Lie group exp

(
adsu(N)

)
is not acting transitively on the entire Sn−1. S, instead,

is a homogeneous space of exp(adsu(N)), the action being left matrix multiplication, and can be described
as a (co)adjoint orbit of SU(N) on its Lie algebra as follows. Consider a diagonal density ˜̺h ∈ S. Call
C ˜̺h the stabilizer of ˜̺h, C ˜̺h = {g ∈ exp

(
adsu(N)

)
s.t. g ˜̺h = ˜̺h}. Because of the identification (up to the

imaginary unit) of the density operators with (a convex set in) su(N), the coset space exp
(
adsu(N)

)
/C ˜̺h

is the adjoint orbit of SU(N) on its Lie algebra passing through ˜̺h. Because of transitivity, this orbit
can be identified with S: S = exp

(
adsu(N)

)
/C ˜̺h ˜̺h. The dim(S) is always even (each (co)adjoint orbit

has a symplectic structure as is well-known). The orbit S is transverse to h and meets h in a number of
disjoint points equal to the number of distinct permutations of the entries of ˜̺h. Such number is equal to
the cardinality of the Weyl group as well as to the Euler characteristic χ(S) of the orbit, see [17, 39] and
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Theorem E.2 of [19]. These points form the vertices of a polygon in the N − 1-dimensional eigenensemble
sitting in h and are sometimes denoted Weyl chambers. Inspired by the S2 case (see Example 1 below),

we shall call them antipodal. If ρ̃h = diag (w̃1, . . . , w̃N ),
∑N

j=1 w̃j = 1, 0 6 w̃j 6 1, then the χ(S) − 1

antipodal points are given by diag
(
w̃σ(1), . . . , w̃σ(N)

)
with σ(1), . . . , σ(N) a permutation of 1, . . . , N such

that diag
(
w̃σ(1), . . . , w̃σ(N)

)
6= ρ̃h. While the topology of the diagonal coset representatives is particularly

easy to visualize, the entire orbit enjoys the same topological structure of ˜̺h. To see it, simply notice that
applying a rotation in exp(adsu(N)) to two or more diagonal antipodal points they remain antipodal. Since
exp(adsu(N)) acts transitively on S, this is true on the entire orbit: each ̺ ∈ S has χ(S) − 1 antipodal
states in S. What is not known a priori is the isotropy subgroup, which depends on J . In fact, the convex
set of N -level density operators is foliated into leaves of different dimensions, depending on the number of
distinct wj and on their multiplicities. For example, for a pure/pseudopure state J = {w1, w2, . . . , w2},
w1 6= w2, w1 + (N − 1)w2 = 1, S = exp(adsu(N))/

(
S1 × exp(adsu(N−1))

)
and dim(S) = 2N − 2. In the

pure state case J = {1, 0, . . . , 0}, it is well-known that the map |ψ〉 → |ψ〉〈ψ| can be seen as a Hopf

fibration: S2N−1 S
1

−−→ S = CPN−1, with fibers representing the global phase. At the other extreme, if

J = {w1, w2, . . . , wN}, wj 6= wℓ,
∑N

j=1 wj = 1, then S = exp(adsu(N))/
(
S1
)N

of dimension N2 −N . Hence

if m = dim(S), 2N − 2 6 m 6 N2 −N , m even. In between lies the flag manifolds with flag determined by
the multiplicities of wj . If such multiplicities are given by j1, . . . , jℓ, j1 + . . .+ jℓ = N , 2 6 ℓ 6 N ,

S = exp(adsu(N))/
(
exp(adsu(j1))× . . .× exp(adsu(jℓ))×

(
S1

)ℓ−1
)
.

When ℓ = 2 we have Grassmannian manifolds. Normally, in the literature these are known as complex flag
manifolds and are given directly in terms of unitary group actions, see [1, 11, 39]:

S = U(N)/ (U(j1)× . . .× U(jℓ)) , j1 + . . .+ jℓ = N, 2 6 ℓ 6 N.

= SU(N)/
(
SU(j1)× . . .× SU(jℓ)×

(
S1
)ℓ−1

)

In terms of unitary actions, the two extreme cases of pure states and all different eigenvalues are, respectively,

S = U(N)/ (U(N − 1)× U(1)) = SU(N)/
(
SU(N − 1)× S1

)
and S = U(N)/ (U(1))N = SU(N)/

(
S1
)N−1

.
The description adopted here is just an isomorphic real representation of such complex flag manifolds deriving
from the use of the adjoint representation.

Example 1 N = 2, J = {1, 0}. The case N = 2 is the only easy one, as S = S2 ≃ CP 1. On the great
horizontal circle of S2, ̺ = ̺k. In terms of the Bloch vector, the diagonal antipodal states become the north
and south poles of the Bloch sphere,

ρv1 = |0〉〈0| = diag (1, 0) ⇐⇒ ̺v1 =
[
0 0 1√

2

]T

ρv2 = |1〉〈1| = diag (0, 1) ⇐⇒ ̺v2 =
[
0 0 − 1√

2

]T

and h, dim(h) = 1, corresponds to the vertical line passing through ̺v1 , ̺v2 . Everything extends unchanged
to mixed states, since S is still equal to S2 regardless of the purity. Since each S crosses h exactly twice,
χ(S) = 2. For any ̺ ∈ S the antipodal state is −̺.

�

Example 2 N = 3, J = {1, 0, 0}. Since the isotropy subgroup in this case is SO(3) × S1 of dimension 4
(recall that dim(adsu(3)) = 8), dim(S) = 4 and χ(S) = 3. Following the standard ordering convention, the
3-level Gell-Mann basis (see e.g. [20], p. 99) is

{λk,ℜ,12, λk,ℑ,12, λh,1, λk,ℜ,13, λk,ℑ,13, λk,ℜ,23, λk,ℑ,23, λh,2}.
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The three diagonal antipodal states are

ρv1 = diag (1, 0, 0) ⇐⇒ ̺v1 =
[
0 0 1√

2
0 0 0 0 1√

6

]T

ρv2 = diag (0, 1, 0) ⇐⇒ ̺v2 =
[
0 0 − 1√

2
0 0 0 0 1√

6

]T

ρv3 = diag (0, 0, 1) ⇐⇒ ̺v3 =
[
0 0 0 0 0 0 0 − 2√

6

]T
.

The structure of S ⊂ S7 is studied in detail in [13, 17, 25, 35]. In terms of the coherence vector, one has that
each state of a triplet of antipodal states is at an angle of 2π

3 from the other two, see Fig. 1. In particular,
if ̺ ∈ S, then −̺ /∈ S: the single antipodal point of the case N = 2 is replaced by two symmetrically
distributed and equidistant antipodal points. As expected, only λh,1 and λh,2 are of concern when ρ is
diagonal. In an attempt to visualize the entire S manifold, one should replace each edge connecting to
vertices with a sphere S2. The same numbers occur for pseudopure states, which have the same twofold
degeneracy and are obtained by rescaling down the coherence vector ̺vj by a constant factor. For the all
different eigenvalue case ρh = diag (w1, w2, w3), wj 6= wk, which is the generic case, the stabilizer is the
torus S1 × S1, S = exp(adsu(N))/(S

1 × S1) and dim(S) = 6. The only diagonal matrices that are conjugate
with ρh are its five element permutations, i.e., χ(S) = 6 in this case. The six vertices are given by

diag (a, b, c) ⇐⇒̺g1 =
[
0 0 a−b√

2
0 0 0 0 a+b−2c√

6

]T

diag (b, a, c) ⇐⇒̺g2 =
[
0 0 b−a√

2
0 0 0 0 a+b−2c√

6

]T

diag (c, a, b) ⇐⇒̺g3 =
[
0 0 c−a√

2
0 0 0 0 a+c−2b√

6

]T

diag (c, b, a) ⇐⇒̺g4 =
[
0 0 c−b√

2
0 0 0 0 b+c−2a√

6

]T

diag (b, c, a) ⇐⇒̺g5 =
[
0 0 b−c√

2
0 0 0 0 b+c−2a√

6

]T

diag (a, c, b) ⇐⇒̺g6 =
[
0 0 a−c√

2
0 0 0 0 a+c−2b√

6

]T
.

(15)

The 6 vertices correspond to 2π
3 rotations, plus their reflections around the three axes bisecting the triangle

of pure states, see Fig. 1. Represented in the (λh,1, λh,2) plane, the eigenensemble of ρ has the shape of a
hexagon inscribed in the triangle having as vertices the pure states, see Fig. 1.

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.8

-0.6

-0.4

-0.2

0.2

0.4

FIG. 1: Vertices of the eigenensemble in the (λh,1, λh,2) plane for N = 3. Vertices joined by the solid line: pure
states. Vertices joined by the dotted line: “generic” mixed state with all different eigenvalues: a = 3/5, b = 3/10
and c = 1/10. Vertices joined by the dashed-dotted line: another “generic” mixed state with eigenvalues a = 9/10,
b = 2/30 and c = 1/30.

�
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IV. FEEDBACK STABILIZATION FOR N-LEVEL QUANTUM ENSEMBLES

A. Problem formulation

For the system (10), we are interested in the problem of tracking a periodic orbit. More precisely, the
stabilization problem is the following.

Given ρd ∈ S, find u = u(̺d,̺) such that, for t→ ∞, ̺ → ̺d, where

˙̺d = Ad̺d, Ad = hAd
· adλh

. (16)

This is a full state tracking problem which, from Proposition 1, reduces to stabilization to an equilibrium
point when ρd = ̺0λ0 + ̺d,h · λh.

B. A modified Jurjevic-Quinn condition and antipodal points

The algorithm for the feedback design resembles the one used for |ψ〉 discussed in [18, 21, 28, 29, 36] and
indeed the standard Jurdjevic-Quinn method for bilinear systems [24]. It consists in choosing a distance-like
candidate Lyapunov function V = V (̺d,̺). From (9), consider 1 V = ‖̺‖2 − 〈〈̺d,̺〉〉. If ̺d obeys to (16),

V̇ = V̇ (̺d,̺) = −〈〈Ad̺d,̺〉〉 − 〈〈̺d,A̺〉〉 − u〈〈̺d,B̺〉〉
= 〈〈̺d, (Ad −A)̺〉〉 − u〈〈̺d,B̺〉〉. (17)

This expression has a drift term which is in general sign indefinite and for which there is no global smooth
feedback compensation. Whenever V̇ can be rendered homogeneous in u (namely when HAd

= HA, which
is assumed thereafter), there is an obvious choice of feedback guaranteeing positive semidefiniteness. For
example,

u = 〈〈̺d,B̺〉〉 (18)

makes V̇ = −u2 6 0. In order to apply LaSalle invariance principle, one can try to adapt the “ad-condition”
of Jurdjevic-Quinn [24] to the case at hand. The largest invariant set E in N = {̺ s.t. V̇ = 0} can be

computed imposing u = du
dt

= . . . = dℓu
dtℓ

= 0, where, in correspondence of u = 0:

du

dt
= −̺T

d [A, B]̺ = 0

and, similarly,

dℓu

dtℓ
= (−1)ℓ̺T

d [A, . . . , [A,︸ ︷︷ ︸
ℓ times

B] . . .]̺ = 0. (19)

For |ψ〉 which is an eigenfunction, this condition, used implicitly in [36], is made explicit in [28] as a Kalman
rank condition on the linearized tangent system. It can be reformulated for densities as follows. For a given
̺d ∈ S, write ̺ = ̺d + δ̺. The linearization of (10) around ̺d

dδ̺

dt
= Aδ̺+ bu (20)

1 Notice that rather than the “distance inherited from the S
n−1 sphere” V used here, one could use the R

n distance ‖δ̺‖2 =

‖̺d − ̺‖2 as candidate Lyapunov function. Up to a scalar factor, the two give the same gradient, hence the same control

design.
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where

b = B̺d, (21)

is living on T̺d
S. Since dim(T̺d

S) = m, if the Kalman rank condition

rank
[
bAb . . .Am−1b

]
= m (22)

is satisfied, then in the same spirit of the original Jurdjevic-Quinn work, this implies that E contains no
other trajectory than ̺d, at least locally. Of course if ρd = ̺0λ0+̺d,h ·λ, then under (16) ρd(t) = ρd(0) and
b(t) = b(0) in (21). However, when ρd(0) is not diagonal, ρd(t) is time-varying and so is b(t), complicating
the verification of (22) considerably. Furthermore, in this case the condition (22) does not have a global
character because of the topological structure of S. To see this, consider the case of diagonal density operators
in which the linearization (20) is time-invariant. Call ̺p an antipodal state of ̺d. Then also ̺p is diagonal
and so is δ̺p = ̺p − ̺d. Hence Aδ̺p = 0, i.e., (20) has vanishing drift in correspondence of the χ(S) − 1
antipodal states of ̺d. Therefore, in spite of the Kalman condition (22), in this case when checking LaSalle

invariance principle dδ̺
dt

∣∣∣
N ,̺=̺p

= 0 for (20) since u = 0 in N . This argument can be generalized as follows.

Proposition 2 Given ̺d ∈ S, any of the other χ(S)− 1 antipodal states ̺p ∈ S is an equilibrium point for
the system (10) with the feedback (18).

Proof. We make use of the isomorphism (A1). For any given ρp, ρd diagonal, [−iHB, ρp] ∈ k/i is off-
diagonal i.e., B̺p = ̺′

p,k. But if ρd diagonal ρd = ̺0λ0 + ̺hd
· λ then u = 〈〈̺d, B̺p〉〉 = 〈〈̺d, ̺

′
p,k〉〉 = 0,

since h ⊥ k. Hence no feedback is produced. When instead ̺p, ̺d ∈ S are antipodal but not diagonal,
then (by construction) ∃ R ∈ exp(adsu(N)) such that ˜̺p = R̺p and ˜̺d = R̺d are both diagonal. The

skew symmetric matrix RT (−iadHB
)R belongs to the adjoint orbit of exp(adsu(N)) in adsu(N), hence ∃

C ∈ su(N) such that RTBR = adC . Therefore u = 〈〈̺d, B̺p〉〉 = 〈〈 ˜̺d, RTBR ˜̺p〉〉 = 〈〈 ˜̺d, adC ˜̺p〉〉 = 0
because adC ˜̺p ≃ [C, ρ̃p] ∈ k/i, while ρ̃d ∈ h. �

Corollary 2 For pure or pseudopure states, the N antipodal points of S are all equidistant. For pure states
they are also maximally distant.

Proof. It is enough to notice that for any triple of antipodal points ρp1
, ρp2

and ρp3
(ρd included),

tr (ρp1
ρp2

) = tr (ρp1
ρp3

) = tr (ρp2
ρp3

), hence V (̺pj
,̺pℓ

) = const ∀ j, ℓ = 1, . . . , N , j 6= ℓ. For pure states, in

addition, tr
(
ρpj

ρpℓ

)
= 0, hence V (̺pj

,̺pℓ
) = tr(ρ2pj

) are maximally distant. �

As will be shown in next Section, the antipodal points are not the only states lacking attractivity, and the
linearization alone is not enough to investigate the domain of attraction of the feedback stabilizer.

Remark 1 The trajectory tracking problem presented above admits a reformulation as a point stabilization
for a nonautonomous system. Consider a frame rotating with A. Call ̺̂d and ̺̂ the new reference and state
vectors. Then ̺̂(t) = e−tA̺(t) and ̺̂d(t) = e−tA̺d(t) = ̺d(0), i.e., the reference trajectory becomes a fixed
point. Using a variation of constants formula, we obtain for (10)

{
˙̺̂ = u e−tABetA ̺̂
̺̂(0) = ̺(0).

(23)

The Lyapunov distance is V = ‖ ̺̂2d‖ − 〈〈 ̺̂d, ̺̂〉〉 and its derivative V̇ = u〈〈 ̺̂d, ˙̺̂ 〉〉. The uniformity of the
asymptotic stability for the nonautonomous system (23) with the same feedback stabilizer as (18) follows
directly.
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C. Time-independent convergence conditions

To formulate a convergence condition in a more geometric manner, rewrite (19) in terms of bilinear forms
of skew-symmetric matrices as follows. Call

Wα = span



B, [A, B] , . . . , [A, . . . , [A,︸ ︷︷ ︸

α times

B] . . .]





and Wα
A = span {A, Wα}. Wα contains skew-symmetric matrices, and the conditions dℓu

dtℓ
, ℓ = 0, . . . , α,

written compactly as ̺T
dW

α̺, are bilinear forms. If ̺//̺d then ̺T
dW

α̺ = 0. On a sphere ̺//̺d means
̺ = ±̺d. However S is only a submanifold of Sn−1, and −̺d may not belong to it at all. Wα is invariant
to the so-called “ad-brackets” but not necessarily a Lie subalgebra. Of course if for the system (10) the
ad-brackets are generating, i.e., if, for some α, Wα

A = adsu(N), then almost global convergence on S is always
verified. However we have the following negative result.

Lemma 1 If N > 3, for the system (10) with HA strongly regular and Graph(HB) connected, Lie(Wα
A) =

adsu(N) but W
α
A ( adsu(N) ∀α > 0.

Proof. Since HA is strongly regular and Graph(HB) is connected, it follows from Theorem 2 of [3] that the
smallest subalgebra containing −iHA, −iHB is su(N). Hence the same holds for the adjoint representation.
For the second part, recall that dim(h) = N − 1. From the Lie bracket relations (7), A ∈ adh, B ∈ adk
implies [A, . . . , [A, B] . . .] ∈ adk. Even adding A, Wα

A alone cannot fully generate adh for any α. �

The first part of Lemma 1 is also known as the strong accessibility condition [30]. Since adsu(N) is compact,
it suffices for controllability. The second part is the Jurdjevic-Quinn condition mentioned above. If HB is
not off-diagonal, then the statement of Lemma 1 should be reformulated as “N > 3”.
The following Theorem provides a time-independent condition for asymptotic stabilizability to any ρd ∈ S,

and a global description of the region of attraction of the controller.

Theorem 1 Consider the system (10) with the feedback (18), where ρd ∈ S obeys to (16). Assume that HA

is strongly regular and that HB is such that (hB,ℜ,j j+1, hB,ℑ,j j+1) 6= (0, 0). An initial condition ρ(0) ∈ S is

asymptotically converging to ρd(t) if

1. ρ(0) is not an antipodal point of ρd(0),

2. F ([HB, ρd]) ∩ F (ρ(0)) 6= 0,

3. CardFk ([HB , ρd]) > m/2

where Card denotes the number of pairs of indexes in Fk.

In order to prove the Theorem we need a few preliminary results.

Lemma 2 Under the assumption of strong regularity of HA, the following three conditions are equivalent:

1. the Kalman rank condition (22) is satisfied;

2. rank
(
Wm−1̺d

)
= m;

3. CardFk([HB , ρd]) > m/2.

Proof. Given C ∈ su(N), strong regularity of HA implies that C, [HA, C], . . . , [HA, . . . , [HA, C] . . .] are all
linearly independent up to a number α− 1 , α = 2CardFk(C), of nested HA commutators, see Theorem 2 in
[3]. Using C = c · λ and the isomorphism given by the adjoint representation, the vectors c,Ac, . . .Aα−1c

are all linearly independent. If c = b = B̺d as in (21), then this is the Kalman controllability condition
provided α ≥ m. If b = bh + bk, Abh = 0, hence only the off-diagonal part of [HB, ρd] matters. The support
fk([HB , ρd]) intersects a number of “root spaces” kjℓ (each has real dimension 2) equal to CardFk([HB, ρd]).
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Furthermore, since −iHA ∈ su(N), the invariance property (7) applies. Written in terms of the original
commutators

Fk([HB, ρd]) = Fk([HA, [HB, ρd]]) = . . . = Fk([HA, . . . , [HA, [HB, ρd]] . . .]). (24)

For the ℓ-th order commutator of Wα−1, one has the binomial-like expansion:

[A, . . . , [A︸ ︷︷ ︸
ℓ times

,B] . . .]

= AℓB + (−1)1
(
ℓ

1

)
Aℓ−1BA+ . . .

+ (−1)ℓ−1

(
ℓ

ℓ− 1

)
ABAℓ−1 + (−1)ℓBAℓ.

(25)

After the linearization around ρd, only the first term of this expression is retained. Since −iHA ∈ h, from
(7), fk

(
Aℓ̺d

)
= fk(̺d), while fh

(
Aℓ̺d

)
= 0, ∀ ℓ > 1. From (24), Fk is the same for all terms in (25), and

similarly,

Fk (B̺d) = Fk ([A,B]̺d) = . . . = Fk ([A, . . . , [A,B] . . .]̺d) . (26)

In summary, strong regularity of HA guarantees the full spanning of a linear space whose dimension is
determined uniquely by CardFk([HB , ρd]). This space is identifiable with the tangent space T̺d

S as well as
with Wm−1̺d. The equivalence of the three conditions follows consequently. �

Remark 2 Lemma 1 and Condition 2 of Lemma 2 imply that although the vector space Wm−1 is never the
entire Lie algebra adsu(N) acting transitively on S, it may nevertheless span the entire tangent space at a
point. The same holds for the Kalman controllability.

Remark 3 In general CardFk(HB) 6= CardFk([HB, ρd]), hence the controllability of the linearization de-
pends from the reference trajectory ρd chosen. The meaning of Lemma 2 is that in order to have linear
controllability the reference trajectory (16) must be “rich enough” along HB.

Remark 4 While the Kalman condition (22) seems time-varying as soon as ρd,k 6= 0, the equivalent condi-
tion 3 of Lemma 2 is always time-independent since F ([HB, ρd(0)]) = F ([HB, ρd(t)]).

Remark 5 The conditions of Lemma 2 depend on ρd, HA and HB but not on the state ρ, meaning that
alone they are not enough to guarantee convergence of a given ρ(0).

The Lyapunov derivative in (17) is made homogeneous in u by the cancellation of the drift term and

therefore the notion of attractivity provided by V̇ must be rendered invariant under such flow (in a way
similarly to the orbital stabilization problem, see [7]). The following Lemma gives an alternative attractivity
condition which is fully invariant under the drift and generically (i.e., almost always under etA) equivalent
to the usual Lyapunov convergence property. This last in fact may fail in isolated points: certain critical
points of V are not invariant under the flow of the drift (see Section V).

Lemma 3 Consider the system (10) with the feedback (18), where ρd obeys to (16). If HA is strongly regular,

the following conditions are generically equivalent under the flow of the drift term:

1. F ([HB, ρd]) ∩ F (ρ) 6= 0;

2. V̇ (̺d,̺) < 0;

3. ̺T
dW

α̺ = {z0, z1, . . . zα}, zj 6= 0.
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Proof. Clearly V̇ = −〈〈̺d,B̺〉〉2 < 0 implies F ([HB, ρd]) ∩ F (ρ) 6= 0. To prove that also the contrary
is generically true, it is enough to show that when F ([HB, ρd]) ∩ F (ρ) 6= 0 the zero crossing of the inner
product can occur only at isolated points along the trajectories of the closed loop system. Assume Item 1
holds and, at time t, 〈〈̺d,B̺〉〉 = 0. If δt is a small time increment, then from Item 1 of Proposition 1,
F ([HB, ρd]) and F (ρ) remain the same, while, from Item 3 of Proposition 1

(̺k,ℜ,jℓ(t+ δt),̺k,ℑ,jℓ(t+ δt)) 6= (̺k,ℜ,jℓ(t),̺k,ℑ,jℓ(t))

̺h,j(t+ δt) = ̺h,j(t)

(̺d,k,ℜ,jℓ(t+ δt),̺d,k,ℑ,jℓ(t+ δt)) 6= (̺d,k,ℜ,jℓ(t),̺d,k,ℑ,jℓ(t))

̺d,h,j(t+ δt) = ̺d,h,j(t).

If Fh ([HB, ρd]) ∩ Fh (ρ) 6= 0, then from the last row of (8) only ̺d,k matters in the computation of
Fh ([HB, ρd]), and 〈〈̺d,k(t + δt),B̺h(t + δt)〉〉 6= 0 since ̺d,k(t + δt) 6= ̺d,k(t), while ̺h(t + δt) = ̺h(t).
If, instead, Fk ([HB, ρd]) ∩ Fk (ρ) 6= 0, then we have two possible contributions to consider: Fk ([HB, ρd,h])
and Fk ([HB, ρd,k]). In the first case the conclusion follows from the same argument used above since now
̺d,h(t + δt) = ̺d,h(t) while ̺k(t + δt) 6= ̺k(t). In the second case it follows from the observation that
Fk ([HB, ρd,k]) ∩ Fk (ρ) 6= 0 implies Fk(ρd,k) 6= Fk (ρ) (see the explicit computations of the commutators in
(12)). The general case F ([HB , ρd])∩F (ρ) 6= 0 is the sum of the two situations just described. Concerning
Item 3, it is enough to notice that generically 〈〈̺d,B̺〉〉 6= 0 if and only if 〈〈̺d, [A, . . . , [A,B] . . .]̺〉〉 6= 0.
The argument is of the same type used in the proof of Lemma 2. For example if Fk ([HB, ρd,k]) ∩Fk (ρ) 6= 0
then just apply (26). If, instead, we are in the case Fh ([HB, ρd,k]) ∩ Fh (ρ) 6= 0, then the only useful term
in the expansion (25) is the last one, but this is enough to prove the claim. The genericity of the argument
can be shown as above. �

Proof. (of Theorem 1) Consider the set N . We want to show that the largest invariant set E in N is given by
ρd only. Condition 2 guarantees that locally around ρd(t) there is no other equilibrium point in N , as, from
Lemma 2, the linearization at ρd is controllable. Hence ρd is a locally asymptotically stable equilibrium for
the closed loop system and ρd is isolated inN . Consider ρe ∈ N , ρe 6= ρd. This implies ρe disjoint from ρd and
V (̺d,̺e) > 0. We need to show that ρe must be a repulsive equilibrium for the closed loop system 2. For ̺e

which is an antipodal point of a pure state ̺d, this is follows from Corollary 2, since V (̺d,̺e) is maximal in

S while V̇ 6 0. For any other ρe ∈ N , it is enough to perturb ρe to ρ̃e ∈ S so that F ([HB, ρd])∩F (ρ̃e) 6= 0.
It is always possible to do this in a neighborhood of ρe since F ([HB, ρd]) has cardinality at least m/2
and (hB,ℜ,j j+1, hB,ℑ,j j+1) 6= (0, 0) implies that Graph(HB) is connected and that there is no subspace kjℓ
invariant under B. But then, from Lemma 3, 〈〈̺d,B ˜̺e〉〉 6= 0 and V (̺d, ˜̺e) < V (̺d,̺e), i.e., ρ̃e is attracted
to ρd. To show that V (̺e, ˜̺e) increases, assume by contradiction that

V̇ (̺e, ˜̺e) = 〈〈 ˙̺e, ˜̺e〉〉 + 〈〈̺e, ˙̺̃ e〉〉 = −〈〈̺d,B ˜̺e〉〉〈〈̺e,B ˜̺e〉〉 < 0. (27)

Consider the geodesic line in S connecting ̺d with ̺e: ̺φ(s) = ̺d + φ(s) such that φ(0) = 0 and φ(se) =
̺e − ̺d. Along this line,

V̇ (̺φ(s), ˜̺e) = −〈〈̺d,B ˜̺e〉〉2 − 〈〈̺d,B ˜̺e〉〉〈〈φ(s),B ˜̺e〉〉, s ∈ [0, se]

is a function linear in φ(s) and such that, by the assumption (27),

V̇ (̺φ(0), ˜̺e) = V̇ (̺d, ˜̺e) = −〈〈̺d,B ˜̺e〉〉2 < 0

V̇ (̺φ(se), ˜̺e) = V̇ (̺e, ˜̺e) < 0.

But then V̇ (̺φ(s), ˜̺e) < 0 ∀ s ∈ [0, se], V̇ (̺φ(s),̺φ(s)) = 0, meaning that ˜̺e is attracted to the entire
geodesic segment ̺φ(s), s ∈ [0, se], which is a contradiction, since ̺d is an isolated equilibrium point. Hence

it must be V̇ (̺e, ˜̺e) > 0 i.e., ̺e is a repulsive equilibrium point. Therefore ̺e cannot belong to E . From

Lemma 3, all conditions (19) are satisfied or violated simultaneously respectively when V̇ = 0 or V̇ < 0, i.e.,

2 Since ̺e may not be isolated in N , the term repulsive has to be intended as “semi-repulsive”.
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when F ([HB , ρd]) ∩ F (ρ̃e) = 0 or 6= 0. Hence outside N the Jurdjevic-Quinn condition applies and ρ(0)
must converge to ρd(t) since any other ρe ∈ N is repulsive. �

Remark 6 Condition 2 of Theorem 1 is obviously a necessary condition for convergence. Condition 3 instead
is sufficient but not necessary, see Example 1 in Section V.

While, from Lemma 2, the linear span at ̺d of the linearized system and of the Wα yield a space of
the same dimension, Item 3 of Lemma 3 holds for the bilinear forms but it is in general not true for the
linearization.

Corollary 3 For HA strongly regular:

1. rank Wα−1̺d = rank
[
bAb . . .Aα−1b

]
, ∀ α = 0, . . . ,m− 1;

2. 〈〈̺d, [A, . . . [A︸ ︷︷ ︸
α times

,B] . . .]̺〉〉 6= 0 6⇐⇒〈〈̺,Aαb〉〉 6= 0

Proof. The first point follows from the strong regularity of HA and from (26), which implies that the
maximum number of independent vectors in the two sequences above is the same for all α. The second from
(25) and Aα̺h = 0. �

The consequence is that the linearization alone is inconclusive about the region of attraction of the reference
trajectory in the closed loop system, while instead the ad-commutators completely specify it.

Corollary 4 When CardFk ([HB, ρd]) > m/2, the region of attraction of the system (10) with the feedback

(18) is given by R = S \ N .

D. Global stabilization and topological obstructions

The notions from differential topology used in this Section are recalled in Appendix B. A compact manifold
like S cannot be globally asymptotically stabilized because it lacks the contractivity property, i.e., it is not
homotopy equivalent to a point, see [9], Proposition 1 and Theorem 1, and [37]. Proposition 2 suggests that
for S this is due to the antipodal points.

Proposition 3 For S, the χ(S) − 1 antipodal points are irremovable topological obstruction to global stabi-
lizability by smooth feedback.

Proof. Contractivity is a necessary condition for global asymptotic stabilizability. For example, that S = S2

with a point removed is homeomorphic (and hence homotopy equivalent) to R2 is well-known through the
stereographic projection (see e.g. [5], p. 34). Since it is known that the domain of attraction of an
asymptotically stable point must be homotopy equivalent to Rm for some m [37], then for N = 2 this is
enough to affirm that convergence can be rendered global up to the antipodal point. For N > 2, in order to
show that the antipodal points are all obstructions to contractivity of S, consider the equilibrium ρd and one
of its antipodal points ρp1

. By suitable change of basis, ρd and ρp1
can be rendered diagonal simultaneously.

By the transversality of the coadjoint orbit on h, it is possible to determine a submanifold of S connecting
ρd and ρp1

and not passing through any other of the antipodal points. To see it, notice that for N > 2 it
is always possible to adjust the basis (3)-(5) so as to attain a 3-dimensional simple subalgebra of su(N),
which, as described in Section III, draws an S2 orbit under the adjoint action (see [32] for the details of this
construction). This is a well-defined compact submanifold of S and it is not contractible for what said above
for N = 2.

�
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V. A FEW CASES OF PHYSICAL INTEREST

The methods developed above yield considerable insight into the stabilizability and convergence properties
of a quantum density operator. A few interesting cases for N -level systems are now described. It is followed
by a more detailed description for systems with N = 2, 3.

• Since m 6 N2 − N , and CardFk ([HB, ρd]) 6 (N2 − N)/2, (i.e., the maximal number of off-diagonal
terms), each complex flag manifold S may admit a controllable linearization (depending on ρd).

• The assumption of direct coupling between nearest energy levels (hB,ℜ,j j+1, hB,ℑ,j j+1) 6= (0, 0), is
needed in order to exclude the existence of subset of S which remains invariant under the closed loop
dynamics. It is a common assumption in most practical cases (dipole approximation [15]). See also
Example 2 below (last item).

• The full connectivity of Graph(HB) is neither a sufficient nor a necessary condition for asymptotic
stability.

• If ρd is an eigenstate and ρ another eigenstate then there is never convergence, not even if Graph(HB)
is fully connected, because ρ is antipodal to ρd.

• For pure states and not fully connected Graph(HB), certain eigenstates are easier to stabilize than
others. The easiest is the one of energy Ej such that the index j appears more often in Fk ([HB, ρd]).
In Example 2 below with HB in (28), it is easier to stabilize to the eigenstate of intermediate energy
than to the ground state or to the most excited state. When Graph(HB) is fully connected, there
is no such difference. From Theorem 1, this does not mean that all initial conditions have the same
convergence properties to a given ρd.

• If ρd and ρ(0) are both block diagonal and the blocks do not overlap

ρd =




∗ . . . ∗
...

...
∗ . . . ∗




, ρ(0) =




∗ . . . ∗
...

...

∗ . . . ∗




,

then

[HB , ρd] =




∗ . . . ∗
...

∗ . . . ∗

∗ . . . ∗
...

∗ . . . ∗
∗ . . . ∗
...

...

∗ . . . ∗

0 . . . 0
...

...

0 . . . 0




,

which implies F ([HB, ρd])∩F (ρ(0)) = 0 and V̇ = 0, i.e., ρ(0) is not attracted to ρd. Since tr (ρρd) = 0,
ρd and ρ are as distant as antipodal states.

• Not all states inN are maximally distant from ρd. Assume ρd, ρ such that Fh ([HB , ρd])∩Fh (ρ(0)) 6= 0,
Fk (ρd) = 0, Fk (HB)∩Fk (ρ) = 0. Also in this case F ([HB, ρd])∩F (ρ(0)) = 0 and ρ is not converging.
However, since tr (ρdρ) 6= 0, ρd and ρ are not maximally distant.

• A typical example of initial condition such that V̇ (̺d(0),̺(0)) = 0 but not invariant under the drift
(see paragraph before Lemma 3) is attained when Fk ([HB, ρd]) ∩ Fk (ρ(0)) 6= 0 but [HB, ρd(0)], ρ(0)
both real or purely imaginary. This follows from Proposition 1.
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Example 1 (cont’d) Assume

HA =
hA,h,1√

2

[
1 0

0 −1

]
= hA,h,1λh,1 and HB =

hB,k,ℜ,12√
2

[
0 1

1 0

]
= hB,k,ℜ,12λk,ℜ,12

Then

A = −i
√
2hA,h,1adλh,1

= 2hA,h,1



0 −1 0

1 0 0

0 0 0


 and B = −i

√
2hB,k,ℜ,12adλk,ℜ,12

= 2hB,k,ℜ,12



0 0 0

0 0 −1

0 1 0




From Proposition 1, both ‖̺k‖ and ̺h are integrals of motion of the unforced dynamics, while the two
components of ̺k evolve according to a sinusoidal law. When applying Theorem 1 to the system plus the
feedback (18), we have the following for the closed loop system:

• any ρd has a single antipodal point which also is an equilibrium;

• if ρd diagonal, Fk ([HB, ρd]) = {(12)}, the linearization is controllable and any nondiagonal ρ satisfies
Theorem 1. Hence any ρ(0) such that ρk(0) 6= 0 is attracted to ρd diagonal;

• if ρd off-diagonal, CardFk ([HB, ρd]) = 0, and the sufficient condition of Theorem 1 does not apply.
However, Fh ([HB, ρd]) 6= 0 and as long as Fh ([HB, ρd])∩Fh (ρ(0)) 6= 0, i.e., whenever ρh 6= 0, ρ→ ρd.
This is a special situation due to dim(h) = 1, and has no counterpart for N > 2.

In summary, there is always almost global convergence except when ̺d,h = ̺h = 0, i.e., except when both
̺d and ̺ belong to great horizontal circles. �

Example 2 (cont’d) The drift of the system is given by

HA =
hA,h,1√

2



1 0 0

0 −1 0

0 0 0


+

hA,h,2√
6



1 0 0

0 1 0

0 0 −2


 = hA,h,1λh,1 + hA,h,2λh,2.

We shall consider the following control vector field

HB =
1√
2




0 hB,k,ℜ,12 0

hB,k,ℜ,12 0 hB,k,ℜ,23

0 hB,k,ℜ,23 0


 = hB,k,ℜ,12λk,ℜ,12 + hB,k,ℜ,23λk,ℜ,23, (28)

which has Fk(HB) = {(12), (23)} or, alternatively,

HB =
1√
2




0 hB,k,ℜ,12 hB,k,ℜ,13

hB,k,ℜ,12 0 hB,k,ℜ,23

hB,k,ℜ,13 hB,k,ℜ,23 0


 = hB,k,ℜ,12λk,ℜ,12 + hB,k,ℜ,13λk,ℜ,13 + hB,k,ℜ,23λk,ℜ,23 (29)

which has a “fully connected” graph, Fk(HB) = {(12), (13), (23)}.
A list of interesting cases is the following:

• any of the (two for pure/psudopure, five for the generic case) antipodal points of any ρd is also an
equilibrium.

• ρd diagonal: only the off-diagonal part of ρ matters

– ρd pure (or pseudopure), e.g. ρd = ρv1

∗ HB given in (28): Fk ([HB, ρd]) = {(12)} =⇒ the linearization is never controllable since
2CardFk ([HB, ρd]) < 4 = m, hence Theorem 1 does not apply. Unlike the N = 2 case, now
in general ρ(0) 6→ρd;
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∗ HB given in (29): Fk ([HB, ρd]) = {(12), (13)} =⇒ the linearization is controllable. Any ρ(0)
such that Fk (ρ(0)) ∩ {(12), (13)} 6= 0 is converging. However, if one considers the pure state

ρ(0) =
1

2



0 0 0

0 1 1

0 1 1


 ,

then Fk (ρ) = {(23)}, implying V̇ (0) = u = 〈〈̺d(0), B̺(0)〉〉 = 0, i.e., the system is not
converging to ρd in spite of the Kalman controllability condition on the linearization. Notice
how for this example rank

(
W3̺d

)
= rank

(
W3̺(0)

)
= 4, while ̺T

dW
3̺(0) = {0, 0, 0, 0}.

– ρd pure (or pseudopure), but ρd = ρv2

∗ HB either (28) or (29): Fk ([HB, ρd]) = {(12), (23)} =⇒ the linearization is always control-
lable. Any ρ(0) such that Fk (ρ(0)) ∩ {(12), (23)} 6= 0 is converging.

– ρd with all different eigenvalues, e.g. ρd = ρg1

∗ HB in (28): Fk ([HB, ρd]) = {(12), (23)} =⇒ the linearization is never controllable since now
m = 6;

∗ HB in (29): Fk ([HB , ρd]) = {(12), (13), (23)} =⇒ the linearization is always controllable.
Any ρ(0) such that Fk (ρ(0)) 6= 0 is converging, any ρ(0) such that Fk (ρ(0)) = 0 is antipodal.

• ρd − ̺0λ0 off-diagonal

– HB in (28) and Fk (ρd) ⊆ Fk (HB) =⇒ linearization is never controllable, hence Theorem 1 does
not apply and in general ρ(0) 6→ρd(t);

– HB in (28) and Fk (ρd) 6⊆Fk (HB) =⇒ CardFk ([HB, ρd]) is at least 2, implying that the lineariza-
tion is controllable at least for pure/pseudopure states;

– if Fk (ρd) ∩ Fk (HB) 6= 0, then also Fh (ρ(0)) matters for the convergence, see (11);

– if Fk (ρd) ∩ Fk (HB) = 0 then convergence depends only on Fk (ρ(0)) (plus controllability), see
(12).

• If the control Hamiltonian is HB = hk,ℜ,12λk,ℜ,12 + hk,ℜ,13λk,ℜ,13, i.e., direct coupling between E2 and
E3 is missing, then the sufficient condition of Theorem 1 does not apply. Assume for example

ρd =



0 0 0

0 ∗ ∗
0 ∗ ∗


 , ρ(0) =



∗ ∗ 0

∗ ∗ 0

0 0 0


 .

Then Fk ([HB, ρd]) = {(12), (13)} and Fk ([HB, ρd]) ∩ Fk (ρ(0)) = {(12)}. However, ρ(0) 6→ρd(t).

�
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APPENDIX A: ON THE ADJOINT REPRESENTATION

A representation of a Lie algebra g on a vector space X is a mapping Θ : g → gl(X ) which is a Lie algebra
homomorphism, i.e., a map which

1. is linear Θ(α1A1 + α2A2) = α1Θ(A1) + α2Θ(A2), ∀ A1, A2 ∈ g and ∀ α1, α2 in the field of X ;

2. preserves the Lie bracket Θ([A1, A2]) = [Θ(A1), Θ(A2)], ∀ A1, A2 ∈ g.



17

So a representation Θ assigns to each A ∈ g a linear operator Θ(A) ∈ gl(X ). A particularly useful
representation is the adjoint representation on X = Rn. If for an n-dimensional Lie algebra g we choose the
basis A1, . . . An then the Lie brackets of the basis elements are [Aj , Ak] =

∑n
ℓ=1 c

ℓ
jkAℓ. The components of

the 3-tensor cℓjk are called structure constants of the Lie algebra with respect to the basis A1, . . . An. The
adjoint representation of g, adg, with respect to the basis A1, . . . An is the representation having as basis
elements the n×n matrices of structure constants A1, . . . ,An, Aj = adAj

= [Aj , · ] of entries (Aj)ℓk = cℓjk.
Notice how the two free indexes k and ℓ identify respectively the columns and the rows of the new basis
elements.
In general, the adjoint representation of a linear Lie algebra is a derivation of the algebra and corresponds

to the infinitesimal representation of all the one-parameter groups of automorphisms. For a semisimple
compact Lie algebra g, the main features of adg are (see e.g. [33], p. 39 and 129):

• it is a real semisimple Lie algebra;

• it is isomorphic to g;

• ∀A, B ∈ g: [adA, adB] = ad[A,B].

Let us spend some more words on emphasizing how the “linearity” of the adjoint representation may be
intended, which is one of the leitmotifs of the paper. If B ∈ g has the expression B = b1A1 + . . . bnAn, then

as long as we keep the basis fixed, B is uniquely identified by its vector of components: B ≃ b =
[
b1 . . . bn

]T
.

Then

[Aj , B] = [Aj ,

n∑

k=1

bkAk] ≃
n∑

k, ℓ=1

eTℓ
(
adAj

)
ℓk
bk = Ajb. (A1)

We will often make the double substitution {A, B} ≃ {A, b} which will correspond to replacing the (bilinear)
matrix commutator [ · , · ] : g×g → g with the linear operation adg×Rn → Rn, i.e., left matrix multiplication.

APPENDIX B: A FEW FACTS FROM TOPOLOGY

The material in this Appendix is taken from standard texts on (differential) topology e.g. [5, 22]. Let X , Y
be topological spaces and f, g : X → Y be continuous maps. The mapping f is said homotopic to g if “it can
be continuously deformed to g”, i.e., if ∃ a continuous mapping h : X × [0, 1] → Y such that h(x, 0) = f(x),
h(x, 1) = g(x) ∀ x ∈ X . X , Y are said homotopy equivalent if ∃ maps f : X → Y and g : Y → X such that
g ◦ f and f ◦ g are homotopic to the identity maps in X and Y respectively. Y is said contractible if the
identity map on Y is homotopic to the constant map Y → x◦ for any x◦ ∈ Y. A space is contractible if and
only if it is homotopy equivalent to a point. No compact manifold is contractible. Homotopy equivalence
is an equivalence relation on topological spaces and the classes of homotopy equivalent spaces are called
homotopy types. Examples used in this paper are:

• Sm − {p} is homotopy equivalent to Rm (p is any point of Sm);

• Rm − {0} is homotopy equivalent to Sm−1

• Rm is homotopy equivalent to a point (and hence to any contractible space).
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