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Abstract— Synthesis of robust H∞ output feedback con-
trollers for plants subject to parametric uncertainties is dis-
cussed. We use the formalism of integral quadratic constraints
(IQCs) to model structured parametric uncertainties and
present a nonsmooth optimization method for IQCs which
reduces conservatism by way of dynamic multipliers. Numerical
experiments indicate that the method is promising and expected
to improve over currently available heuristics.

NOTATION

Let Rn×m be the space of n×m matrices, equipped with
the scalar product X • Y = Tr(X>Y ), where X> is the
transpose of X , Tr(X) its trace. For complex matrices X A is
the conjugate transpose of X . For Hermitian or symmetric
matrices, X � Y means that X − Y is positive definite,
X � Y that X − Y is positive semi-definite. We use λ1 to
denote the maximum eigenvalue of a symmetric or Hermitian
matrix. We use concepts from nonsmooth analysis covered
by [Cla83]. For a locally Lipschitz function f : Rn → R,
∂f(x) denotes its Clarke subdifferential at x.

I. INTRODUCTION

In this paper we present a numerical method to compute
robust controller for plants with parametric uncertainties.
Based on the integral quadratic constraints (IQCs) theory
[MR97], [Jön96], our synthesis method differs from the stan-
dard BMI approach: robust controller are synthesized from
the frequential point of view, using non-smooth optimization.

II. PARAMETRIC ROBUST SYNTHESIS

A. Model of a plant with uncertainties

We consider the synthesis of a robust output feedback
controller for a plant subject to parametric uncertainties.
The uncertain plant is described in the usual LFT (Linear
Fractional Transform) format as

ẋ
z∆

z
y

 =


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C2 D2∆ D21 0




x
w∆

w
u


w∆ = ∆z∆ ,

(1)
where x ∈ Rn is the state of the system, u ∈ Rm2 the
control, w ∈ Rm1 the exogenous input, z ∈ Rp1 the
performance variable, y ∈ Rp2 the measured output, and
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(w∆, z∆) ∈ Rm∆ × Rp∆ the uncertainty channel. The un-
known operator ∆ ∈ Rp∆×m∆ is a structured block-diagonal
matrix describing the model uncertainties and satisfying
∆>∆ � I . We let ∆ denote the convex and compact set
of all such uncertainties ∆.

We are seeking an output feedback controller K with state-
space representation{

ς̇ = AKς + BKy
u = CKς + DKy

,

of order k ∈ N such that the following conditions are
satisfied:

A(K, ∆) is Hurwitz for all ∆ ∈ ∆, (2)
‖z‖L2 ≤ γ ‖w‖L2 for all ∆ ∈ ∆. (3)

Here A(K, ∆),B(K, ∆), C(K, ∆), and D(K, ∆) are the
state-space data of the closed-loop system with the uncer-
tainty loop also closed, and (w, z) is the performance channel
in (1).

We investigate a nonsmooth mathematical programming
technique, based on IQC theory, which allows to synthesize
a controller K satisfying these two conditions.

B. Integral Quadratic Constraints

Every IQC is determined by a multiplier Π : jR →
C(no+ni)×(no+ni), which is a measurable operator with
values in the space of complex Hermitian matrices.

Definition 1: We say that w ∈ L2(R)ni and z ∈ L2(R)no

satisfy the IQC defined by Π(·) if∫ +∞

−∞

[
ẑ(jω)
ŵ(jω)

]A
Π(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0.

Clearly, the performance condition (3) can be viewed as an
IQC using the constant multiplier

Πγ :=
[
−I 0
0 γ2I

]
.

For robust stability (2) we let Π∆,0 the convex set of static
multipliers Π∆ on (0,∞] of the form

Π∆ :=
[

S (jG)A

jG −S

]
, (4)

where S � 0, SA = S, GA = G and where S, G both
commute with all ∆ ∈ ∆. Clearly, S = I and G = 0 is
a particular candidate hence Π∆,0 is non-empty. Moreover,
simple calculations show that ∀Π∆ ∈ Π∆,0,∀∆ ∈ ∆, z∆

and w∆ = ∆z∆ satisfy the IQC defined by Π∆. Dynamic
multipliers with the same property can now be constructed as



piece-wise constant multipliers with structure (4). For N ∈ N
we define the set Π∆,N of multipliers

Π(jω) =
N∑

i=0

χ[ωi,ωi+1](ω)Πi (5)

where 0 = ω0 < ω1 < · · · < ωN+1 = ∞, and for all i =
0, . . . , N, Πi ∈ Π∆,0. Finally, we let Π∆ := ∪N∈NΠ∆,N .

Let us introduce the closed-loop transfer matrix

T (s,K) =
[
T∆∆(s,K) T∆w(s,K)
Tz∆(s,K) Tzw(s,K)

]
(6)

of the closed-loop plant with state vector xc` =
[
x ς

]>
ẋc` = A(K)xc` + B(K)

[
w∆

w

]
[
z∆

z

]
= C(K)xc` +D(K)

[
w∆

w

] ,

where the state-space data A(K), B(K), C(K) and D(K)
represent the closed-loop system with the ∆-loop w∆ =
∆z∆ still open. Then we have the following fundamental
fact, see [Jön96], [MR97], [ANP07] for details.

Theorem 1: Suppose K is nominally closed-loop stabi-
lizing, i.e. A(K) is Hurwitz. Then robust stability (2) and
performance (3) hold for all ∆ ∈ ∆ provided there exists
Π∆ ∈ Π∆ such that the following frequency domain
inequality (FDI) is satisfied: ∀ω ∈ [0, ∞]:

F (K, Π, ω) :=
[
T (jω, K)

I

]A
Π(jω)

[
T (jω, K)

I

]
≺ 0, (7)

where

Π :=


Π∆,11 0 Π∆,12 0

0 I 0 0
ΠA

∆,12 0 Π∆,22 0
0 0 0 −γ2I

 . (8)

Remark 1: We introduce dynamic piece-wise constant
complex multipliers to reduce conservatism of the IQC
analysis tool. We refer the reader to [ANP07] for a com-
prehensive discussion. Also, the L2-gain condition (3) can
be extended to other performance IQCs.

III. SYNTHESIS OF ROBUST CONTROLLER

Inequality (7) is known as the robust performance FDI,
see [MR97]. It strongly suggests introducing the nonsmooth
function

f(K, Π) = λ1,∞

([
T (·,K)

I

]A
Π(·)

[
T (·,K)

I

])
, (9)

where λ1,∞(X ) := maxω∈[0,∞] λ1(X (ω)) for X a bounded
operator [0,∞] → Sm. Then, with γ and N ∈ N fixed, we
consider the optimization program{

minimize f(K, Π)
subject to Π∆ ∈ Π∆,N , A(K) Hurwitz (10)

which is minimized until a value f(K, Π) < 0 is found. Once
this is the case, K is known to be robustly stabilizing with

robust performance no worse than γ, and Π∆(·) ∈ Π∆ is
the corresponding multiplier certificate. In our tests we first
run (10) with static multipliers N = 0, then we switch to
dynamic multipliers with N = 3. In the sequel we describe
methods to compute function values and subgradients of f ,
and explain how descent steps are generated.

A. Computing function values

Solving (10) requires computation of function values
f(K, Π), and this is where the restriction to (5) is needed.
Indeed, for constant Π a natural extension of the quadrat-
ically convergent algorithm of [BBK89] allows to compute
f(K, Π) efficiently. It uses the fact that λ1(F (K, Π, ω)) = λ
iff jω is an eigenvalue of a suitable Hamiltonian matrix H[λ],
defined by means of the state-space data, the IQC multiplier
and λ (see [Par99]). We refer to [ANP07] for a detailed
description of this algorithm in the IQC context. The method
naturally extends to dynamic multipliers Π(jω) of the form
(5) by computing N different values.

B. Subgradient computation

There are two sources of nonsmoothness in the objective
function f : maximization over an infinite set of frequencies,
and the inherent nonsmoothness of the maximum eigenvalue
function λ1. We define the set

Ω(K, Π) := {ω ∈ R+ : f(K, Π) = λ1(F (K, Π, ω))},

called the set of active frequencies, or peaks. As shown in
[BBK89], [BNA06], [ANP07] we have

Lemma 1: Let Π(s) be rational and K closed-loop stabi-
lizing. Then the set Ω(K, Π) of active frequencies is either
finite, or Ω(K, Π) = [0,∞].
In the following, we assume that the set Ω(K, Π) is finite,
which appears to be the rule in practice.

Nonsmoothness of the maximum eigenvalue function λ1

occurs when the multiplicity of the maximal eigenvalue is
greater than 1. The objective function f is a composite of
λ1,∞, a semi-infinite nonsmooth but convex function, and
a smooth nonlinear operator F . In consequence we have
[ANP07]:

Lemma 2: f = λ1,∞ ◦F is regular in the sense of Clarke
[Cla83].
This means that a suitable chain rule replacing the one of
classical calculus is available, which makes these functions
amenable to analysis. The complete formulas for the subgra-
dients are given in [ANP07] and follow the lines of [AN06a],
[AN06b].

Motivated by practical considerations, we will in the
following specialize to the case where

λ1(F (K, Π, ω)) has multiplicity one ∀ω ∈ Ω(K, Π). (11)

This assumption leads to a simpler subgradients expression
and consequently to simpler descent directions computations.
Moreover, the multiple eigenvalue case is rarely observed in
practice.

We let Qω the associated normalized (right) eigenvector.
Here every (K, Π) → λ(F (K, Π, ω)) is smooth at (K, Π).



For ω ∈ Ω(K, Π), using the chain rule under hypothesis
(11), the gradients φω of (K, Π) → λ(F (K, Π, ω)) are

φω = ∇λ1(F (K, Π, ω))∗∇(K,Π)F (K, Π, ω)

= QωQ>
ω • ∇(K,Π)F (K, Π, ω).

Combining the chain rule with the convex hull rule for the
maximization over [0,∞] yields the subgradients Φτω ∈
∂f(K, Π)

Φτ :=
∑

ω∈Ω(K,Π)

τωφω

with τ = (τω), τω ≥ 0,
∑

ω∈Ω(K,Π)

τω = 1.

We refer to [ANP07] for a complete calculus without hy-
pothesis (11).

Equations (8) and (4) show the specific structure of the
multiplier Π, which must be taken into account in the
expression of the subgradients. With γ fixed, Π can be
parameterized using matrices S and G in (4). To model the
constraint S � 0, we define S = ΣΣA, where Σ is a lower
triangular Choleski factor of S. Subgradients with respect to
Σ and G are then derived from the subgradient with respect
to an unstructured Π in tandem with the chain rule applied
to the smooth parametrization

π(Σ, G, γ) :=


ΣΣA 0 (jG)A 0

0 I 0 0
jG 0 −ΣΣA 0
0 0 0 −γ2I

 ∈ Π∆,N .

C. Computing the descent step

With the computation of function values and subgradients
at hand, we can now discuss how to generate descent
steps for the objective f(K, Π). Here we use the idea of
Polak’s optimality function [Pol97]. Given a finite extension
Ωe(K, Π) ⊃ Ω(K, Π), a descent direction for f at (K, Π) is
H∗ = (H∗

K ,H∗
Π) obtained as the minimizer of

θe(K, Π) := inf
H

sup
ω∈Ωe(K,Π)

λ1(F (K, Π, ω))− f(K, Π)

+ φω •H + δ
2 ‖H‖

2 (12)

where δ > 0 is fixed. Then a backtracking linesearch (using
for instance an Armijo condition [DS96]) is performed in the
descent direction H∗ to compute the next iterate. Using Po-
lak’s optimality function (12) has several advantages. Firstly,
H∗ can be computed by solving a quadratic program (12),
derived from the dual formulation [AN06b]. Secondly, H∗

gives qualified descent for f in the sense that if θe(K, Π) <
0, then

f ′(K, Π;H∗) ≤ θe(K, Π)− 1
2δ‖H

∗‖2 < 0,

while θe(K, Π) = 0 implies 0 ∈ ∂f(K, Π). As a conse-
quence, θe(K, Π) is a measure of criticality of the iterate
(K, Π) and will serve as a stopping criterion.

The choice of the extended set of frequencies Ωe(K, Π)
is of practical importance. Note that if the number of
frequencies added to Ωe(K, Π) is too small, then the descent

direction is close to the direction of steepest-descent, which
may lead to zigzagging. On the other hand, the number
of added frequencies must not be too large for reason of
efficiency in the step computation. In our numerical exper-
iments Ωe(K, Π) has been chosen by adding some equi-
spaced points around each active frequencies [ANP07].

D. Multiband optimization

The FDI in Theorem 1 is a sufficient condition to ensure
stability and performance of the closed-loop plant, for all
∆ ∈ ∆. This condition is potentially conservative [MR97]
and a refinement can be obtained by using piece-wise
constant multipliers (5). The semi-infinite program (10) is
extended to dynamic multipliers Π(jω) with 3 frequency
bands, i.e. Π∆ ∈ Π∆,3. The objective function in (10) then
takes the form

f(K, Π) = max
i=0,1,2

max
ω∈[ωi,ωi+1]

λ1 (F (K, Πi, ω)) .

Computation of f is thus performed on each frequency band
[ωi, ωi+1], using the Hamiltonian technique in section III-A.

IV. NUMERICAL EXAMPLES

A. Implementation

Our prototype algorithm was implemented in Matlab.
Controllers are synthesized in three phases. In phase I, a
closed loop stabilizing K0 for the nominal plant (∆ = 0) is
computed, and as a rule we use the optimal H∞-controller
K∞. In the full order case, k = n, this is of course standard
and can be obtained via AREs or LMIs as available in the
MATLAB control toolbox. In the reduced-order case, k < n,
or when controller structures are imposed, this can be more
involved. Here we use our H∞ synthesis software described
in [AN06a], [AN06b], [ABN07]. Any value γ0 greater than
the performance γ∞ of the nominal closed-loop plant with
initial controller K0 can be used to initialize the performance
parameter in (10). We choose S0 = I and G0 = 0 to initialize
the multiplier Π∆ in (4). Once our algorithm is initialized
successfully, phase II starts and the problem is solved for
a static multiplier certificate Π∆ ∈ Π∆,0, that is, N = 0
in (4). The following iterative procedure is used. At stage
k, minimization of (K, Σ, G) → f(K, π(Σ, G, γk)) over
(K, Σ, G) is performed. As soon as a new feasible point
(Kk,Σk, Gk) has been reached, that is

f(Kk, π(Σk, Gk, γk)) < 0,

we have a certificate Πk = π(Σk, Gk, γk) that a robust
controller Kk with robust performance at most γk has been
found. This procedure is now repeated a few times in order
to improve over the latest γk. The value of γ is gradually
reduced using a simple extrapolation scheme to replace γk by
a smaller γk+1, until an optimal value γ∗ with corresponding
optimal (K∗,Π∗) is reached.

During phase III, optimization of a dynamic multiplier
with N = 3 frequency bands is performed. This phase is
initialized with K0 = K∗ and Π(jω) = Π∗ for all ω. The
optimization procedure is exactly the same as in the static



case, and converges to the optimal triplet (K̄, Π̄(·), γ̄). Two
intermediate frequencies ω1, ω2 have to be specified in order
to determine 3 frequency bands. For the time being this is
done by trial and error. In fact, we use the plot of the FDI
at the optimal (K∗,Π∗) from the constant multiplier case
to select these two values in such way that each frequency
band contains at least one active or nearly active peak. This
choice is tricky in so far as one of these peaks may later
vanish during the optimization process.

All the numerical experiments presented here have been
performed on a Linux laptop, with an AMD Turion 1.8GHz
processor. Let’s focus on Phase III, which is the slowest
part of the method due to multiband optimization. For the
4 states CD player example, average iteration time is 0.4
seconds per iteration, and controller is synthesized after 406
iterations. In the other hand, for the larger CSE1 example (20
states) average iteration time is 3,1 seconds and synthesis is
achieved after 6101 iterations.

B. Mass spring model

Our first example is a mass-spring system described by
the following second-order differential equations{

m1ẍ1 = −kx1 + kx2 − fẋ1 + fẋ2 + u
m2ẍ2 = kx1 − kx2 + fẋ1 − fẋ2

,

with m1 = m2 = 0.5kg, k = 1N/m, and f = 0.0025Ns/m.
The interconnection structure used for synthesis is shown
in Figure 1. Our goal is to synthesize a robust feedback
controller K which stabilizes the position x2 of mass m2

in the presence of parameter uncertainties of p% in the
parameters k and m2,

|1Nm−1 − k|/1Nm−1 ≤ p%, |0.5kg −m2|/0.5kg ≤ p%

where p ∈ {5, 10, 15, 20, 25, 30}.
The controller variable is initialized with the full-order

optimal H∞ controller K∞, so phase I is simple here. A
lower bound for the optimal robust gain is then γ∞ =
‖Twz(K∞)‖∞ which serves to initialize γ. Results are
presented in Table I. For each value of p, we have computed:
(a) the optimal robust performance bound γ∗ with optimal
robust controller K∗, obtained via (10) with N = 0, vs.
the variation p%, (b) the H∞ performance of the nominal
plant γ∗nom = ‖Twz(0,K∗)‖∞, (c) the value of the spectral
abscissa αnom of the nominal plant, and (d) the criticality
measure θe, our optimality function.

As expected γ∗ increases with the level of uncertainty p.
We see in Table I that for small values of p%, γ∗ is still
close to the optimal H∞ performance γ∞. As expected, im-
provement of performance is also observed when switching
from static to dynamic 3-bands multipliers, γ∗ → γ̄.

Figure 2 shows the contour plot of the spectral abscissa,
for the mass-spring model with p = 25%, for controllers
K∗ obtained with static (left hand side) and K̄ with dy-
namic (right hand side) multipliers. The spectral abscissa is
computed for each value of the uncertainties δm2 and δk
of m2 and k. Figure 2, left plot, illustrates the potential
conservatism of IQC formulations. Indeed, for static Π,

+
w

z1

z2

y

z∆

w∆

u

∆

K

P

Fig. 1. Interconnection structure for the controller design of mass-spring
and CD-player model

the boundary of the unstable region is very far from the
square of admissible uncertainties. The right part of Figure
2 shows that the boundary of unstable region gets closer to
the uncertainty square when dynamic multipliers Π̄(jω) are
used. Hence conservatism has been reduced.

C. CD player

Our second example is a compact disc actuator described
in [STBS92]. State-space data of the nominal plant are

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 0

1.77 0
0 0
0 1.97

 ,

C =
[

1 0 0 0
0 0 1 0

]
, D = 02×2

The uncertainty channel describes a nonlinear perturbation
of B with uncertain parameter −0.63 ≤ z ≤ 0.63 in such a
way that the perturbed B∗ is

B∗ =


0 0

1.77− 0.24z2 −1.27z
0 0

5.34z 1.97− 1.77z2

 .

The interconnection structure for synthesis is the same as
before, see Figure 1. In phase I a locally optimal initial
controller K∞ of reduced-order k = 2 is computed using
our nonsmooth H∞ synthesis code. K∞ is not robust as seen
from the spectral abscissa plot z 7→ α(A(K∞, z)) in figure
3 near the value z = −0.5 (line −.− .− .). Robust synthesis
is shown in the same figure for both static (K∗ with line
−−−−) and dynamic multipliers (K̄ with line ). In the
dynamic case, we observe that the worst case performance
decreases, while it slightly increases for −0.5 ≤ z ≤ 0.5.

D. CSE1

The third example is a model from [Lei03] and consists
of coupled springs with dash-pots and masses. Input forces
act on the left and on the right ends of the spring system.



Mass Spring - 1 Band Mass Spring - 3 Band
p% γ∗ γ∗nom α∗nom θe γ̄ γ̄nom ᾱnom θe ω1 ω2

5 1.3610 1.3551 -0.6172 -2.16e-04 1.3594 1.3553 -0.6206 -2.44e-03 0.76 1
10 1.6963 1.6807 -0.7869 -9.38e-04 1.6561 1.6270 -0.4136 -1.44e-04 0.76 2.30
15 2.0648 2.0106 -0.5615 -2.67e-03 1.6169 1.5168 -0.6114 -2.11e-01 2.40 4.10
20 2.5079 2.4064 -0.4501 -4.64e-03 1.7729 1.6544 -0.6835 -1.30e-01 2.40 4.10
25 3.0609 2.8979 -0.3646 -6.24e-03 1.9626 1.7751 -0.8070 -5.39e-02 2.40 4.10
30 3.7540 3.4569 -0.3146 -3.58e-05 3.6205 3.5405 -0.2272 -2.80e-04 0.76 45

TABLE I
MASS-SPRING SYSTEM. OPTIMAL FULL H∞ CONTROLLER γ∞ = 1.3261 AND α∞ = −0.2129. γ∗nom = ‖Twz(K∗, 0)‖∞ , γ̄nom = ‖Twz(K̄, 0)‖∞ .

γ∗ AND γ̄ ARE OPTIMAL VALUES OBTAINED BY (10) WITH N = 0 AND N = 3. α∗nom = α(A(K∗, 0)), ᾱnom = α(A(K̄, 0)).
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Fig. 2. Mass-spring system. Reduction of conservatism with dynamic Π(jω). Contour plot of the perturbed closed-loop spectral abcsissa ∆ 7→
α (A(K∗, ∆)) (left), ∆ 7→ α

`
A(K̄, ∆)

´
(right). The black square shows the ±p = 25% robustness region about nominal values. Left with controller

K∗ computed using a static multiplier Π∗. Right with controller K̄ synthesized using a dynamic three-band multiplier Π̄(s). The percentage on top of
the figures measures area of unstable region.

State space data are

` = 10, µ = 4, δ = 4, κ = 1,

M = µI`, L = δI`, N = P = I`

K = κ


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 , R =

1 0
...

...
0 −1

 ,

A =
[

0`×` I`

−M−1K −M−1L

]
, B =

[
0`×2

−M−1R

]
,

C =
[
N P

]
, D = 0`×2.

See [Lei03] for a description of the performance channel. A
robustness channel has been defined to reflect an uncertainty
of 75% on each of the diagonal elements of matrix M . The
set ∆ contains all diagonal matrices verifying ∆>∆ � I .

An initial controller of order k = 7 has been com-
puted using our H∞ synthesis code. Figure 4 displays the
spectral abscissa and the performance of the initial and
robust controllers on the subset of uncertainties of the form
∆ = τI ∈ ∆, with −1 ≤ τ ≤ 1, abscissa variable p is

defined by p = 0.75τ . The initial (locally optimal) H∞
controller K∞ is not robust as can be seen in this Figure
for p near −0.75. The Figure also shows robustness of the
controllers K∗ and K̄ synthesized by our method using static
and dynamic multiplier. Surprisingly the performance of K̄
is even better than that of the nominal K∞, which shows
that K∞ was only locally optimal. This phenomenon may
arise for reduced order control.
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Fig. 3. Robust control of CD-player. Left plot shows spectral abscissa and right plot performance for initial nominal H∞ controller (K∞ dash-dotted
line), robust controller with static (K∗ dashed line) and dynamic (K̄ plain line) multiplier. The nominal controller is not robust.
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Fig. 4. Robust control of CSE1. Left plot shows spectral abscissa, right plot performance. Initial (locally optimal H∞) controller K∞: dash-dotted line,
robust controller K∗ with static multiplier: dashed line, and robust controller K̄ with dynamic multiplier: plain line. K∞ is not robust (p ≈ −.75).
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