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Abstract— This paper focuses on trustworthy computation
systems and proposes a novel intrusion detection scheme
for linear consensus networks with misbehaving nodes. This
prototypical control problem is relevant in network security
applications. The objective is for each node to detect and
isolate the misbehaving nodes using only the information flow
adopted by standard consensus protocols. We focus on the
single misbehaving node problem. Our technical approach is
based on the theory of Unknown Input Observability. First,
we give necessary and sufficient conditions for the misbehavior
to be observable and for the identity of the faulty node to
be detectable. Second, we design a distributed unknown input
estimator, and we characterize its convergence rate in the
“equal-neighbor” model and in the general case. Third and
finally, we propose a complete detection and isolation scheme
and provide some remarks on the filter convergence time. We
conclude the paper with the numerical study of a consensus
problem and of a robotic deployment problem.

I. INTRODUCTION
Given a set of autonomous agents with the ability to

exchange messages and perform local computations, a dis-
tributed algorithm is a procedure each agent performs to
achieve a common task. Many distributed algorithms have
been proposed to solve problems like average consensus [1],
rendezvous [2] and agreement, where the agents try to agree
on a parameter, which may be a common direction of motion,
the clock speed or a decision value represented by a scalar
or a vector [3]. In these algorithms, the nodes are assumed
to cooperate and to follow exactly the protocol, otherwise
the task is not guaranteed to be fulfilled. It is of increasing
importance to design distributed control systems capable of
performing trustworthy computations in the face of failures
and intrusions —for instance, computer science approaches
are discussed [4].

In the literature several results can be found, mostly based
on reputation systems, that deal with cooperation issues
among nodes of an ad-hoc network. The reputation, as
defined in [5], is an index for the reliability of a node
in the network, i.e., for the contribution to common net-
work operations, and it is used to exclude uncooperative
and misbehaving nodes from the network. Intentional non-
cooperation is mainly caused by two types of nodes: selfish
ones, that want to save power, and malicious nodes, that
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are not primarily concerned with power saving but that are
interested in attacking the network [6]. In [7], authors de-
velop security systems, where trust relationship and routing
decision are based on routing and forwarding behavior of the
nodes.

In the fault detection and isolation literature, we find
several strategies to construct model-based fault detection
systems [8]. One of them is the observer-based technique,
whose main idea is to make the decision on possible faults
in the process on the basis of the residuals generated by
estimating the outputs of the process. The detection system
should be immune to faults, in such a way that the differ-
ences between the outputs of the process and those of the
observer give information about faults in the system. In [9], a
distributed consensus algorithm is implemented by a sensors
network to design a distributed fault diagnosis procedure for
dynamic system, but the fault diagnosis of the consensus
protocol is not considered.

In the linear consensus algorithms we consider [3], agents
use the information coming from the neighbors to update
their state. Since there are no forwarded messages, reputation
systems are not applicable, unless we include additional
communication overhead to the control mechanism. Consider
for instance the prototypical problem of uniform deployment
on a segment [2]. A malicious agent moving towards an
extreme of the segment would push all agents on that side
to the extreme point, without them being able to detect
the misbehavior from the information they possess (i.e., the
distance from their immediate neighbors).

The main contributions of this work are as follows. We
apply a technique based on unknown-input observers to
the problem of intrusion detection for a linear consensus
algorithm. We give conditions for the solvability of the
problem in relation to the topology of the network, and
we prove that if the network is 2-connected, then a faulty
node can be detected, identified and finally isolated from
the network, to preserve the functionality of the algorithm.
We design an embedded filter, which, only considering
the information coming from the neighbors, asymptotically
estimates the state of the other nodes of the network, and
we analyze the properties of the estimation error, which
is strictly related to the fault induced in the system. The
estimation rate of the filter is also considered, and we prove
that, in the “equal-neighbor” model, as the number of agents
grows, the largest eigenvalue of the observer has the same
upper bound of the second largest eigenvalue of the iteration
matrix of the algorithm, which determines the convergence
rate of the protocol. We also compute an estimation of the
convergence rate of the filter in a more general case, i.e.,
when the associated graph is weighted and directed. The



approach proposed to improve the security of distributed
consensus is, to the best of our knowledge, original and it is
shown to be effective under a reasonable set of assumptions.

The rest of this paper is organized as follows. In Section
II, we introduce the consensus algorithm in the presence
of a misbehaving node. In Section III, we present some
properties and prove results. In Section IV, we study the
convergence rate of the proposed filter. In Section V, we
propose a procedure to implement an intrusion detection
system for the consensus problem. Some examples and our
conclusions are respectively in Section VI-B and VII.

II. CONSENSUS ALGORITHMS WITH
MISBEHAVING NODE

We start summarizing basic notions of graph theory. A
weighted directed graph Gr is defined by a triple (V,E, A),
where V = {1, . . . , n} is a set of n vertices, E is a set of
ordered pair of vertices called edges, and A is a n × n
weighted adjacency matrix whose entries satisfy akj > 0
if the pair (j, k) ∈ E. Two nodes j and k are neighbors if
(j, k) ∈ E, and the set of the neighbors of the node j is
denoted as

Nj = {k | ajk > 0}.

Let wi(l) the value at time l of the node i, an agreement
algorithm updates wi as

wi(l + 1) =
n∑

j=1

fijwj(l),

or w(l+1) = Fw(l), being w(l) the vector with the values of
all nodes at time l, and F the matrix with entries fij . Under
some conditions the agreement algorithm is guaranteed to
converge [3], so that

lim
l→+∞

wi(l) = c, for all i ∈ {1, . . . , n}.

In order to implement a consensus algorithm, it should be
ensured that the failure of one agent to perform its designated
duties, or the presence of an intruder among the nodes,
does not block the task completely. Let {e1, . . . , en} be the
canonical base of Rn, the failure or the misbehavior of a
node can be modeled as an external input, so that the system
becomes

w(l + 1) = Fw(l) + eiū(l), l ∈ Z≥0. (1)

The index i is unknown to the good nodes of the network,
and the function ū represents the arbitrary behavior of the
intruder. Because of the presence of an exogenous input ū,
the network is not able to achieve agreement.

For simplicity, let

yj(l) = Cjw(l), (2)

denote the information about the status of
the network available to the agent j, where
Cj = [ek1 · · · ekp

]T , k1, . . . , kp ∈ Nj , p ∈ Z≥0, and
define Σij = (F, ei, Cj) as the system associated with a
linear consensus algorithm on Rn as described in (1,2).

III. SOLVABILITY CONDITIONS

Given H ⊆ Rn×n, B ⊆ Rn×p, and C ⊆ Rq×n, (n, q) ∈
Z≥0, consider the linear discrete time system

x(l + 1) = Hx(l) + Bu(l),
y(l) = Cx(l),

and let B = Im(B), C = Ker(C). Recall that an
(H, C)− conditioned invariant is a subspace S ∈ Rn×n

such that H(S ∩ C) ⊆ S, and denote with S∗ the minimal
(H, C) − conditioned invariant containing B. By definition,
a conditioned invariant S is said to be both internally and
externally stabilizable, if there exists at least one real matrix
G such that (H + GC)S ⊆ S with (H+GC) stable [10]. We
say that a discrete system described by matrices (H,B, C) is
unknown input observable (UIO), if it is possible to estimate
the whole state in the presence of the unknown input u. From
[10] we know the following result.

Theorem 3.1 (Unknown Input Observability): Assume
that the pair (H,C) is detectable, the problem of
asymptotically estimating the whole state, in the presence
of the unknown input u, has a solution if and only if
• S∗ ∩ C = ∅;
• S∗ is externally stabilizable.

Let ei = Im(ei), Cj = Ker(Cj), then:
Theorem 3.2: (Unknown input observability for consensus

systems): Given a linear consensus algorithm over a graph
Gr, the system Σij is UIO, for all (i, j) ∈ {1, . . . , n}, if and
only if Gr is strongly connected and i ∈ Nj .

Proof: Since i ∈ Nj , the minimal (F, Cj) −
conditioned invariant containing ei coincides with ei. In
fact F (ei ∩ Cj) = F (∅) = 0, and hence the first condition of
Theorem 3.1 is verified. The external stabilizability of S∗ is
provided by finding a matrix G such that (F +GCj)ei ⊆ ei,
with (F + GCj) stable. Being i ∈ Nj , we can choose G in
order to nullify the ith column of F , so that (F +GCj)ei =
0. Because of the connectivity of Gr, F is irreducible, and
since F ≥| F + GCj | , F 6=| F + GCj |, we have
ρ(F +GCj) < ρ(F ) = 1, being ρ the spectral radius, so that
the matrix (F + GCj) is stable [11], and the pair (F,Cj) is
detectable [10].

Suppose now that Σij is UIO, then S∗ ∩ Cj = ∅, and
ei ⊆ S∗. We deduce ei ⊆ Im(Cj), and thus i ∈ Nj .
Furthermore, if the digraph associated with F is not strongly
connected, then there is at least a node j that does not receive
information from a partition of the network, and that node
obviously can not estimate the whole state of the system,
even if the unknown input is constantly zero. We conclude
that the digraph associated with F is strongly connected.
The UIO property can be generalized to the case of several
faulty nodes, as follows

Corollary 3.1: Consider the system described by

w(l + 1) = Fw(l) + Bū(l), l ∈ Z≥0,

with B ⊆ Rn×p defined as

B = [ek1 · · · ekp ], k1, . . . , kp ∈ {1, . . . , n}.



the system (F,B,Cj) is UIO, if and only if B ⊆ Im(Cj),
and the digraph associated with F is strongly connected.

We shall consider now the problem of isolating the mis-
behaving node, in order to guarantee that the consensus
is reached by all working agents of the network. Once a
node has detected an intruder, it simply ceases keeping into
consideration the information coming from that agent, and
adjusts the weights of the remaining incoming messages. The
resulting matrix is row stochastic, and describes a consensus
algorithm that converges to an agreement configuration, if the
associated digraph is connected. Note that only the neighbors
of the faulty node modify the topology of the network, so
that no communication among the agents is needed to detect,
identify and isolate the misbehaving node. The following
Theorem formalizes these considerations.

Theorem 3.3: (Convergence in 2-connected faulty net-
works): Let Σij be an UIO system. If the associated digraph
is 2-connected, then there exists M ∈ Rn×n, with entries
mrk = 0 if k 6∈ Ni, r ∈ {1, . . . , n}, such that the algorithm

w(l + 1) = (F + M)w(l) + eiū(l)

achieves agreement for all wr, r 6= i, and for all possible
trajectories ū.

Proof: Choose M such that (F + M)r,i = 0
and (F + M)r,r = Fr,r + Fr,i, if r ∈ Ni \ {i}. Since
(F + M)r,i = 0 for all r 6= i, the unknown input does
not affect the variables wr, r 6= i. Moreover the submatrix
obtained deleting the ith row and column from (F + M) is,
by construction, row stochastic, primitive, and its associated
digraph is strongly connected, since the one associated
with F is 2-connected. These conditions are sufficient for
achieving agreement among the variables wr, r 6= i.
The filter can be designed in many ways. We could be inter-
ested in minimizing the convergence rate of the estimation
process, by placing the eigenvalues of the filter as close as
possible to the origin. However, given an UIO system Σij ,
the dimension of the observability subspace depends on the
topology of the network, so that it is not always possible
to place all the eigenvalues of the filter. For this reason,
we describe a design that is applicable to every topology of
network, and then we investigate its convergence rate.

Theorem 3.4 (Filter design): Let Σij be an UIO system.
If a filter is designed as

z(l + 1) = (F + GCj)z(l)−Gyj(l),
w̃(l) = Lz(l) + Kyj(l),

with

G = −FNj , K = CT
j , L = In −KCj ,

being FNj
the columns of F with indexes Nj , then

w̃(l) → w(l),

as l → +∞, for all possible input trajectories ū.
Proof: Consider the equation of the estimation error,

r(l + 1) = z(l + 1)− w(l + 1)
= (F + GCj)r(l)− eiū(l).

We choose G = −FNj , in order to nullify the Nj columns
of F . Using the same procedure as in Theorem 3.2, we note
that the matrix (F +GCj) is stable, and the reachable set of
r is the minimum (F + GCj) invariant containing ei. Since
(F + GCj)ei = 0, the reachable set of the error r is ei.
Let K = CT

j , L = In −KCj , and consider the estimated
function w̃:

w̃(l) = Lz(l) + KCjw(l)
= w(l) + Lr(l).

Being ei ⊂ Ker(L), the term Lr(l) will converge to zero,
so that, as l → +∞, w̃(l) → w(l).

IV. CONVERGENCE RATE OF THE UNKNOWN
INPUT FILTER

Given an n × n matrix F describing an agreement algo-
rithm, construct the n × n matrix F̃ such that F̃r,r = 1,
F̃r,k = 0, and F̃ = F in all the other entries, being r ∈ Nj ,
and k = 1, . . . , n. Compute now the matrix F + GCj

as described in Theorem 3.4, and recall that its largest
eigenvalue is positive and smaller than 1. Let λmax be the
largest eigenvalue of F + GCj , and λ2 = maxλ(F̃ ), where
the maximum is taken over all eigenvalues λ of F̃ different
than 1. With some analysis, we note that λmax = λ2. Let
F̃ x2 = λ2x2. Since λmax = λ2 < 1, the Nj components of
x2 must be equal to 0, while the other entries are positive
(Perron Frobenius Theorem). The eigenvalue λ2 can be
computed as

λ2 = max(〈F̃ x, x〉),

subject to 〈x, x〉 =
∑n

k=1 x2
k = 1, and xNj

= 0.
We first analyze the convergence rate of the filter applied

to the equal - neighbor consensus problem, and then we
present a more general result valid for any kind of consensus
algorithm.

A. Equal - neighbor case

We denote with equal - neighbor consensus algorithm
the agreement procedure, when the graph is un-weighted
and un-directed. In this case F = D−1A, where D,A
are, respectively, the vertex degree diagonal matrix and the
adjacency matrix of the graph, including self loops. A trivial
lower bound for λmax is obtained from Perron Frobenius
Theorem:

λmax ≥ 1− 1
∆

,

where ∆ is the maximum vertex degree, while an upper
bound must be investigated with other techniques, because
‖ F ‖∞=‖ F + GCj ‖∞= 1, for all agreement algorithms
of dimension n > 3.

Theorem 4.1 (Convergence rate): Let Gr be the digraph
associated with an UIO system Σij . Let n be the number of
vertices, ∆ the maximum vertex degree including self-loops,
and d the diameter of the digraph, then

λmax ≤ 1− 1
nd∆

.



Proof: Construct F̃ as previously described, we use the
methods of [12] to find an upper bound for λ2(F̃ ). The
problem

λ2 = max(〈F̃ x, x〉),

subject to
∑n

k=1 x2
k = 1 and xNj

= 0, can be rewritten as

λ2 = max(〈Ax, x〉), (3)

subject to
∑n

k=1 dkx2
k = 1 and xNj = 0, being dk the degree

of vertex k, and A the adjacency matrix, both including self-
loops. Our next step is to rewrite 〈Ax, x〉 in a more revealing
form. By expanding 〈Ax, x〉, we find

〈Ax, x〉 =
n∑

t=1

xt

( ∑
k∈Nj

xk

)
=

∑
(t,k)∈E

xtxk,

where E denotes the set of all the edges of the graph.
Moreover, we have∑

(t,k)∈E

xtxk =
1
2

∑
(t,k)∈E

2xtxk

= 1− 1
2

∑
(t,k)∈E

(xt − xk)2.

On combining this with (3), we find

λ2 = 1− 1
2

min
∑

(t,k)∈E

(xt − xk)2, (4)

subject to
∑n

k=1 dkx2
k = 1 and xNj = 0. Let xm denote the

component of x which is largest in magnitude, and let ∆ =
maxk dk. Since dk ≤ ∆, we find 1 =

∑n
k=1 dkx2

k ≤ n∆x2
m,

so that xm ≥ (n∆)−
1
2 . Since xNj = 0, we have xm =

xm − xs ≥ (n∆)−
1
2 , being s ∈ Nj . Given the connectivity

of the graph, there is a sequence of vertices of length r ≤ d,
which joins vertex m to s. Letting {xk1 . . . xkr} denote the
set of vertices traversed by this chain, we have

(n∆)−
1
2 ≤ (xm − xs) = (xm − xk1) + · · ·+ (xkr − xs),

and by Cauchy–Schwarz inequality

(n∆)−1 ≤ r

2

∑
(t,k)∈E

(xt − xk)2 ≤ d

2

∑
(t,k)∈E

(xt − xk)2.

(5)

Combining (5) and (4) shows that λ2(F̃ ) ≤ 1− 1
nd∆ .

B. Upper bound for weighted digraph

The matrix F̃ is an absorbing Markov chain, with absorb-
ing nodes Nj . We renumber the states, so that the transition
matrix will have the following canonical form

F̃c =
[

Q R
0 I

]
,

where I and Q are of appropriate dimensions. A standard
matrix algebra argument shows that F̃ l

c is of the form

F̃ l
c =

[
Ql

(∑l−1
j=0 Qj

)
R

0 I

]
.

The entries of Ql give the probabilities for being in each of
the transient states after l steps, for each possible transient
starting state. It can be proven that Ql → 0 as l → +∞, and
we say that the process is absorbed with probability 1.

Theorem 4.2: (Convergence rate of an absorbing Markov
chain): Let F̃ ∈ Rn×n be the transition matrix of an
absorbing Markov chain, and let xNj

be the absorbing states
of the chain. Let Gr be the associated weighted digraph, such
that the entry F̃k,j represents the weight of the edge from
k to j. Let d be the diameter of Gr, and ∆ the maximum
vertex degree including self-loops, then

λ2(F̃ ) <
(
1− n̄

∆d

)1/d

,

being n̄ the cardinality of the set Nj \ {j}.

Proof: Let F̃c be the canonical form of F̃ . Recall that
the largest eigenvalue of F̃c is 1. Consequently λ2(F̃c) =
λmax(Q), where Q is the transient matrix of F̃c. Recall that

λ(Q) ≤ ρ(Q) ≤ ‖Qk‖1/k, k ∈ Z>0,

being ρ the spectral radius of the matrix. Suppose we start a
random walk on Gr from the node k more distant to one of
the nodes belonging to Nj : it takes at most d steps before
reaching a node belonging to Nj , with probability greater or
equal to 1/∆d. This means that

(F̃ d
c )k,s ≥

1
∆d

, s ∈ Nj \ {j}

that leads to

ρ(Q) ≤ ‖Q̃d‖1/d
∞ ≤

(
1− n̄

∆d

)1/d

.

V. INTRUSION DETECTION SYSTEM

By analyzing the property of the iteration error, we de-
scribe a methodology to detect and identify a misbehavior
for an UIO system. The working conditions of the network
are then restored through the exclusion of the faulty agent,
i.e., by modifying the topology of the network, such that the
information he provides is not considered.

A. ANALYSIS OF THE ITERATION ERROR

Given a linear discrete time UIO system (1) and the
estimation filter of the node j (2), reorder the states variables,
such that index set Nj comes first. The filter can be rewritten
as

z(l + 1) = F

[
wNj

(l)
zp(l)

]
,

w̃(l) =
[

wNj (l)
zp(l)

]
,

with p 6∈ Nj . Consider the iteration error

ε(l) =| w̃(l + 1)− Fw̃(l) |

=
∣∣∣∣[ wNj (l + 1)

zp(l + 1)

]
− F

[
wNj (l)
zp(l)

]∣∣∣∣ .



Recall that L = In −K, and K = CT
j Cj ; we can rewrite ε

as

ε(l) =
∣∣∣∣LF

[
wNj (l)
zp(l)

]
+ Kw(l + 1)− F

[
wNj (l)
zp(l)

]∣∣∣∣
=
∣∣∣∣[ [w(l + 1)− Fw̃(l)]Nj

0

]∣∣∣∣ = ∣∣∣∣[ ε̄
0

]∣∣∣∣ .
Since w̃(l) → w(l) as l → +∞,
(w̃(l + 1)− Fw̃(l)) → Biū(l), so that we can detect
and identify the intruder. The following three cases are
possible:

1) there is no unknown input in the system. In this case
‖ ε̄(l) ‖→ 0, as l → +∞;

2) there is a faulty node i and i ∈ Nj . In this case the
ith component of ε̄ → ū, while the other components
converge to zero as fast as the convergence rate of the
filter;

3) there is a faulty node i and i 6∈ Nj . In
this case ε̄ do not converge to zero in more
than 1 component. In fact, the estimation error is
r(l + 1) = (F + GCj)r(l)−Biū(l), and its reach-
able set is not included into Ker(L). We deduce
w̃(l) = w(l) + Lr(l) does not converge to w(l).

B. INTRUSION DETECTION PROCEDURE
Consider the iteration error ε̄, we have

ε̄(l) ≤ λl
maxε0, l ∈ Z≥0,

where ε0 = max(| w̃(1)− Fw̃(0) |). The iteration error can
be written as ε(l) = e(l) + eu(l), where e denotes here the
error due to the estimation process, while eu is due to the
unknown input. If

e(l) + eu(l) ≥ λl
max,

then we can detect a fault in the system. Since λl
max vanishes

as l → +∞, the recognizable misbehavior becomes smaller
with l. The amount of time l̄ we need to wait to ensure
a correct estimation of the misbehavior, depends on the
minimal unknown input we want to recognize and on λmax.
We do not specify this parameter, and we consider that after
l̄ steps the estimation error is small enough to identify the
intruder. A possible procedure is:

1) each node j builds an observer as described in Theo-
rem 3.4;

2) each agent computes ε̄ =| w̃(l + 1) − Fw̃(l) |, l ≥ l̄;
calling ε̄k the kth variable of the vector ε̄, and letting
δ = λl

max,
a) if ε̄k < δ for all k ∈ Nj , then no fault is detected;
b) if ε̄k < δ for all k ∈ Nj \ {i}, and ε̄i ≥ δ, then

the ith agent is an intruder;
c) if ε̄k ≥ δ for more than one k ∈ Nj , then there

is a misbehavior in the network, but the identity
of the faulty node is not determined.

3) while no intruder is found, step 2 is repeated. Oth-
erwise, as soon as agent j detects that agent i is an
intruder, agent j changes the topology of the network
according to Theorem 3.3.

VI. EXAMPLES

Possible applications for the proposed security system are
the consensus and the deployment problems. In the first case,
we have n agents as node of a digraph that want to agree on
one value. A possible scenario could be the one defined by n
sensors of temperature that want to evaluate the mean of the
temperatures they are measuring, or the one of n processors
that want to synchronize their clock. In the deployment task,
we have n mobile agents that want to deploy uniformly on
a geometric figure like a circle or a segment.

A. THE CONSENSUS PROBLEM

Suppose we have 8 nodes disposed on a digraph as in
Fig. 1 and suppose the node number 6 is the faulty node.
Considering the node number 5 as observer, the system Σ65

is described by

w(l + 1) = Fw(l) + B6ū(l)
y5(l) = C5w(l),

where F is the corresponding equal-neighbor consensus
matrix, B6 = e6, and C5 = [e1 e5 e6]T . Note that the
conditions of Theorem 3.2 are verified, thus we can build
a whole state unknown input observer, whose matrices are

G =



−1/3 −1/3 0
−1/3 0 −1/3

0 0 0
0 0 0

−1/3 −1/3 −1/3
0 0 −1/3
0 0 0
0 −1/3 0


, K =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0


,

L =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Let ū = constant = 10, we initialize the state of the nodes
with random variables, and we simulate the system for 40
steps. Fig. 2 shows the iteration error related to the estimation
of the variables 1 and 6. As we see, the iteration error for
the variable 6 converges to ū = 10, while the error for the
variable 1 goes to zero, so that node 5 can detect the fault,
and identify the misbehaving node. The same procedure is
applied by agent 2, and finally the intruder is isolated from
the network (Fig. 3).

B. THE DEPLOYMENT PROBLEM

We consider 6 agents that are moving on the unit circle in
order to reach an uniform distribution over it, and we refer
to the algorithm described in [2]. Construct the system Σ43

as in (1,2). Theorem 3.2 is verified, and the related filter is



Fig. 1. Consensus network.

Fig. 2. Identification of the misbehaving node.

Fig. 3. Modified consensus network.

characterized by

G =


−1/4 0 0
−1/2 −1/4 0
−1/4 −1/2 −1/4

0 −1/4 −1/2
0 0 −1/4
0 0 0

 , K =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 ,

L =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Fig. 4 shows the iteration error, which leads to the identifi-
cation of the malicious agent, when the unknown input is a

sinusoidal signal with amplitude 0.3 and unitary frequency.

Fig. 4. Identification of the intruder.

VII. CONCLUSIONS
We considered consensus networks in the presence of

a misbehaving node, and we proposed a technique based
on the theory of Unknown Input Observability to detect,
identify, and isolate the misbehavior from the network. We
designed an embedded filter, which, only considering the
information used by the control protocol, estimates the state
of the nodes in the network, allowing the identification of
the faulty agent. We analyzed the property of the iteration
error of the unknown input filter, and we finally proposed a
complete procedure to perform the intrusion detection and
isolation task.
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