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Abstract— In this paper a new analytically tractable model 1 +, >
for combustion instability is proposed. The model is based on s?+ w,’ +
two coupled resonators in a feedforward path, and a feedback X
path composed of a delay, generalized Van der Pol term and a > L 5 2
low pass filter. The model is analyzed and approximated using S tw,
a refined Krylov-Bogoliubov (K-B) method. The analysis shows
that the model captures the phenomenon of two coexisting os-
cillating modes which has been noted in combustion instability (X1 +x2)3

in [1], [2]. Conditions for the occurrence of various operation X X T3
regimes have been established. The importance of delay and low
pass filtering is discussed in this article. A frequency domain
comparison between K-B approximations and the true outputs
of the model has been provided in the end of the paper.

Index Terms—modelling, combustion instability, nonlinear
oscillating systems, Krylov-Bogoliubov method.

Fig. 1. Combustion instability model based on coupled Van der Pol
equations

with a delay and a nonlinear static function. In order to
explain the coexistence of two modes (see [2], [16]), the
Combustion instabilities constitute a major problem foinodel has been extended in [1] by adding a second resonator.
combustion turbomachinery such as jet engines and gffe model in [1] features in the feedback loop a cascade of a
turbine powerplants, when operating in lean premixed com-gjfferentiator - delay - static nonlinear characteristic - low
bustion, which is desirable from the standpoint of minimizingbass filter - differentiator. An analytically tractable model
pollution. Research programs in this area are actively Cofgr [1] has been proposed in [17] based on coupled Van der
ducted in a number of countries [3], [4], [5], [6], [7], [8]. pol equations. The block diagram of the model is shown in
The mOdeling of this |nStab|l|ty is difficult and SomeWhatFigure 1, Wheredl andW2 are the natural radian frequencies
contentious in detail, with the broad explanation being thgf the first and second resonators respectively and which
positive feedback coupling between the thermal heat-releaggn have arbitrary values with some modest provisions to
process and the acoustics of the combustion chamber. The developedg is a small positive quantity. The model
phenomenon has been experimentally known for more thaps been successfully analyzed using Krylov-Bogoliubov
200 years. approach in [17]. However, this model does not include
Several control strategies have been proposed to deal Witit cascade differentiator - delay and the low pass filter.
this instability, see [9] for an overview. One of most effectiveyhile interesting results have been obtained concerning the
strategies, successfully experimented, is active control witdkistence or quenching of the oscillations in the system, the
the actuation taking place primarily through modulation of gnodel was not able to explain the simultaneous presence
fraction of the fuel flow into the combustion chamber [10]of two oscillating modes observed experimentally, when the
[11]. The goal of active control is to modify the combus-frequencies of the two resonators are in ratio different from
tion system dynamics. The systematic implementation and 3 and 1. The present paper which is the continuation of

reliable design of active control requires the developmen7] considers an analytically tractable model which takes
of a realistic low order model which exhibits the dominaninto account

dynamical effects as limit cycles. The phenomenon has been
scientifically studied in the laboratory since Rayleigh and ) . .
Rijke [12], [13] and has been described much earlier in (see [1], preymusly approximated by basic Van der Pol
[14]. However, a low order and accurate modelling of such a 5 ?rr;]aractgr|stlc). i gel lus diff . block
complex system is an extremely challenging task and is still ) The eX|stence'o t'lme. elay plus differentiator bloc
not fully resolved. and low pass filtering in the feedback path (see [15]).
In [15], Peracchio and Proscia have proposed a low orddhe first point suggests replacing in the model the basic
model resulting from several physical investigations, th&an der Pol terms%( — §y3) by a generalized Van der

model was characterized by a linear resonator in feedbaélol term% (%0 + Pp1y — 52 y3), wherep,o, ©,1 andy,s

I. INTRODUCTION

1) The generalization of the nonlinear static characteristic




II. REFINED K-B APPROXIMATION: INTRODUCING
NEGLECTED HARMONICS

\

Consider a system with resonators described by differ-
ential equations of the form

\4

Low Pass . .
Filter Fp 4 wity = efy(z,2), (k=1,2,...,n) (2)
A
""""""""" T wherex = {z1,...,z,}, & = {21,..., &, } ande is a small
q o Pa.s | P parameter.
¢v0+¢\ap7 ? T In the : icl ;
previous article [17], we have given a summary of
classical first K-B approximation, which consists of using
Fig. 2. Proposed combustion instability model only the fundamental terms ifi,. However, in some cases

the outputse, contain other harmonics with non negligible
amplitudes (with respect to fundamental harmonic). These

are arbitrary constants with the condition that; and v, harmonics correspond to the other terms initially neglected

have the same sign. This allows accurate approximation & /- @nd will now be considered.

the static characteristic identified from experiments [1]. The Rewrite the solution in another form
coexistence of two oscillating modes can be explained when
a time delay plus differentiator block and a low pass filter
are included in the feedback path of the model (in dashemhere; vy, = wyt + 0y, uy is a sum of periodic functions
boxes). The modifications lead to the model presented #xcluding the fundamental harmonig, andé; are slowly

x) = ay cos(Yy) + ug, 3

Figure 2 and is described by the following equations time-varying functions, obeying the following equations
{..1:‘1 +LA}%Z’1 = %LPF{@UO"’@?APT* ¢§3p§}7 (1) dk: = —ﬁH;ﬂk(al,...,an,917...,9n), (4)
f2 + w%$2 = %LPF {‘PUO + Qovlp‘r — <‘0§2p§-} ) Hk = 7WGM€((11, vy Qp, 91, ce ,9n),

where 7 is a transport time delay from nozzle to flame
surface,L PF is the transfer operator of the low pass filter,
p = x1 + xo IS the downstream pressure perturbationwhere Hy, Gri, Hy and Gy, are obtained from the
at the burning planep, is the output of the delay-plus- function f; by substituting

differentiator block and; is the flame heat release rate.

The new model is more complex and needs to be analyzed{
by an efficient approximation method as Krylov-Bogoliubov
(K-B) approximation detailed in [18], [19], [20], [21], [22]. and by setting it in the form
The presence of delay and low pass filtering yields some dif-
ficulties in computing approximations, which will be treated/* (@1 Cos(wit +01),...., an cos(wnt + On),
in this paper by introducing some realistic assumptions ~ %1¢1 sin(wit 4+ 61), ..., —apwy sin(wpt + 6,,))
which are effective in stationary regime. Consequently, our Hkk sin(wit + 0) + Gir cos(wit + Or)
approximations will be powerful at stationary regime. Also, + 0, ., (Hex sin(wet + 0¢) + Gor, cos(wet +0¢)),  (7)
to perform the approximations, we will use the refined K-B

o r Hyp, sin(wet+0,) 4Gy, cos(wet+6y)
Uk = Zwk33we w? —w? ’ (®)

xp = ag, cos(wit + i),

i = —agwsin(wpt + ), F = LZem) o (©)

procedure which will add multiple harmonics. wherew, andd, are the linear combinations of, ..., ws
There is a long history of modeling this instability, Which"?mdel’ o 9” r_espectlvely, and IS the number of possible
linear combinations ok, ..., w, different fromwy.

is well summarized in [9]. Modeling splits into two main
approaches; Galerkin approximation of partial-differental-

equation descriptions based on physics, and black-box sys- . . )
tem identification methods which do not account for physics Consider the system (1) and the form (2) (wth- 1), in

Ill. EQUATION DEVELOPMENT AND ANALYSIS

other than through their structure. The authors of [9] thef{!iS case
move on to consider control approaches with a number of d { . Pu3 3}

. . = fo=—LPF{yp, wlPr — —— . 8
different schemes and the experimental performance. Some fu=1a dt Pro - Purp 3 7 ®

of these are model-based and others adapt a single conft@lp|acing

parameter directly. In no case is the control design nonlinear

and attempt to benefit from the nature of the model. Here, &y = —a;w; sin(wit + 6;), (1 =1,2)
we develop and analyze a model based on a variation of thlat 5 one obtains
from [1] and establish: that it is capable of demonstrating the b

salient dynamical features of the instability and its control, p = 2, + z,

and that it is amenable to analysis using K-B methods. The . . _ .
contribution is thus in the tractability of the model class for% b= —wrarsin(it +61) — wpaz sin(wat + 62)

T T
control design. = wiay cos(wit + 01 + 5) + waas cos(wal + 62 + 5)7



which after adding delay effect, takes the form 2) w1 = wy : Mutual synchronization with close frequen-
cies

3) wy =~ 3wy (respectivelyw, ~ 3w;): Mutual synchro-
nization with multiple frequencies

wherea,,, as;, 01, andfy, are amplitudes and phases aftelExperimental results ([1]) reveal that both modes oscillate

the delay block, respectively. Since, for K-B approximatiorfreely without synchronization and with the frequencies not

the amplitudesz; and the phase8; (i = 1,2) are slowly respecting the conditions of cases numBeand 3. Hence,

time-varying functions, and in order to approximate the timave limit our study here to casé. This is new and more

delay block, we propose the following assumption. practically interesting when compared with [17].
Assumption 1: For small time delayr, the quantities

|a; —a;r | @and| 6; — 0, | (i = 1,2) can be neglected.
The assumption 1 allows the following approximations

ﬂ-i

pT = wia1r cos(wlt + 917— + 9 wlT)
+waagr cos(wat + Oz + 5 — waT), 9)

IV. K-B APPROXIMATION OF THE MODEL

Consider the conditiom; # {ws, 3w,, 2} and the result
(B.26). The application of refined K-B approximation gives

{ CHL” : gf((gl:;”));o% (i=12) (10) zi = a;cos(wit +0;) +ui, (i =1,2) (16)

Substituting approximations (10) in expression (9), one geY¥ith
. pv1dio COS(XlU)a 1 _ Pus (wiay)? + (waaz)?
Pr & wiag cos(wit + 61 + 5 —wi7) 2 1 o1 1 2 )

+ waay cos(wat + Oy + T — wor). (1) |y = eartocostoon) g (7 gun (2] | (0a))
I % ’ (17)

a; =

. B 2
We use the following notation in the remaining of paper |6, = %““(Xw) 1— £ %

A »1A01 sin(xo1 " waaz)? wiar)?
Vi ky = (k1wi + kowa )t + (k101 + ko6s). (12) gy = Lurdo : (xo1) (1 _ % ( 242) + { g ) 7

Introducing (11), using notation (12) in nonlinear statidvhere u; is given in appendix C. From the equations
function and trigonometrical simplifications lead to the ex{17), one can see that the coupled parametersaarand
pression written in Appendix (A.25). as. Therefore, the system dynamics depend essentially

To get an expression in the form of (7), the low pass filtePn the evolution of amplitudes, and a,. The analytical
block must be also approximated. Therefore, we considerdgtermination of equilibrium points gives

second assumption a1 =0 andas = 0, (18)
Assumption 2: The low pass filter is linear and the low 9 :
. . . ap = — Zel and ag = O, (19)
pass filter dynamics are much faster than the evolution of w1\ @u3
amplitudes and phases. a; =0 anday = 2, /2w (20)
The utility of assumption 2 is that, for an input given as w2\ pus’
the sum of sinusoidal terms (such as (A.25)), the output will a; = 2 £ anday = 2 /3«;%1, (21)
w1 v3 w2 v3

be equal to the sum of the outputs of each term, and for
sinusoidal inputs with slowly time-varying amplitudes andrhe stability of each equilibrium point leads to a particu-
phases the rise time will be neglected, and the amplitudes al# regime. Consequently, one distinguishes four operation
phases will be considered as constant parameters. Therefdg§)imes, which will be elaborated and explained shortly :

the assumption 2 leads the following approximation 1) Asymptotically stable system,
2) Two generators with competitive quenching,
LPF (acos(wt +0)) = G(w)acos(wt + 0 — ¢(w)) (13) 3) Simultaneous self-sustained oscillations,

wherea, w and @ are the amplitude, the frequency and the 4) Total instability. o
phase of input, respectivelg(w) and¢(w) are the gain and For stability study one can apply Lyapunov's indirect
the phase at frequenay introduced by the filter. We use the Method, which uses the stability property of linearized

following notation in the remaining of paper system around the equilibrium point. The computation of
al [kl general characteristic polynomial leads to the result showed

Apyky = wy " wy* Gkiwr + kaws), (14) in Appendix D. The characteristic polynomial obtained is

Xkyky = W — (krwy + kaw2)T — d(k1wi + kows). second order. Therefore, the stability can be verified by

testing the signs of polynomial coefficients.
Using (A.25), property (13) and notation (14), one arrives at g g poly

(B.26). Result (B.26) yields the frequency set A. Asymptotically stable system
The system is asymptotically stable around the origin, if
(15) and only if the equilibrium point (18) is asymptotically sta-
ble. Introducing (18) in the general characteristic polynomial
which will be very important for identifying the different (D.28), one obtains
situations depending on the proximity of frequenciediin
Consequently, one has the following three situations: PA) =\ - %{Alo cos(x10) + Aot COS(XOl)}A

2
1) wy % {wg, 3wa, %}, _|_A10A01 COS(XT> cos(x01)¢2, ’

W = {w,ws, 3w, 3w, 2w + wa, w1 + 2ws,
20.}1 —w2,2w2 —wl},
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Fig. 3. Simulation test forw; = 27 x 210, wa = 27 X 740, o =

045, pu1 = —0.135, pp3 = —5.4 x 1073, LPF = 27X50 and -+
T =55x1073. -2
po

‘ ‘ ‘ ‘ “ %'6 0.61 0.62 0.63 0.64
- " " Time[sec]

| O Fig. 5. Simulation test forv; = 27 x 210, wy = 27 x274%,0 w0 =
1 _ — -3 _ T X
N H ! AR AN 0.45, @y1 = —0.135, pp3 = —5.4 X 107°, LPF = £5-2% and
| [ T=4.8x1078.

502 Goa G506 Gos 502 S04 506
Time[sec] Time[sec]

Fig. 4. Simulation test for; = 27 x 210, wy = 27 X 740, Yuo = Provided that the conditions (23) are satisfied, the am-

045, pu1 = —0.135, pu3 = —5.4 x 107%, LPF = 27%3%0% and  plitudes of z; and 2, converge to one of both possible

T=35x107"% equilibrium points (19) and (20). Depending on the initial
states, one of the generators is excited, while the oscilla-
tions of the other generator are entirely quenched. Figure 4

which has two stable zeros if the following conditions areshows an example of simulation test on two generators with

respected competitive quenching regime.
—po1d Avg cos(x10) + Aot cos(xor) > 0 C. Smultaneous self-sustained oscillations
A1 Aoy cos(x10) cos(xo1 )2, > 0 Simultaneous oscillation of both resonators occurs when
v

] 0 the equilibrium point (21) is stable. Introducing (21) in
— { o1 cos(x10) (22) (D.28), one obtains
@u1cos(xo1) ( 0 ,
— Pu1 :

Provided (22) is satisfied and initial states are close of V) =2 +5 {Aw cos(x10) + A1 COS(XOl)}/\
the origin, the amplitudes of both oscillations converge
to equilibrium point (18). Figure 3 shows an example Ofrhg equilibrium point (21) is locally stable if and only if
simulation test, where the conditions (22) are satisfied under

realistic parameters values. { ©u19 A10 cos(x10) + Ao1 COS(Xm)} ) 0

—A10Ap1 cos(x10) cos(x01)¥2y ) 0

@1 (A1 cos(x10) + Aor cos(xo1)) ) 0 (24)
cos(x10) cos(xo1) < 0

_ Ai0Ao cos(x10) cos(x01) @2,
3 9

B. Two generators with competitive quenching

The two generators with competitive quenching regime <=
occurs when both equilibrium points (19) and (20) are locally

stable. Substituting (19) into (D.28), one gets By satisfying (24), it is possible to have simultaneous self-
sustained oscillations, the amplitudeszgfandz, converge
P(\) =X+ 99v1{A1o cos(x10) + 3 Ao COS(X01)})\ to the equilibrium point (21). By the self-sustained oscil-
+A10A01cos(X10)cos(X01)<pzl lations it is meant that both oscillators are excited without
2 ’ synchronization. The Figure 5 shows the stationary part of
The local stability of (19) is satisfied if and only if a simulation test example on simultaneous self-sustained

oscillations regime.

D. Total instability

When the conditions (22), (23) and (24) are not satisfied,
{ o1 03(x10) ; 0 (23) there does not exist a stable equilibrium point. Therefore,
#u1cos(xor) ) 0 there is no stable limit cycle and the amplitudes of both
By symmetry, for the equilibrium point (20) one finds theoscillations diverge. By total instability it is meant that for
same conditions. any initial states, the oscillations of the system diverge.

{ <Pu1{A10 cos(x10) + 5 Ao COS(XOI)} ) 0
A19Ao1 COS(X10)COS(X01)S051 > 0
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Fig. 6. The operation regimes as a function ofw; = 27 x 210, -1 5 1 15 2 0 05 1 15 )
wy = 27 X 740, py0 = 0.45, py1 = —0.135, ¢,3 = —5.4 x 1073 and FrequecyRad]  x10° FrequecyRad]  4¢¢
LPF — _2mx500
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0
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V. RESULTS ANALYSIS “

Dp[dB] 60
-80

The results demonstrate the existence of four operation
regimes when the ratio of natural frequencies is different
from 1,3 and 3. The occurrence of each operation regime o
depends on the satisfaction of some conditions. The sim- -0 o5 ) 15 )
ulations confirm the quality of estimated amplitudes using FrequecylRad]  y1f
K-B approximation. The condition for each regime contain . . .

iallv the phas and introduced by the de- Fig. 7. Spectral comparison of real and approximated outputs,foe=
essentially phasego. X1o | y 21 X 210, wo = 27 X 740, @y = 0.45, py1 = —0.135, pp3 = —5.4 X
lay and low pass filtering respectively. The phase domaim—3, LPF = 372°%5 andr = 4.8 x 1075,
conditions (22), (23) and (24) are independent. So with
fixed delay and low-pass filter it is not possible to have

operation in more than one regime. The results suggest thatrhe model proposed here has the ability to describe a
it is perhaps possible in certain cases to estimate the delgymber of distinct phenomena observed in practice. One
from the measurement of the oscillations (number, frequencyf most important is simultaneous self-sustained oscillations
amplitude). To illustrate the importance of delay, Figure §henomenon which occurs when the conditions (24) are
depicts the operation regimes for several valuesradnd satisfied. The analysis of this phenomenon shows that, on
for other parameters fixed near to the practical values. ORge hand, the model can display the coexistence of two
observes the occurrence of various regimes as a function @bdes at any frequencies (depending of the value of the
the delay. delay), and on other hand it shows that the amplitudes of

From a practical point of view, the interesting situation isoth oscillations decrease when the frequency increase. As

represented in Figure 6 in red. The fact that, the amplitudegations encountered in practice.

i 2 v 2 v . . .
of harmonicsv; andw; take values? /52~ and | /37 The coherence of the theoretical analysis with the ex-

respectively, shows clearly that they depend inversely gmerimental and model simulation results constitutes also an
the values of frequencies (phenomenon which has be@nportant fact, indicating that K-B method is a powerful
observed in practice). The refined K-B procedure added ttanalysis method for the combustion instability.

multiple harmonics ofv; andws to the approximations. The

evaluation of the precision of the refined K-B approximations VII. CONCLUSION

requires a spectral comparison with the real outputs of the

model. The stationary power spectral density comparison This article focused on proposing and analyzing an at-
using FFT is presented in Figure 7, whebg,, D,, and D, tractive dynamic model for combustion instability having
are the power spectral densitiesaqf, z» andp, respectively. a feedback structure. The crucial role of the delay in the
From Figure 7, one can see that the important harmoniéeéedback path of the model has been emphasized. The
of the model outputs have been captured with an excellefifportant consequence is that the new model captures the
approximation of the gains. The other uncaptured harmoni€§existence of two modes phenomena, which occur in real

have negligible gains. systems. The efficiency of refined K-B analysis method has
been illustrated by a spectral comparison of the true model
VI. COMPARISON WITH EXPERIMENTAL RESULTS outputs with those of the computed approximations.

The capacity of a combustion instability model to display One of the major results is the demonstration of occurrence
the coexistence of two modes is regarded as an importamit simultaneous self-sustained oscillations which have a fre-
corroboration of the model. Indeed, the representative eguency ratio different from, 3 and% and with a magnitude
perimental results discussed in [2], [16] demonstrate the gilecreasing with the frequency. Furthermore, a thorough full
multaneous presence of two sinusoidal components; a stroagalysis of the effect of the delay has been provided showing
dominant tone at 210Hz, and a weak but persistent noolearly the possibility of occurrence of various operation

harmonic tone at 714Hz. regimes as a function of the value of the delay. This may



constitute also a starting point for an estimation of delay APPENDIXA
from experimental data. ASSUMPTION1 CONSEQUENCE
Further work will focus on the establishment of conditions

for the quenching of the oscillations by adding an external

P33

1— Pv3

modulation of a fraction of the fuel flow into the combustion?*° + <p:1p_7 N 23 P=r & Puo + Pu1 {w1a1< o1
chamber. % + % cos(t1o + § —wiT) + waap (1

(1]
(2]

13

(4]
(5]

(6]

(7]

(8]

(9]

(20]

[11]

(12]
(13]
(14]
[15]

[16]

[17]

(18]

(29]

[20]
[21]

[22]

_pus (((w202)” | (wra1)? cos(to1 + 5 —waT) p —
ot 1 3 01 T 3 2T Po3
3 L woas 3 us
{7(“’11&21) cos (30 + 5 — 3wiT) + (waaz)” 2122) cos (o3 + 5

2 2
W. J. Dunstan, “System identification of nonlinear resonant systems,"~3w,7) + % cos (¢21 4 37” — (2w + w2)7-)

Ph.D. dissertation, University of California, San Diego, 2003. wiwlaia? 3

R. M. Murray, C. A. Jacobson, R. Casas, A. I. Khibnik, C. R. +ﬁ cos (Y12 + 5 — (2wo +W1)7')

Johnson Jr, R. R. Bitmead, A. A. Peracchio, and W. M. Proscia,; wiw2aja2 T _

“System identification for limit cycling systems: a case study for 2 cos (¢2—1 + 2 (le wg)T)

combustion instabilities American Control Conference, Philadelphia  +*2*2%2% cos (¢_13 + § — (2wz — wl)T)} . (A.25)
PA, pp. 2004-2008, 1998.

V. Faivre and T. Poinsot, “Experimental and numerical investigations

of jet active control for combustion applicationggurnal of Turbu-

lence, vol. 5, no. 025, Aug 2004. APPENDIXB

S. R. Stow and A. Dowling, “Low-ordre modelling of thermoacoustic

limit cycles,” Proceedings of ASVIE TURBO EXPO, Jun 2004. ASSUMPTIONZ CONSEQUENCE
C. Jacobson, A. Khibnik, A. Banaszuk, J. Cohen, and W. Proscia,
“Active control of combustion instabilities in gas turbine engines for d . .5
low emissions. part I: Physics-based and experimentally identifiedELPF {4,01;0 + Yv1p—7 — Wge’p_T} N —Pul {w1A10a1 (1
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