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Abstract— A wide class of MMAC with a finite I, (1 < models in a finite plant model set. At every time step the
p < oo) closed loop gain are shown to have an unboundedly controller corresponding to the plant model which is able to
increasing l,, closed loop gain for a simple set of plants under “explain” the observation by the smallest disturbance align

increasing parametric uncertainty. A modification is proposed . . - .
which achieves a quadratic closed loop gain function whichsi IS chosen. This approach was introduced in [2] and [10]

independent of the size of the uncertainty set. where gain bounds were obtained for the case of two first
order plants. A more general gain bound analysis was devel-
1. INTRODUCTION oped in [6], which provides the basis for the development of

It is well known that the gain from external input andthe results in this paper. Gain bound analysis is also pteden

output disturbances to the internal signals of a closed lodff? continuous time) in various results by Morse et al. e.g.
system, containing a plar® and a controllerC, is a key [9] for switched controllers based on observer estimators.

determinant of the robustness of the resulting system. For The analysis is performed over the same class of systems
example for linear systems, the reciprocal of thegain of @S In [6], i.e. we assume all plants to be of relative degre(_e
the operator mapping input and output disturbances to t{1€ a_md the underlying controllers_to be dgad beat. Such gain
input and the output of the plant is called the robust stgbili function results allow us to establish semi-global robestn

marginbp ¢ all plantsP; which are within the open gap ball guarantees in the sense of the nonlinear gap metric, see [4],

of sizebp c, centred atP, are also stabilized bg'. Similar . o .
statements hold in the nonlinear setting [7]. Finally we remark that the restrictive requirement that

This motivates the need to examine the behaviour ¢p€ controllers are dead beat is made for simplicity, the
such a closed loop gain for multiple model adaptive contrdl€neralization of this is a topic of current research.
(MMAC). Here we consider a class of MMAC and first show 2. DEFINITIONS
tha}t the resultln.gp closed qup gain (studied in [6]), whilst A. Norms and signals
finite for any fixed uncertainty level, nevertheless scales
poorly as the parametric uncertainty of the system incease Let b
We expect that similar examples can be constructed for most S =map(N,R?), h € N.
MMAC schemes, and interpret this is an indication that theet a signala € S be in lp, 1 <p<ooiff
standard,, gain is an inappropriate measure of stability, see

also [3],[10]. b = {aeS| Y l|af <oo},
In the light of this fundamental example, we examine a 0<i<oo _
gain function (actually a quadratic) measure of the gain of lo: = {a€S |a| <oo, 0<i<oo}.

the closed loop operator and show that this gain functiofgt the spaces be equipped with the corresponding norms
is dependent on the actual plant, and independent of the

uncertainty level of the system; thus demonstrating good |lall, := ( Z Iailp)l/p, lalloo == sup |as|.
scaling properties in the face of an appropriate measure of 0<i<oco 0si<oo
stability. By comparison, we observe the closed loop gaiGiven a signal spac®, define the “extended” signal space
function analysis of the more classical parametric adaptiv
controllers in [4],[5] also yield gain functions with super Ve = f{aeS |VkeN: JpaeV}
linear growth; this may be an intrinsic feature of a nonwhere forv € S, K € N the truncation operator
conservative analysis on a large uncertainty set. Furtbem 7, . S — S is defined by
robustness certificates can also be given for controlletis wi

. v(k), 0<k<K
such properties [4],[5],[7]. Txv(k) = { 0 otherwise

The class of MMAC algorithms under consideration ob- ’

serves in- and output signals of a process and explaifer o,k € N the restriction operatof,  : S — R+,
this “observation” by disturbances acting on candidateiplah € N is defined by
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B. Plant and controller C. Robustness and the closed loop operator

Letld =Y =1,, 1 <p < oco. Given a plantP : U, — Y. LetW = UX Y, We = Ue X Ve, wi = (wi,yi), i = 0,1,2,
and a controlleC' : V), — U, the closed loop systefiP, C] To study the effects of input disturbances on the closed loop
under consideration in figure 1 is defined via the followingignals it is useful to have some notion of system gain. For

set of system equations: that purpose we introduce the closed-loop operator
II W =W, r wy — wa,
y1 = Puy, uo=us +uz, yo=y1+y2, (2.1) e ’ '
wy = Cuyo 2.2) and we define a systeffi®, C] to be (BIBO) gain stable if
' Ip//c is gain stable, i.e3M > 0 s.t.
with ug € U, yo € YV, ur,uz € Ue, y1,y2 € Ve Where Ip el < M.

(uo, yo) represent the input and output disturbances, y1)

represents the plant input and output dng, y») represents D. The switched control system

the observed signal or observation. Given a set of candidate plants, with a corresponding set

Leto > 0 € N, and as in [6] let the class of plants underof candidate dead beat controllers, the basic MMAC algo-
rithm can informally be described as follows. At each time

+m “ o - step, and for each candidate plant, the size of the smallest
— disturbance up to the current time which is consistent with
the observation is calculated and the controller corredipgn
— to the plant with the smallest such disturbance ‘explamatio
@ O Yo is switched into closed loop.
2 Y2 + We first need to define for which plants we want to invoke
Fig. 1. The closed loop systefi, C] disturbance estimation. For that purpose we introduce the
parameter seP; corresponding to the set of plants we want
consideration be specified by: to consider for disturbance estimation. Further analysis w
show that it is advantageous to define this set as time varying
p € R7X7 x R7X1 x RI*® | and dependent on the observation.
p=(A,B,C), Let the set of plants under consideration witle N be
is obs iven b
D [A, C} is observable, 2.3) g y
CB # 0,
BT=[00...0 0] Pii = Apupe o (2.9)
o—1 = {(A41,B1,C1),(A2,B2,Cy), ..., (Ai, B;, Cy)}.
whereb € R. where

For allp = (A, B,C) € P define the plant operatd?, by PLCPC--CP. (2.10)

Let @ = {P; | i € N}. Let G denote a “plant generating”

Py:Ue — Ve :ur — 11 (2.4)  operator
_ G:W. — map(N,Q) (2.11)
with
subject to the constraint
plk+1) = Aw(k) + Bui(k) @5) Gwy)(0) = Py, Gluws) (k) € Gluws)(k+1)Vk € N. (2.12)
vi(k) = Cu(k) (2.6) . _ _
#(—k) = 0 VkeN. @2.7) Atr|V|aI but important gxample of a plant generating operat
is the constant mapping
It is well known that for allp € P, P, is stabilizable by a G(ws)(k) = P* C P,

unique controllerC,, of the form: o _
however it is advantageous to allow this operator to take a

ya(k —o+1) more complex form, as will be shown in section 4.
C,p : us(k) = _a; : (2.8) Formally the causal switching operator
y2 (k) S i We — map(N, Q) : wy — ¢ (2.13)

with the dead beat property, i.e. such that forkatt N and IS given by the combination of the estimation operakor
for all (uo,y0) € U x Y the closed loodP,, C,] satisfies: the norm operatotV, the minimization operatod/ and the
plant generating operatar with

ol (k,00) = Yol(k,00) =0 = Yiljpt1,00) =0 S=M(NE,G) (2.14)

Hereafter we restrict our attention to such controllers. where M, N, E are defined below.



Let the time series of disturbance estimates up to time Let p. be the parameter corresponding to the “true”

corresponding to a plant € P be given by
dy[k] : N — map(N, R")
and

dp k] = (dp[K](0), dp[K](1), - .., dp[K](K),0,- - )

unknown plantP := P,, € P.

Assumption 2.1:

1) (Causality): NE is causal. Note thatV is always
causal and therefore it suffices to assume thais
causal.

with i € N being dependent on the utilized estimator as well 2)

(Minimality): There exists a; > 0 such that for all

k > 0 and for all w, € W,, wy € W satisfying
equation (2.1) forP = P,,

NE(ws)(k)(p+) = [ (E(w2) (k) (p)|| < exllwoll-

by 3) (Weak consistency): There exists a map
wy > [k (p = dy[K])]; (2.16)

as the plant ordes € N. We now define foik ¢ N, p € P
the estimation operator

E : W, — map(N, map(P, map(N, R"))) (2.15)

® : map(N,R") — R? x R+,

the norm operator

N : map(N, map(P, map(N,R"))) — map(N, map(P,R"))
(2.17)

by D E(w2)(k)(p) € Wp(k)

[k (p = dplk))] = [k = (p = lldp[K]ID);  (2.18) and

such that for alkvs € W,, wg € W, p € P satisfying
equation (2.1) forP = P,

and the minimization operator @ E(ws) (k) (p)|| < || %ok E(w2)(k)(p)]|-

M : (map(N, map(P,R")), map(N, Q)) — map(N, P) 4) (Monotonicity): For allp € P, for all k,1 € N with
by 0 <k <landforalwy, € W, wyg € W satisfying
equation (2.1) forP = P, there holds

| E(ws)(k)(p)|| < || ZxE(w2) (1) (p)||-

where By assumption 2.1(4), consistency of the disturbance esti-
q(k) = argminyep,, rp k], mates is only required over the laststeps and therefore

and we assume thatrgmingep, ,,, i(k) € N retums the finite horizon estimation is sufficient. In [6] a finite and an

parameten; corresponding to the smallest indgxe N if infinite horizon estimator are presented fullfilling the abo
J

. . .. . tions.
there exist multiple minimat,[k], p € P;. HenceS defines assump L - . .
the map P vlk]; P ! Also note that it is sufficient to determin& £ without

(2.19) the explicit construction ofF as long as the disturbance
estimator fullfills the given assumption on it's disturbanc
estimates, e.g. the Kalman filter can be used for this purpose
in I3, as discussed in [2],[10].

[k = (p = p[K]), (k = Piy)] = [k — q(k)]

q(k) = argmingec w,) () || dp K] ||-
Finally let the switching controller

C:YVe = U :ya— us
3. AMMAC ALGORITHM WHICH DOES NOT SCALE

be defined from equation (2.8) by
We will now show that the standard version of the
(Cy2)(k) = (Caumy2) (k) algorithm, with a constant plant generating operaer
= —(agpZs—11y2)(k).  (2.20) can produce large closed loop gains for large parameter
uncertainties. Since this is a negative result we demaestra
the effect on a simple example.
Let the true unknown planP = P, be given by

E. Properties of the estimator

We define the seW, (k) of weakly consistent disturbance
signals to a planp € P and the observatiofus, y2) to be

v EeRT x Ro+H! ‘
I(ub, yh)) € We s.t.
Ro Py (uf — u2) = Zo k(Yo — y2)
V= (Ro-1,5—1Ub, Bo kYh)

and we consider a vectar € R x R°*! to be weakly
consistent with(ug, y2) and the planp iff v € W, (k).

Instead of now giving an explicit algorithm for the
“disturbance estimator’ NE we state some general and let
assumptions.

p* = (i*vlal)v Z* € N

where we assume < i, <! € N and the uncertainty level

[ = const. € N to be known. Hence we let the set of plants
under consideration be parametrized by the uncertaingf lev
[ > 1 and be given by:

P={(1,1,1),(2,1,1),...,(1,1,1)} (3.21)

Wy (k) ==

G(wo)(k) = Py, Vk € N. (3.22)



The corresponding dead-beat control@y : V. — U, to
eachp € P, is defined by

C, :ug = —iya, Vp=(i,1,1) € P,. (3.23)
Observe that for alp € P, [P,,C,] is gain stable.
The switching controller is given by
ClP: Ve = Ue : y2 — ua (3.24)
with
(C[Py2) (k) == (Cyiyy2) (K), (3.25)

=

» -
() 5
) (s 5
) 0 (B -iB)\ (WB-B)
(B - lB) 0 ( B-1IB )
3 (8) B 1p) (i)
TABLE |

SIGNALS FOR [P, C[P;]] UP TO TIMEK = 3

where ¢(k) is determined by equations (2.11)-(2.19) and

equation (3.22) where fop € P, the estimation operator
E from equations (2.15),(2.16) is explicitly defined by

dplk] := argminxes, o) {[1X]|} (3.26)
and
Sp(k) := {(Ts-1up, Tkyo) €W |
T Pp(Tie—ruy — Tie—1u2) = Tuyy — Ty} . (3.27)

Theorem 3.1: The given estimator fullfills assumption 2.1.
Proof The proof can be found in [6] and is omitted. O
From [6] we know that:

HHP//C[PL]H < 00, Vi > 01

however the gain bound scales poorly withas we show
next.

Theorem 3.2: Let [ > 0 and let the parameter sé®
be given by equation (3.21). Let the switching operator
be defined by equations (2.11)-(2.19). Let the switchin

controller C[P;] be given by equations (3.24),(3.25). Then

forp. = (1,1,1), P = P, the closed loop systei, C[P;]]
has the property that there does not existddn> 0 such
that

||HP7C[PZ]H <M, VI > 0. (328)
Proof The proof is in two steps. Firstly, we show that

we can always make the switching algorithm switch to th%ince

controller corresponding to the plant with the largest fides
a €N, (a,1,1) € Py, that isa = | € N. Secondly, we show

Consequently|d,[0]|| = B, p € {ps, pi} andgq(0) = p.. Itis
trivial to verify that the entries in tablé are consistent with
equations (2.1),(2.2) foP = P, C = C[P;] andk = 0.

At time & = 1 we havey;(1) = B and withyy(1) = 0
there holdsy2(1) = —B. By assumption 2.1(4), that is
k]l < |dplk + 1]||, p € P, k € N the smallest
disturbancel,[1], p € {ps, p:} consistent wit Fuz, F1y2)
and P, , P,, can be found to be

= (@) e

B
Since||d,, [1]]| = |Idp, [1]]|, ¢(1) = p. and no switch occurs.
It is trivial to verify that the entries in tablé are consistent
with equations (2.1),(2.2) faP = P;, C = C[P;] andk = 1.
Attime k = 2 we havey; (2) = 0 and withyy(2) = B—IB
it follows thaty»(2) = B—1B. Now the smallest disturbance
stimate ford,, [2] consistent with(-Zus, Z5y2) and Py, is

w2 ((5)6) ()

B/ \0

X

X
0

since similarly minimality is ensured by consistency and

ldp, 12]]l = lldp,[1]]|- In fact the disturbancesuq,yo) are
not arbitrary but have been chosen so that this holds.

y5(0) = B, |dy, [2)]| > |y, [2]]l, howeverd,, [2] =
dy, [2], pv # pi is not possible since the trajectories would
have the property that

that this condition leads to the unbound increase of the gain

of the closed loop operator ésncreases.
Let p, = (b,1,1),p = (I,1,1) € P, 1 < b < . Now
consider the closed-loop systdifi, C[P;]] and let

() = ((2) () (2 1m) (0)- () )

B 0 — 1B 0

uo
Yo

Uerpyyyp,, do, (2] = op//p,, dp (2] # (F1u2, T1y2).

)

This can be seen by choosing

sin-((3) ()

B/ \0

X
Yo' (2)

where B > 0. We now claim that these disturbances maken this case we havg)®(2) = bB— B. With y5*(2) = B—IB

the algorithm switch to the controll&?,, in two time steps,

from above we would have to choose

i.e. ¢(2) = p; and that the signals in table | are consistent

with the closed loopP, C[P;]], where throughout this proof,
a vector with an entry marked indicates that the entry is
irrelevant to the calculation that follows.

To see this we argue as follows. L&t, yo be as in table I.
At time k = 0 the disturbance estimate@s[0], p € {ps, pi}
are forced byy(0) = B and zero initial conditions to be

4= () = (5) e tnn.

X
o

yE(2) =bB —IB #0, Vb #1

to be consistent with .71 uz, Zy2) and P,,. Therefore we
can conclude that

ldp, 2] = B < [|dp, [2]]],

Since this holds for all. < b < [, it follows that¢(2) = I.
It is trivial to verify that the remaining entries in tableare
consistent with equations (2.1),(2.2) fBr= P, C = C[P}]



which establishes the claim, and completes the first part &f assumed that there exist a bougd € R such that

the proof. | Fh. —1w2|| < B € R. Therefore we perform the analysis
along the lines of [6] from timé& = k, onwards since by

We now show that this leads to the unbounded increase définition p, € G(w2)(k), k > k. and the analysis of [6] is

the gain of the closed loop operator lamcreases. largely applicable. This leads to the desired result. O
From the definition ofllp,,c(p,) we have As a corollary to this result it can be shown that for
« € G(w2) = const. we obtain the bound given in [6]:
P S 7115 renin®
//CIPI] L ol [[wal| < ~llwoll
[will o [91(3)] where
lwoll — [lwoll v = v(G(w2)(k)) = const. < oo.
2
= Bl - )| ) Now lety : 2 — R be the achievable gain bound in theorem
B”lvl_lvOaOv”

4.1. It is important to remark that the proof is constructive
Furthermore there exist scalaks> 1, «, 5 > 0 such that an explicit expression fof, can be given.

-2 >al, Vi>L Let 4 : © — R be an increasing function with the property

[1,1-1,0,0,---[| < BI, VI > L. Letv > 2. We now explicitly define a causal plant generating

Therefore N operator

e /el > 5L V> L, G : We = map(N, Q) (4.32)

: by
as required. O G(w2) (k) = Pigsy (4.33)
4. AN ADAPTIVE ALGORITHM WHICH DOES SCALE where
We now consider a version of the algorithm with an ax{a € N ‘

explicit non constant plant generating operator. Since we(k) - H}U)((Pa) C APy < || T} i k<
have shown that the availability of too many controllerstig OZ o) =7V = {102 ;f L z

after initialization can lead to high gains, this behavigir (4.34)

suppressed by limiting the number of available controller§ve will now show that this modification of the switching

over time. We observe that a similar procedure has be%ﬁborithm gives us a new bound .|| where the algorithm

investigated in a stochastic context in [1], but with a ratheautomatically determine®; ;.

different motivation. In particular we choose to relate the Theorem 4.2: Let the plants sets under consideration be
ﬁ\éi'é?\?'elgy;fn;?;r;"irs at ime: € N to the size of the given by P in equation (2.3), and lep, € P. Let _the
d SI9 k2l . . , lants P,, p € P and controllersC,, p € P be defined
F_or this purpose we generalize the bound obtained in [ V' equations (2.5)-(2.7) and (2.8) respectively. bet> 2
tg. time varylljng p'af‘t sets. let the timek and let G be given by equations (4.33),(4.34). L&t be
pen an servationo; € We let t ed.“me e NUkOO defined by equations (2.9)-(2.19) and fullfill assumptioh. 2.
when the parameter sgt., corresponding to the unknown | o o pe defined by equation (2.20) and consider the closed

true plantP,,, is in the set of available plants for the firstloOp [P, .| defined by equations (2.1),(2.2). Then for all
time, be given by P :

wg € W,
min{k € N | p, € G(w2)(k)} lwal| < Ymoa(llwol|)
ke = if Ik s.t. p. € G(yo, k 4.30 .
so i not (2 y2) (k) ( ) wherev,,.q : Ry — R, is given by
Theorem 4.1: Let the class of plants under consideration Ymod(r) = B1 + Bar + Bar?

be given byP in equation (2.3), and lep. € P. Let the i
plantsP,, p € P and controllersC,,, p € P be defined by

equations (2.5)-(2.7) and (2.8) respectively. Sebe defined B = FT(Pn) +A(Pn)FY (Py)
by eqqatiqns (2.9)-(2.19) and fL_JIIfiII assumptipn 2.1. Let B = 25%3(Pn) + A7V (PN)AY(PL)
the switching controllerC' be defined by equation (2.20). By = APy

Supposg| Z, —1wa|| < 8 € R with k, defined by equation
(4.30) and supposé, < co. Then there exists a function and
~v: Q — R such that N:=min{i > 1| p. € P;}.
Proof Let wy € W and letk, be given by equation (4.30).
| Ziwsl| < (G lw) (k))(8 + o)), Wk € N, g given by equation (4.30)

Proof We only sketch this rather lengthy proof at thisBy equation (4.34) we have
point since it follows in large parts directly from [6]. It | w2l < 4 (Piry+1) ¥k € N. (4.35)



By the fact that
(ki) >N >i(ke —1)+1

which follows from the definition oft, and sincey is an

increasing function we can write equation (4.35) with
k=k.—1as

| T —1w2|l <A (Pigk.—1)+1) < 7" (Pn)-
We now have to consider the two possibilities that
1) k. =
2) k. < oo.
In case 1, since
Y(Pn) =z ~v(Pn) 21
it follows that
B > 4" (Py) = 4" (Pw)

hence
wa|| = || Tk, —1w2|| < A"(PN) < B

In case 2 withk < k, — 1 it follows similarly to 1 that

|- Frwal| < Br.

(4.36)

(4.37)

We remark that there is no requirement of finiteness of the
"limit set” lim; .., P; C P, for example, this result can be
applied to the plant set®; of Section 3. In these cases, the
controller can be used in a universal context: if there is no
knowledge ofl > 0, then the switching controller realized
achieves the bound of Theorem 4.2 with an implementation
that never requires the consideration of more than a finite
number of plant estimators at any given time.

5. CONCLUSION

We have shown by an example that MMAC suffers from
a poor degradation of the closed loop induced gain under
certain scalings of the size of the uncertainty (for example
the number of candidate plants).

By replacing the notion of an induced gain by that of a
guadratic gain function, BIBO stability results were ohtad
where the resulting bounds are independent of the maximum
size of the parametric uncertainty, (but are dependent only
on the ‘true’ plant).

Topics of current research include the generalization of
the result to a wider class of plants and controllers as well
as the improvement of the boungs
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