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Abstract— The linear complementarity problem (LCP) is a manner by stepping a sufficiently small distance over the
general problem that unifies linear and quadratic programs aad  facets of each region to find a point in a neighbouring
bimatrix games. In this paper, we present an efficient algothm region. In [8], [9] the algorithm for pQPs was again improved

for the solution to multiparametric linear complementarity d it h that the adi t critical . b
problems (pLCPs) that are defined by positive semi—definite and it was shown fthat the adjacent critical region can be

matrices. This class of problems includes the multiparametc ~ determined by inspection if it satisfies fairly strict non—
linear (pLP) and semi-definite quadratic programs (pQP), degeneracy assumptions.

where parameters are allowed to appear linearly in the cost The algorithms [2], [7]-[11] can be applied only to strictly
and the right hand side of the constraints. We demonstrate convex pQPs and they implicitly make the assumption that

that the proposed algorithm is equal in efficiency to the best . . " . .
of current pLP and pQP solvers for all problems that they can the intersection of two polyhedral critical regions is adfaxt

So|ve, and yet extends to a much |arger class. each. HOWeVer, it was shown in [15], [16] that this property
does not hold either for strictly, or non-strictly convexp€)
I. INTRODUCTION or pLPs/pQPs with parameterised costed constraints,

It is standard practice to implement a model predictivalthough it does hold for non—degenerate pLPs [13]. As
controller (MPC) by solving on-line an optimisation praile a result, the algorithms [2], [7]-[11] cannot be guaranteed
where the decision variables provide the control action. Ito return the correct solution in general. The paper [16]
recent years, it has become well-known that the optimaltinpaddressed this issue by combining the approach in [2] with
for a large class of systems is a piecewise affine functiahat in [8], although some of the efficiency of [8] is lost.
(PWA) defined over a polyhedral partition of the feasible In this paper, we present a new method based on [17] for
states. By pre—computing this PWA function off-line, thecomputing the solution to a multi—-parametric linear commple
on-line calculation of the control input then becomes onmentarity problem (pLCP), which is defined by a positive
of evaluating the PWA function at the current measuredemi—definite matrix. Linear complementarity problems are
state, which allows for significant improvements in samgplin considered fundamental and have been extensively studied
speed [1]. in various disciplines as they unify linear, quadratic and

If the system is linear, the constraints polyhedral and thieimatrix games. Specifically, the approach presented here
cost linear or quadratic, then the optimisation probleméo bprovides the solution to linear and semi-definite quadratic
solved is a linear or quadratic program. Pre—computation ofulti—parametric programs in which parameters can appear
the PWA control law then requires the solution of a (multiinearly in both the cost and the right hand side of the con-
parametric linear (pLP) or quadratic program (pQP) [1]—[3]straints. Furthermore, the proposed approach is numkrical
These algorithms have a wider use in control, such as foobust, and is equal or superior in efficiency to [7], [11] for
constrained control allocation [4] for solving sub—probke all problems that can be solved using those approaches. In
in nonlinear optimisation [5] and for calculating penaltythe cases of non—degeneracy in pQPs, the proposed method
weights in soft-constrained linear MPC [6]. reduces to [8], [9] and extends these ideas naturally to a

A large number of algorithms for pQPs [2], [3], [7]-[11] much larger class of problems, whether degenerate or not.
and pLPs [10], [12], [13] have been published in the control The remainder of this paper is organised as follows.
literature in the past few years. In [3], [12], [14] all optin Section Il provides the necessary background on LCPs and
bases are enumerated with an algorithm based on the simppExCPs. The proposed solution method is given in Section I,
approach. A geometric approach has been proposed [10] tliaimplexity analysis in Section IV and conclusions in Sec-
directly explores the set of feasible parameters in a réaurs tion V.
manner, subdividing the feasible parameter space into so-
called critical regions, in which the set of active consttsi
at the optimiser does not change. This method can introducelf A € R™*™ andI C {1,...,n}, then A, € RmxI]
a large number of artificial cuts in the parameter spads the matrix formed by the columns of indexed by]I.
and an extension of this algorithm in [7], [11] addresself ¢ € R™ is a vector therr; is the vector formed by the
this problem by enumerating the regions in a non-recursivedements ok in I. If R C {1,...,m} then we will use the

NOTATION



notationAr . € RIZX" to be the matrix formed by the rows A. Lexicographic Perturbation

of A indexed byR. A basis B is calleddegeneratéf at least one component
The set of affine combinations of points in a sefn the vectorA; L,q is zero, and non-degenerate otherwise.
S € R" is called theaffine hull of S and is denoted |f 3 complementary feasible basis is degenerate then there
aff (5). The dimensiondim(S) of a setS C R" is  exists more than one feasible basis for the given LCP. This
the dimension ofaff (5). If dim(S) is equal ton, non-uniqueness can cause several problems for parametric
then the set is called full-dimensional. The closurigorithms [13], and so in this paper we will remove the
of S is denotedS and the relative interior is given by jssue of degeneracy through the use of a lexicographic
relint(S) {x € S| B(z,r) Naff (S) C S, for somer >0}, perturbation.
where the ballB(xz,7) = {y | |z -yl <r} and|-| isany  Definition 1 (Lexico-positive)A vectora € R” is said to
norm. be lexico-positive, denoted by = 0, if the first nonzero
A polyhedronis the intersection of a finite number of component ir is strictly positive. Given two vectors, y €
closed halfspaces andpalytopeis a bounded polyhedron. If R”, 2 > y if and only if z — y = 0. The lexico-minimum
P ={x | Az <b} is a polyhedron and/ = %I a’r <b} of a set of vectors{al,...,a™} C R” is the vectora’
is a halfspace such thd@t C H, thenP N {z |a’z=b} satisfying the property that’ > o/ for eachi =1 to m. A
is a face of P. The inequality{x | A;.x <b;} is called matrix is called lexico-positive if all rows of the matrixer
redundantif P = {2 | Ap,_apgiys <bgapgi} b lexico-positive.
andirredundantotherwise. If the dimension of the polytope Lete € R" be the vectof(eg, €2, ..., €]} ), wheree, € R is

is d, then the zero— an@l — 1)—-dimensional faces are called strictly positive. Consider the perturbed system of edjeali
the verticesand thefacetsrespectively. in positive variables:

Il. PRELIMINARIES Ar=q+e, 20 4)

_ ) o If B is a basis for (4) and € B, the the basic variablesg
A feasible solution to the followindinear complemen- 5, given by:

tarity problem (LCP), denoted(q, M), is a set of positive )
vectorsw and z satisfying: Ti = BB(i),«q + BBi),1€0 + B(iy,2€0 + - + BBi) €0

(5)
where g £ A;lB and Bp(;),« is the row of 3 associated to

where the square matrix/ € R"*" and the vectoy € R” the variablei (i.e. i is the B(i)!" element inB). One can
are the problem data. The LCP is calfedsibleif there exist S€€ that the basis is feasible for sufficiently smalif and
vectorsw and z that satisfy (1). only if the matrix A", [ ¢ I ] is lexico-positive; such a

Consider the following system of linear equality con02SIS i calledexico-feasible _ _ _
straints in positive variables: We now state the main result of lexicographic perturbation:

Theorem 1 (Lexicographic Perturbation [19])f an LCP
Az =¢q, >0, 2) (¢:M) is feasible, then there exists an > 0 such that
N for all 0 < ¢y < €; the lexicographically perturbed LCP
whereA2 [T —M landz 2 [ wT 7 }T_ Any set (q;e,M)Qhas a:lmlque copmlementary feasible basis, where
B C {1,...,2n} such that|B| = n andrank A, p = n €0, €0+ €5)- _ _ _
is called abasisand we write N = {1 n} \B for its Remark 1:Note thate is a symbolicperturbation. Only
complement and caltz and 2y the basic and non-basic the effectof ¢ on the problem is considered aads never

variables respectively. A basis is called complementaiyif assigned a rea_l value. As a result, there are no numerical
Bimpliesi+n ¢ Bandi—n ¢ B. Note that complementary concerns resulting from takingto be too small or too large

bases are exactly those bases that satisfy the complerityenta? value.

conditionw®z = 0. B. Parametric LCP

Every basisB defines a solution to the linear equations The problem that we consider in this paper is the paramet-

in (2) or equivalently (1), which is given by restricting theriC linear complementarity problem, or pLGR+Qf-+¢, M):
non-basic constraints to zero ’

w—Mz=¢q, w>0, 2>0, wlz=0, (1)

w—Mz=q+Q0+¢, w>0,2>0, wlz=0, (6)

xp=A_tq, xn=0. 3 . . .
B w54 N 3) where Q € R™*? is a real matrix of rankd, ¢ is a

. . : d i

Abasis is called feasible if the resulting solution alsastiss ~ '€Xicographic perturbation artlc © C R is the parameter.

the positivity constraints in (Z)A*‘qu > 0. We make the following stz_andlng as'lsumpuons:. _
Clearly, a basis gives a feasible solution for the LCP Assumption 1:The feasible se® is a full-dimensional

(¢, M) if only if it is a complementary and feasible basis. polyhedron.
Furthermore, every feasible solution to the LGP M) can Assumption 2:There exists a finite feasible solution to the
be described by such a basis [18]. LCP (¢ + Q0, M) for everyd € ©.



Assumption 3:The matrix M is positive semi-definite. Consider the following parameterised quadratic program

Definition 2 (Critical Region):If B is a complementary minimise 2u” Du + (E6 + ¢)" u
feasible basis of the pLCR/+ Q0+ ¢, M), then thecritical u g 9
region Z5 is defined as the set of all parametégse © subject to Au > F0 +b ©)
such thatB is feasible for the LCRq + Q8 + ¢, M)™. u>0

From (3) and (5), it can be seen that the critical region Il Iscd ; l d
Ay is the set whereD e R, E e R™>** ce R, A e R F e R™

andb € R™. The Karush-Kuhn-Tucker (KKT) optimality

conditions for (9) are:
Zp={0] BQI+q+¢) >0}

={0]| B[ Q0+q I]=0}, ) Du+Ef+c—ATN—v=0
M(Au—-F0-b) =0, vTu=0 (10)
whereA £ [ I —M |, 3 £ A_}; and = is taken row- Au>FO+b, u>0
wise. Since the perturbationis taken arbitrarily small, the o _ .
closure of the critical region is the polyhedron Defining the slack variable = Au— F6—b allows the KKT
conditions (10) to be written as the following pLCP:
o A 0 N | -F —b

Theorem 2:Let {Zp,,...,%Zp, } be the set of all full- T
dimensional critical regions, then: <V> <“> —0, vowA>0

1) Zp, N %y, =0 for all i # j o) \A

2) Ug\LO‘%Bi =0 . D —AT . " .

) ) Note that the matrix}/ = iS positive semi—
Proof: The first property follows directly from The- . , A 0 ) »

orem 1. Since every lexico-perturbed LCP has a uniqlﬂeef'n'te and Assumption 3 is satisfiedif is also positive

feasible basis, every parametérmust be in exactly one Semi-definite.

critical region. 1

The second property follows from the assumption that
there exists a feasible solution for every value of the pa}-e

rameter in the se@. Definition 3 (Adjacent Regions [16])Two full-

The goal is to compute a feasible basis for each Valu(ﬂmensional critical regionsZ, and % are said to
of the parameter in the set € ©. Since the pLCP is |, adjacent iflim (@Aﬂﬁs) —d-1

lexicographically perturbed a critical regiodiz may or may
not include its boundary. From a control point of view, theth
goal in solving a pLCP is to define a mapping from th
measured state (the parameter) to the input (the varigble
Since the measurement of the state is never exact, we m
the standard assumption that it will never lie in the rekativ
interior of a critical region that is not full-dimensionaidc
therefore enumerate only the full-dimensional regions.

. REGION ENUMERATION

The goal of the pLCP algorithm is to identify all lexico—
asible bases that define full-dimensional critical ragio

The algorithm proposed for this enumeration is similar to
e geometric approach in [13] for solving pLPs and [7],
9{11] for pQPs. The exploration begins from a single full-

imensional critical region. Each of the facets of the ctesu

he region are considered in turn and all adjacent ctitica

regions whose closures intersect the facet are enumerated.
In turn each of these adjacent critical regions are consdler
and so on, until there are no more regions to be discovered.
The algorithm is outlined below as Algorithm 1.

The following theorem, from [16] proves that this proce-
dure will enumerate all full-dimensional critical regions

The main motivation for considering pLCPs from a control 1heorem 3 (Correctness of Algorithm [16])f N
viewpoint is that all parametric linear and quadratic pro{%{?m---w@Bw} is the set of full-dimensional critical
grams (pLPs and pQPs) with positive semi—definite cost§9ions returned by Algorithm 1, thenY , #p, = ©. _
can be posed as pLCPs. This class of problems includesThere are two operations that must be detailed for this
both parametric linear and quadratic programs in whicAPProach: computation of the facets of the closure of a

both the cost and the right hand side of the constraints afétical region, and computation of the adjacent regions
parameterised. containing a given facet. The following two sections cover

these procedures.

C. Parametric Quadratic Programming

INote that this definition differs slightly from that gendyagjiven in the 2Note that the standard parametric quadratic program negufrom
literature, in which the set of all active constraints isstaito define a critical control problems does not have positivity constraints am vhriablesu.
region. However, as our problem has been lexicographigadiyurbed it is  All parametric quadratic programs can be converted to tha ®) through
never degenerate and therefore these two definitions aieatmi. a simple change of variables.



Algorithm 1 Parametric Linear Complementary Problem made in order to handle the parametric natured pf The

Input:  Basis By of pLCP (6) such thadlim Zp = d. algorithm proceeds througpivoting operations, beginning
Output: All basesB such thatdim #Z5 = d at the basisB. At each stage, aanteringvariable is chosen
1 Lunesplored «— {B}, Ldiscovered <— {B} from the non—-basic constraints and is increased until one of
2: while Lynezpiored iS NOt emptydo the basic variables decreases to zero. At this point thig bas
3. Select and remove any basisfrom Luneapiored variable, called thdeaving variable, is removed from the
4. for each facet f of Zg do basis, and the entering variable is brought into it. This pro
5 Compute set of based that are ~ Section Ill-B  cedure maintains the feasibility of the new basis, contigui
adjacent toZp along facetf until we arrive at a basi®’ that remains complementary and

feasible for a strictly positive value af.

A= pivot(B,2n + 1, F) Consider the following linear equalities in positive vari-

6: ﬁunewplored — Eunewplored U (A\ﬁdiscovered) ables:

I8 ﬁdiscovered — ACdiscovered uA 1A ~ A ~

8. end for Az =4+ Qby, £>0 (12)
9: end while whereA £ [ -1 M 4 | € R™?"*1 js a matrix and
10: Return listLgiscovered &2 (z, a)" € R+ is a positive vector.

Definition 4 (ACLFB [18]): A basis B of (12) is anal-
most complementary lexico-feasible ba@<FLB) if it

A. Facet Calculation 1) is lexico-feasible
Consider the closure of the full-dimensional critical mgi  2) contains at most one element from each pair of com-
Zp, which is defined by a given basB: plementary variable$w;, z; }
_ 3) contains exactly one basic variable from each of
Zp=1{0| B(QI+q) >0}, (11) (n — 1) complementary pairs of variables, and the
where 3 £ A L. The facets of#p are given by the remaining pair is non-basic

irredundant inequalities of (11). Testing if an inequaligy
redundant requires a single linear program of dimengion
This is a standard redundancy elimination operation, aad t
reader is reffered to [20] for computational details.

1) Pivoting: The pivoting function takes as input an
ﬁntering variablet., e € N, and an ACLFBB, which is
assumed to contain the variahleand to be lexico-feasible

for all §; in the setF":
B. Adjacent Region Computation . Y -0
Given a full-dimensional critical regio%z and a hyper- = ﬂ((ﬁ_ @5+ 6) -
planef £ {6 | v70+b =0}, suchthatfnZp is afacetof \hereg 2 ATL.
the closure, the goal is to compute all adjacent criticalneg a) Leaving Variable: Consider now the effect of in-
A such thaZpn%p: C f anddim (#p N #p') = d—1.  creasing the variablé. while maintaining lexico-feasibility:
If 8y is a point in the relative interior of the fac¢n %, . oA L
then the goal is to compute the feasible basis for the pLCP at e = ﬁ(q + Q0 + 6) — BAsete 20
the point) = 6+~ which is just outside the critical region As 7, increases, the first constraint to become active is
for some strictly positivex. Note that we have assumed clearly given by:
to be facing outward from the facet and for convenience we .
| = lexmin{ 5B(i)’* [ Q+Q0 1 ]

also assume thdy||, = 1.
BB (i)« Ax e

In order to simplify the computations, we begin by re—
whereP £ {z ’ Baiy e Ase > O} andfp(;) . is the row of

‘ i€ 73} . (13)
writing the hyperplang as:

f— d_l fr —_ . . - . -
f={0]36; eR", 6=Nb; —b}, 3 associated to the variablgi.e. i is the B(i)"" element in
where N € R?*4-1 js a matrix whose columns span theB). As the variablez; is now equal to zero, it is removed

left—nullspace ofy. Further, we define the set from the basis and the entering variabklés added to it and
A i1 _ allowed to be positive. Recall that all non-basic variables
= {9f €R ’ NOy—be fNZp N 9} are zero and only basic variables can be positive. Note that

The problem to be solved can now be written as the pl_cﬁl_ecause the leaving variable is chosen in order to maintain
lexico-feasibility, the new basi8’ = BU{e} \ {/} will also

(¢ — Qb+ QNO; +Qya+e, M), a>0,0;€cF be an ACLFB.

(G+QO; —Aa+e, M), a>0,0peF We now consider how (13) is computed. We define the
X ' setZ £ {i| Bpu«| ¢ Q |=0} and differentiate two
whereg £ ¢ — Qvb, @ = QN and¥ £ —Qy. cased:

We now describe an algorithm similar to that given
9 9 3The setZ contains all of the inequalities of the closure of the caitic

n _[18] for one—.dlmensmnal parametric linear Complemenfegion that are equal to the facet hyperplgheor are active everywhere in
tarity problems in the parametar where augmentations are #.



Case 1ZNP #0 b) Entering Variable: After a pivot is taken, the result-
In this case, one can see that the minimum in (13) will beng basis is required to be an ACLFB. As a result, the next

given by: entering variable must be chosen to be the complement of
the leaving variable. In other words if; = w;, then the
l= 1exmin{ ﬁi; tePn Z} , (14) entering variabler, would bez;, andvice versa
i, e ¢) Termination Conditions:
Notice that (14) is independent of the paraméter Theorem 5 (Optimal Termination Conditionl. B is an
Remark 2:Note that the minimum in (14) is always ACLFB, 2n + 1 € B and e is an entering variable,
unique since the choice could only be non-uniqué Were then the basisB’ = B U {e}\{2n+1} is a comple-
not invertible. mentary lexico-feasible basis such thiin #Zg. = d and

Remark 3:1f every pivot of a problem is in this case dim (%5 N%p/) =d—1 if
then the adjacent region is independent of the point on the1) pnz =
facetf; and therefore satisfies the so—called facet-to—facet2) 2, + 1 ¢ P

ggf:gg#% — g Proof: The goal is to find a feasible basis for which
i N . . . . « can be increased to a strictly positive valuezlf is the
In this case, the leaving variable will be a func_'uon of theentering variable, then is given by the equation:
parametef;. There may be more than one possible leaving
variable and therefore more than one adjacent criticabregi A A ioa
along this facet. J 9 a = ﬁB(?nJrl)-,* (q + Qef +e— A*,exe)a
Theorem 4:If B is an ACLFB, e is an entering variable
and Z NP = (), then the basiB’ = B U {e}\{l} is an

ACLFB anddim (%Zp N %p/) = d — 1 if and only if

where 8 2 A7l and we recall thata = Zoni1.
*,e +

We note, however, thatB(2n + 1) is in the setZ;

Bent1y« | ¢ Q8 ] = 0. This is because iB(2n + 1)

dim {Gf € R¢1 ‘ F(Qef + q) > 0} NF=d—1 (15) isnotin the setZ, then by definition there existsty € F
such thato > 0.

and Therefore, increasing the variable will only cause «
T, [ g I } =0 forallie P suchthat I';Q =0 to be a strictly positive value if. itself becomes strictly
positive andBp(2n+1),«Axe < 0, which are precisely the
where conditions of the theorem. [
r; 2 (ﬂi,*fl*,e)ﬁz,* - (ﬁl,*A*,e)ﬁi,*, Vie P Theorem 5 provides the conditions under which the algo-

) ) rithm terminates with a list of adjacent critical regionsthl
_Proof:  The variable;, | € P can be the leaving powever, that if the seP = 0, then either the parametaror
variable if and only if there exists @; < int I such that another variable can be increased forever without the basis
L'is the minimum in (13). This condition can be posed as thgecoming infeasible. It follows that in this case the faset i

following set of linear lexico-inequalities: on the boundary of the feasible regién
Bis | G+Q0; I] . B[ G+Q0; I ] vi ~d) Initialisation: The algorithm begins by bringing
8. A - B.A , VieP into the feasible complementary basi$ by calling the

(16) functionpi vot with « as the entering variable. The pivoting

) ] ] ] function will then continue recursively until one of the
Straightforward algebraic manipulation converts (16)he t ormination conditions in Section 11I-B.1.c is reached, at
two conditions given in the statement of the theorem.  \hich point either a list of adjacent regions will have been
Each parametef; that satisfies the conditions of the compyted, or it will have been discovered that the facet is

theorem will be in the closures of both critical regigfiz on the boundary of the feasible region.

andZ%p.. Therefore, their intersection is of dimensidn- 1 e) Correctness:The above procedure is a generalisa-
i and only if the polytope (15) is full-dimensional. B i, of the one—dimensional parametric LCP method pre-

Remark 4:Note that a polytope can be tested for full-go 0 jn [17]. Given a basi®’ that defines an adjacent

dimensionality through the use of a single linear program bP’egion, the above procedure takes precisely the same pivots

computing the Cheby;hev centre [21].' . . as that in [17] for a fixedds in the relative interior of
Remark 5:We consider only full-dimensional intersec- _; N %p. For a fixed value of;, the following theorem

above method computes all adjacent full-dimensional bases
. . Theorem 6 ([17]): Consider the parametric LCRq +
Remark Q:Notg that once a pivot has _been made ysm%a M) Wheré[M])is positive semirldefinite an(BR’?s a
Thgorem 4 in which .the value af; determines the Ieavllng feasible basis foix = 0. The algorithm discussed above
variable, the constraints (15) must hold for all future pévo finds a solution to this pLCP for a strictly positive in a

'I:his is ensured by setting {91" ‘ F(Qof + ‘j) = O}ﬂ finite number of pivot steps. Also, the solution obtained is
F for all subsequent pivots. the unique solution of this parametric LCP.

regions will be discovered.



Algorithm 2 Functionpi vot (B,e,F)

Input:  ACFB B, entering variable: and facet constraints'
1. 4= /Al;}g,
z24i| Bpws[ Q a]=0}
P2 {B)| Bind..>0
. if P =0 then
return(
end if
cif PnZ=0and2n+ 1€ B andp2n11),+ A« < 0 then
returnBU {e} \ {2n + 1} Theorem 5
end if
- if ZNP =0 then Adjacent basis is independent &f
l zlexnnn{% | i€ ZﬂP}
returnpi vot (BU {e} \ {1}, comp(1)?, F)
: else Adjacent basis is a function @f;
L—10
for eachi € P do
if conditions of Theorem 4 is satisfigden
Fr—Fnloy | v(00) +q zo}
L— Lupivot (BU{e}\{l}, comp(l), F')
end if
end for
return £
20: end if

[1]
Feasible solution unbounded [2]

(3]

(4]

© N RN

(5]

(6]

(7]

(8]

El

aThe functioncomp(l) returns the complement of the variable. If &; = w;, (10]

then comp(Z;) = z; andvice versa

[11]
IV. COMPLEXITY

The above procedure is output sensitive, in that it conii2]
putes the facets and calculates the adjacent neighbours[l%ﬁ
each full-dimensional critical region exactly once. Weenot
that for every problem that the methods [7], [11], [13]
can solve, the proposed approach will not execute a larg
number of operations, since these problems will always
fall into Case 1 in Section IlI-B.1. Furthermore, in every[15]
case that [8], [9] can determine the adjacent critical negio
by inspection, (13) will contain exactly one element anghg
therefore one pivot will be made to find the adjacent region.

We therefore claim that the approach presented in thifﬂ
paper is computationally efficient as it is equal in compiexi
to the best known methods for all problems that they cais8]
solve, and yet extends to a much larger class of problemﬁlg]

V. CONCLUSIONS

This paper has presented a new method for computing
the solution to a multiparametric complementarity problen{ o
The proposed approach is as efficient as the current begsi
methods for computing multiparametric linear and quadrati
programs, and yet can tackle a much larger class of problen%z.
Space limitations prevented the inclusion of any examples
in this paper. However, code and examples are available as

part of the Multiparametric Toolbox MPT [22].
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