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Abstract— In this paper a new analytically tractable model
for combustion instability is proposed. The model is based on
two coupled resonators in a feedforward path, and a feedback
path composed of a delay, generalized Van der Pol term and a
low pass filter. The model is analyzed and approximated using
a refined Krylov-Bogoliubov (K-B) method. The analysis shows
that the model captures the phenomenon of two coexisting os-
cillating modes which has been noted in combustion instability
in [1], [2]. Conditions for the occurrence of various operation
regimes have been established. The importance of delay and low
pass filtering is discussed in this article. A frequency domain
comparison between K-B approximations and the true outputs
of the model has been provided in the end of the paper.

Index Terms— modelling, combustion instability, nonlinear
oscillating systems, Krylov-Bogoliubov method.

I. I NTRODUCTION

Combustion instabilities constitute a major problem for
combustion turbomachinery such as jet engines and gas
turbine powerplants, when operating in lean premixed com-
bustion, which is desirable from the standpoint of minimizing
pollution. Research programs in this area are actively con-
ducted in a number of countries [3], [4], [5], [6], [7], [8].
The modeling of this instability is difficult and somewhat
contentious in detail, with the broad explanation being the
positive feedback coupling between the thermal heat-release
process and the acoustics of the combustion chamber. The
phenomenon has been experimentally known for more than
200 years.

Several control strategies have been proposed to deal with
this instability, see [9] for an overview. One of most effective
strategies, successfully experimented, is active control with
the actuation taking place primarily through modulation of a
fraction of the fuel flow into the combustion chamber [10],
[11]. The goal of active control is to modify the combus-
tion system dynamics. The systematic implementation and
reliable design of active control requires the development
of a realistic low order model which exhibits the dominant
dynamical effects as limit cycles. The phenomenon has been
scientifically studied in the laboratory since Rayleigh and
Rijke [12], [13] and has been described much earlier in
[14]. However, a low order and accurate modelling of such a
complex system is an extremely challenging task and is still
not fully resolved.

In [15], Peracchio and Proscia have proposed a low order
model resulting from several physical investigations, the
model was characterized by a linear resonator in feedback
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Fig. 1. Combustion instability model based on coupled Van der Pol
equations

with a delay and a nonlinear static function. In order to
explain the coexistence of two modes (see [2], [16]), the
model has been extended in [1] by adding a second resonator.
The model in [1] features in the feedback loop a cascade of a
: differentiator - delay - static nonlinear characteristic - low
pass filter - differentiator. An analytically tractable model
for [1] has been proposed in [17] based on coupled Van der
Pol equations. The block diagram of the model is shown in
Figure 1, whereω1 andω2 are the natural radian frequencies
of the first and second resonators respectively and which
can have arbitrary values with some modest provisions to
be developed,ε is a small positive quantity. The model
has been successfully analyzed using Krylov-Bogoliubov
approach in [17]. However, this model does not include
the cascade differentiator - delay and the low pass filter.
While interesting results have been obtained concerning the
existence or quenching of the oscillations in the system, the
model was not able to explain the simultaneous presence
of two oscillating modes observed experimentally, when the
frequencies of the two resonators are in ratio different from
1, 3 and 1

3 . The present paper which is the continuation of
[17] considers an analytically tractable model which takes
into account

1) The generalization of the nonlinear static characteristic
(see [1], previously approximated by basic Van der Pol
characteristic).

2) The existence of time delay plus differentiator block
and low pass filtering in the feedback path (see [15]).

The first point suggests replacing in the model the basic
Van der Pol termε d

dt
(y − 1

3y3) by a generalized Van der
Pol term d

dt

(

ϕv0 + ϕv1y − ϕv3

3 y3
)

, whereϕv0, ϕv1 andϕv3
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Fig. 2. Proposed combustion instability model

are arbitrary constants with the condition thatϕv1 and ϕv3

have the same sign. This allows accurate approximation of
the static characteristic identified from experiments [1]. The
coexistence of two oscillating modes can be explained when
a time delay plus differentiator block and a low pass filter
are included in the feedback path of the model (in dashed
boxes). The modifications lead to the model presented in
Figure 2 and is described by the following equations

{

ẍ1 + ω2
1x1 = d

dt
LPF

{

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

}

,

ẍ2 + ω2
2x2 = d

dt
LPF

{

ϕv0 + ϕv1ṗτ − ϕv3

3 ṗ3
τ

}

,
(1)

where τ is a transport time delay from nozzle to flame
surface,LPF is the transfer operator of the low pass filter,
p = x1 + x2 is the downstream pressure perturbation
at the burning plane,̇pτ is the output of the delay-plus-
differentiator block andq is the flame heat release rate.

The new model is more complex and needs to be analyzed
by an efficient approximation method as Krylov-Bogoliubov
(K-B) approximation detailed in [18], [19], [20], [21], [22].
The presence of delay and low pass filtering yields some dif-
ficulties in computing approximations, which will be treated
in this paper by introducing some realistic assumptions
which are effective in stationary regime. Consequently, our
approximations will be powerful at stationary regime. Also,
to perform the approximations, we will use the refined K-B
procedure which will add multiple harmonics.

There is a long history of modeling this instability, which
is well summarized in [9]. Modeling splits into two main
approaches; Galerkin approximation of partial-differental-
equation descriptions based on physics, and black-box sys-
tem identification methods which do not account for physics
other than through their structure. The authors of [9] then
move on to consider control approaches with a number of
different schemes and the experimental performance. Some
of these are model-based and others adapt a single control
parameter directly. In no case is the control design nonlinear
and attempt to benefit from the nature of the model. Here,
we develop and analyze a model based on a variation of that
from [1] and establish: that it is capable of demonstrating the
salient dynamical features of the instability and its control,
and that it is amenable to analysis using K-B methods. The
contribution is thus in the tractability of the model class for
control design.

II. REFINED K-B APPROXIMATION: INTRODUCING

NEGLECTED HARMONICS

Consider a system withn resonators described by differ-
ential equations of the form

ẍk + ω2
kxk = ǫfk (x, ẋ) , (k = 1, 2, . . . , n) (2)

wherex = {x1, . . . , xn}, ẋ = {ẋ1, . . . , ẋn} andǫ is a small
parameter.

In the previous article [17], we have given a summary of
classical first K-B approximation, which consists of using
only the fundamental terms infk. However, in some cases
the outputsxk contain other harmonics with non negligible
amplitudes (with respect to fundamental harmonic). These
harmonics correspond to the other terms initially neglected
in fk and will now be considered.

Rewrite the solution in another form

xk = ak cos(ψk) + uk, (3)

where;ψk = ωkt + θk, uk is a sum of periodic functions
excluding the fundamental harmonic,ak and θk are slowly
time-varying functions, obeying the following equations

{

ȧk = − ǫ
2ωk

Hkk(a1, . . . , an, θ1, . . . , θn),

θ̇k = − ǫ
2ωkak

Gkk(a1, . . . , an, θ1, . . . , θn),
(4)

uk =
∑r

ωk 6≈ωℓ

Hℓk sin(ωℓt+θℓ)+Gℓk cos(ωℓt+θℓ)
w2

k
−w2

ℓ

, (5)

where Hkk, Gkk, Hℓk and Gℓk are obtained from the
function fk by substituting

{

xk = ak cos(ωkt + θk),
ẋk = −akωk sin(ωkt + θk),

(k = 1, 2, . . . , n) (6)

and by setting it in the form

fk (a1 cos(ω1t + θ1), . . . , an cos(ωnt + θn),
− a1ω1 sin(ω1t + θ1), . . . ,−anωn sin(ωnt + θn))

= Hkk sin(ωkt + θk) + Gkk cos(ωkt + θk)

+
∑r

ωk 6≈ωℓ
(Hℓk sin(ωℓt + θℓ) + Gℓk cos(ωℓt + θℓ)) , (7)

whereωℓ and θℓ are the linear combinations ofω1, . . . , ωn

andθ1, . . . , θn, respectively, andr is the number of possible
linear combinations ofω1, . . . , ωn different fromωk.

III. E QUATION DEVELOPMENT AND ANALYSIS

Consider the system (1) and the form (2) (withǫ = 1), in
this case

f1 = f2 =
d

dt
LPF

{

ϕv0 + ϕv1ṗτ −
ϕv3

3
ṗ3

τ

}

. (8)

Replacing

ẋi = −aiωi sin(ωit + θi), (i = 1, 2)

in ṗ, one obtains

ṗ = ẋ1 + ẋ2

⇒ ṗ = −ω1a1 sin(ω1t + θ1) − ω2a2 sin(ω2t + θ2)

= ω1a1 cos(ω1t + θ1 +
π

2
) + ω2a2 cos(ω2t + θ2 +

π

2
),



which after adding delay effect, takes the form

ṗτ = ω1a1τ cos(ω1t + θ1τ + π
2 − ω1τ)

+ω2a2τ cos(ω2t + θ2τ + π
2 − ω2τ), (9)

wherea1τ , a2τ , θ1τ andθ2τ are amplitudes and phases after
the delay block, respectively. Since, for K-B approximation
the amplitudesai and the phasesθi (i = 1, 2) are slowly
time-varying functions, and in order to approximate the time
delay block, we propose the following assumption.

Assumption 1: For small time delayτ , the quantities
| ai − aiτ | and | θi − θiτ | (i = 1, 2) can be neglected.

The assumption 1 allows the following approximations
{

aiτ = ai − (ai − aiτ ) ≈ ai,

θiτ = θi − (θi − θiτ ) ≈ θi.
(i = 1, 2) (10)

Substituting approximations (10) in expression (9), one gets

ṗτ ≈ ω1a1 cos(ω1t + θ1 + π
2 − ω1τ)

+ ω2a2 cos(ω2t + θ2 + π
2 − ω2τ). (11)

We use the following notation in the remaining of paper

ψk1k2
= (k1ω1 + k2ω2)t + (k1θ1 + k2θ2). (12)

Introducing (11), using notation (12) in nonlinear static
function and trigonometrical simplifications lead to the ex-
pression written in Appendix (A.25).

To get an expression in the form of (7), the low pass filter
block must be also approximated. Therefore, we consider a
second assumption

Assumption 2: The low pass filter is linear and the low
pass filter dynamics are much faster than the evolution of
amplitudes and phases.

The utility of assumption 2 is that, for an input given as
the sum of sinusoidal terms (such as (A.25)), the output will
be equal to the sum of the outputs of each term, and for
sinusoidal inputs with slowly time-varying amplitudes and
phases the rise time will be neglected, and the amplitudes and
phases will be considered as constant parameters. Therefore,
the assumption 2 leads the following approximation

LPF (a cos(ωt + θ)) ≈ G(ω)a cos(ωt + θ − φ(ω)) (13)

wherea, ω and θ are the amplitude, the frequency and the
phase of input, respectively,G(ω) andφ(ω) are the gain and
the phase at frequencyω introduced by the filter. We use the
following notation in the remaining of paper

Ak1k2
= ω

|k1|
1 ω

|k2|
2 G(k1ω1 + k2ω2),

χk1k2
= (k1+k2)π

2 − (k1ω1 + k2ω2)τ − φ(k1ω1 + k2ω2).
(14)

Using (A.25), property (13) and notation (14), one arrives at
(B.26). Result (B.26) yields the frequency set

W = {ω1, ω2, 3ω1, 3ω2, 2ω1 + ω2, ω1 + 2ω2,

2ω1 − ω2, 2ω2 − ω1} , (15)

which will be very important for identifying the different
situations depending on the proximity of frequencies inW .
Consequently, one has the following three situations:

1) ω1 6≈
{

ω2, 3ω2,
ω2

3

}

,

2) ω1 ≈ ω2 : Mutual synchronization with close frequen-
cies

3) ω1 ≈ 3ω2 (respectivelyω2 ≈ 3ω1): Mutual synchro-
nization with multiple frequencies

Experimental results ([1]) reveal that both modes oscillate
freely without synchronization and with the frequencies not
respecting the conditions of cases number2 and 3. Hence,
we limit our study here to case1. This is new and more
practically interesting when compared with [17].

IV. K-B APPROXIMATION OF THE MODEL

Consider the conditionω1 6≈
{

ω2, 3ω2,
ω2

3

}

and the result
(B.26). The application of refined K-B approximation gives

xi = ai cos(ωit + θi) + ui, (i = 1, 2) (16)

with






























ȧ1 = ϕv1A10 cos(χ10)
2 a1

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

,

ȧ2 = ϕv1A01 cos(χ01)
2 a2

(

1 − ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

,

θ̇1 = ϕv1A10 sin(χ10)
2

(

1 − ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

,

θ̇2 = ϕv1A01 sin(χ01)
2

(

1 − ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

,

(17)

where ui is given in appendix C. From the equations
(17), one can see that the coupled parameters area1 and
a2. Therefore, the system dynamics depend essentially
on the evolution of amplitudesa1 and a2. The analytical
determination of equilibrium points gives

a1 = 0 anda2 = 0, (18)

a1 = 2
ω1

√

ϕv1

ϕv3

anda2 = 0, (19)

a1 = 0 anda2 = 2
ω2

√

ϕv1

ϕv3

, (20)

a1 = 2
ω1

√

ϕv1

3ϕv3

anda2 = 2
ω2

√

ϕv1

3ϕv3

. (21)

The stability of each equilibrium point leads to a particu-
lar regime. Consequently, one distinguishes four operation
regimes, which will be elaborated and explained shortly :

1) Asymptotically stable system,
2) Two generators with competitive quenching,
3) Simultaneous self-sustained oscillations,
4) Total instability.

For stability study one can apply Lyapunov’s indirect
method, which uses the stability property of linearized
system around the equilibrium point. The computation of
general characteristic polynomial leads to the result showed
in Appendix D. The characteristic polynomial obtained is
second order. Therefore, the stability can be verified by
testing the signs of polynomial coefficients.

A. Asymptotically stable system

The system is asymptotically stable around the origin, if
and only if the equilibrium point (18) is asymptotically sta-
ble. Introducing (18) in the general characteristic polynomial
(D.28), one obtains

P (λ) = λ2 − ϕv1

2

{

A10 cos(χ10) + A01 cos(χ01)
}

λ

+
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

4 ,
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which has two stable zeros if the following conditions are
respected

{

−ϕv1

{

A10 cos(χ10) + A01 cos(χ01)
}

〉

0

A10A01 cos(χ10) cos(χ01)ϕ
2
v1

〉

0

⇐⇒

{

ϕv1 cos(χ10)
〈

0
ϕv1 cos(χ01)

〈

0
(22)

Provided (22) is satisfied and initial states are close to
the origin, the amplitudes of both oscillations converge
to equilibrium point (18). Figure 3 shows an example of
simulation test, where the conditions (22) are satisfied under
realistic parameters values.

B. Two generators with competitive quenching

The two generators with competitive quenching regime
occurs when both equilibrium points (19) and (20) are locally
stable. Substituting (19) into (D.28), one gets

P (λ) = λ2 + ϕv1

{

A10 cos(χ10) + 1
2A01 cos(χ01)

}

λ

+
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

2 ,

The local stability of (19) is satisfied if and only if
{

ϕv1

{

A10 cos(χ10) + 1
2A01 cos(χ01)

}

〉

0

A10A01 cos(χ10) cos(χ01)ϕ
2
v1

〉

0

⇐⇒

{

ϕv1 cos(χ10)
〉

0
ϕv1 cos(χ01)

〉

0
(23)

By symmetry, for the equilibrium point (20) one finds the
same conditions.
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Provided that the conditions (23) are satisfied, the am-
plitudes of x1 and x2 converge to one of both possible
equilibrium points (19) and (20). Depending on the initial
states, one of the generators is excited, while the oscilla-
tions of the other generator are entirely quenched. Figure 4
shows an example of simulation test on two generators with
competitive quenching regime.

C. Simultaneous self-sustained oscillations

Simultaneous oscillation of both resonators occurs when
the equilibrium point (21) is stable. Introducing (21) in
(D.28), one obtains

P (λ) = λ2 + ϕv1

3

{

A10 cos(χ10) + A01 cos(χ01)
}

λ

−
A10A01 cos(χ10) cos(χ01)ϕ

2

v1

3 ,

The equilibrium point (21) is locally stable if and only if
{

ϕv1

{

A10 cos(χ10) + A01 cos(χ01)
}

〉

0

−A10A01 cos(χ10) cos(χ01)ϕ
2
v1

〉

0

⇐⇒

{

ϕv1

(

A10 cos(χ10) + A01 cos(χ01)
) 〉

0
cos(χ10) cos(χ01)

〈

0
(24)

By satisfying (24), it is possible to have simultaneous self-
sustained oscillations, the amplitudes ofx1 andx2 converge
to the equilibrium point (21). By the self-sustained oscil-
lations it is meant that both oscillators are excited without
synchronization. The Figure 5 shows the stationary part of
a simulation test example on simultaneous self-sustained
oscillations regime.

D. Total instability

When the conditions (22), (23) and (24) are not satisfied,
there does not exist a stable equilibrium point. Therefore,
there is no stable limit cycle and the amplitudes of both
oscillations diverge. By total instability it is meant that for
any initial states, the oscillations of the system diverge.
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V. RESULTS ANALYSIS

The results demonstrate the existence of four operation
regimes when the ratio of natural frequencies is different
from 1, 3 and 1

3 . The occurrence of each operation regime
depends on the satisfaction of some conditions. The sim-
ulations confirm the quality of estimated amplitudes using
K-B approximation. The condition for each regime contain
essentially the phasesχ01 and χ10 introduced by the de-
lay and low pass filtering respectively. The phase domain
conditions (22), (23) and (24) are independent. So with
fixed delay and low-pass filter it is not possible to have
operation in more than one regime. The results suggest that
it is perhaps possible in certain cases to estimate the delay
from the measurement of the oscillations (number, frequency,
amplitude). To illustrate the importance of delay, Figure 6
depicts the operation regimes for several values ofτ and
for other parameters fixed near to the practical values. One
observes the occurrence of various regimes as a function of
the delay.

From a practical point of view, the interesting situation is
the simultaneous self-sustained oscillatory regime which is
represented in Figure 6 in red. The fact that, the amplitudes
of harmonicsω1 andω2 take values2

ω1

√

ϕv1

3ϕv3

and 2
ω2

√

ϕv1

3ϕv3

respectively, shows clearly that they depend inversely on
the values of frequencies (phenomenon which has been
observed in practice). The refined K-B procedure added the
multiple harmonics ofω1 andω2 to the approximations. The
evaluation of the precision of the refined K-B approximations
requires a spectral comparison with the real outputs of the
model. The stationary power spectral density comparison
using FFT is presented in Figure 7, whereDx1, Dx2 andDp

are the power spectral densities ofx1, x2 andp, respectively.
From Figure 7, one can see that the important harmonics
of the model outputs have been captured with an excellent
approximation of the gains. The other uncaptured harmonics
have negligible gains.

VI. COMPARISON WITH EXPERIMENTAL RESULTS

The capacity of a combustion instability model to display
the coexistence of two modes is regarded as an important
corroboration of the model. Indeed, the representative ex-
perimental results discussed in [2], [16] demonstrate the si-
multaneous presence of two sinusoidal components; a strong
dominant tone at 210Hz, and a weak but persistent non-
harmonic tone at 714Hz.
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10
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The model proposed here has the ability to describe a
number of distinct phenomena observed in practice. One
of most important is simultaneous self-sustained oscillations
phenomenon which occurs when the conditions (24) are
satisfied. The analysis of this phenomenon shows that, on
one hand, the model can display the coexistence of two
modes at any frequencies (depending of the value of the
delay), and on other hand it shows that the amplitudes of
both oscillations decrease when the frequency increase. As
the analysis has shown, the model can display also the other
situations encountered in practice.

The coherence of the theoretical analysis with the ex-
perimental and model simulation results constitutes also an
important fact, indicating that K-B method is a powerful
analysis method for the combustion instability.

VII. C ONCLUSION

This article focused on proposing and analyzing an at-
tractive dynamic model for combustion instability having
a feedback structure. The crucial role of the delay in the
feedback path of the model has been emphasized. The
important consequence is that the new model captures the
coexistence of two modes phenomena, which occur in real
systems. The efficiency of refined K-B analysis method has
been illustrated by a spectral comparison of the true model
outputs with those of the computed approximations.

One of the major results is the demonstration of occurrence
of simultaneous self-sustained oscillations which have a fre-
quency ratio different from1, 3 and 1

3 and with a magnitude
decreasing with the frequency. Furthermore, a thorough full
analysis of the effect of the delay has been provided showing
clearly the possibility of occurrence of various operation
regimes as a function of the value of the delay. This may



constitute also a starting point for an estimation of delay
from experimental data.

Further work will focus on the establishment of conditions
for the quenching of the oscillations by adding an external
modulation of a fraction of the fuel flow into the combustion
chamber.
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APPENDIX A
ASSUMPTION1 CONSEQUENCE

ϕv0 + ϕv1ṗ−τ − ϕv3

3 ṗ3
−τ ≈ ϕv0 + ϕv1

{

ω1a1

(

1 − ϕv3

ϕv1
(

(ω1a1)
2

4 + (ω2a2)
2

2

))

cos(ψ10 + π
2 − ω1τ) + ω2a2

(

1

−ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

cos(ψ01 + π
2 − ω2τ)

}

− ϕv3
{

(ω1a1)
3

12 cos
(

ψ30 + 3π
2 − 3ω1τ

)

+ (ω2a2)
3

12 cos
(

ψ03 + 3π
2

−3ω2τ) +
ω2

1
ω2a2

1
a2

4 cos
(

ψ21 + 3π
2 − (2ω1 + ω2)τ

)

+
ω1ω2

2
a1a2

2

4 cos
(

ψ12 + 3π
2 − (2ω2 + ω1)τ

)

+
ω2

1
ω2a2

1
a2

4 cos
(

ψ2−1 + π
2 − (2ω1 − ω2)τ

)

+
ω1ω2

2
a2

2
a1

4 cos
(

ψ−12 + π
2 − (2ω2 − ω1)τ

)

}

. (A.25)

APPENDIX B
ASSUMPTION2 CONSEQUENCE

d
dt

LPF
{

ϕv0 + ϕv1ṗ−τ − ϕv3

3 ṗ3
−τ

}

≈ −ϕv1

{

ω1A10a1

(

1

−ϕv3

ϕv1

(

(ω1a1)
2

4 + (ω2a2)
2

2

))

sin(ψ10 + χ10) + ω2A01a2

(

1

−ϕv3

ϕv1

(

(ω2a2)
2

4 + (ω1a1)
2

2

))

sin(ψ01 + χ01)
}

+ ϕv3

{

ω1A30a3

1

4 sin (ψ30 + χ30) +
ω2A03a3

2

4 sin (ψ03 + χ03)

+
(2ω1+ω2)A21a2

1
a2

4 sin (ψ21 + χ21) +
(ω1+2ω2)A12a1a2

2

4

sin (ψ12 + χ12) +
(2ω1−ω2)A2−1a2

1
a2

4 sin (ψ2−1 + χ2−1)

+
(2ω2−ω1)A−12a2

2
a1

4 sin (ψ−12 + χ−12)
}

. (B.26)

APPENDIX C
REFINEMENT COMPONENT

ui = −ϕv1a3−iω3−iAi−1 2−i

ω2

i
−ω2

3−i

(

1 − ϕv3

ϕv1

(

(ω3−ia3−i)
2

4 + (ωiai)
2

2
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−9ω2

1
)
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4(ω2
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−9ω2

2
)
sin (ψ03 + χ03) +

(2ω1+ω2)A21a2

1
a2

4(ω2

i
−(2ω1+ω2)2)
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sin (ψ2−1 + χ2−1)

+
(2ω2−ω1)A−12a2

2
a1

4(ω2

i
−(2ω2−ω1)2)
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}

, (i = 1, 2) (C.27)

APPENDIX D
GENERAL CHARACTERISTIC POLYNOMIAL

P (λ) = λ2 − ϕv1

2
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