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Abstract— A wide class of MMAC with a finite lp (1 ≤

p ≤ ∞) closed loop gain are shown to have an unboundedly
increasing lp closed loop gain for a simple set of plants under
increasing parametric uncertainty. A modification is proposed
which achieves a quadratic closed loop gain function which is
independent of the size of the uncertainty set.

1. INTRODUCTION

It is well known that the gain from external input and
output disturbances to the internal signals of a closed loop
system, containing a plantP and a controllerC, is a key
determinant of the robustness of the resulting system. For
example for linear systems, the reciprocal of thel2 gain of
the operator mapping input and output disturbances to the
input and the output of the plant is called the robust stability
marginbP,C : all plantsP1 which are within the open gap ball
of sizebP,C , centred atP , are also stabilized byC. Similar
statements hold in the nonlinear setting [7].

This motivates the need to examine the behaviour of
such a closed loop gain for multiple model adaptive control
(MMAC). Here we consider a class of MMAC and first show
that the resultinglp closed loop gain (studied in [6]), whilst
finite for any fixed uncertainty level, nevertheless scales
poorly as the parametric uncertainty of the system increases.
We expect that similar examples can be constructed for most
MMAC schemes, and interpret this is an indication that the
standardlp gain is an inappropriate measure of stability, see
also [3],[10].

In the light of this fundamental example, we examine a
gain function (actually a quadratic) measure of the gain of
the closed loop operator and show that this gain function
is dependent on the actual plant, and independent of the
uncertainty level of the system; thus demonstrating good
scaling properties in the face of an appropriate measure of
stability. By comparison, we observe the closed loop gain
function analysis of the more classical parametric adaptive
controllers in [4],[5] also yield gain functions with super-
linear growth; this may be an intrinsic feature of a non-
conservative analysis on a large uncertainty set. Furthermore,
robustness certificates can also be given for controllers with
such properties [4],[5],[7].

The class of MMAC algorithms under consideration ob-
serves in- and output signals of a process and explains
this “observation” by disturbances acting on candidate plant
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models in a finite plant model set. At every time step the
controller corresponding to the plant model which is able to
“explain” the observation by the smallest disturbance signal
is chosen. This approach was introduced in [2] and [10]
where gain bounds were obtained for the case of two first
order plants. A more general gain bound analysis was devel-
oped in [6], which provides the basis for the development of
the results in this paper. Gain bound analysis is also presented
(in continuous time) in various results by Morse et al. e.g.
[9] for switched controllers based on observer estimators.

The analysis is performed over the same class of systems
as in [6], i.e. we assume all plants to be of relative degree
one and the underlying controllers to be dead beat. Such gain
function results allow us to establish semi-global robustness
guarantees in the sense of the nonlinear gap metric, see [4],
[7].

Finally we remark that the restrictive requirement that
the controllers are dead beat is made for simplicity, the
generalization of this is a topic of current research.

2. DEFINITIONS

A. Norms and signals

Let
S = map(N, Rh), h ∈ N.

Let a signala ∈ S be in lp, 1 ≤ p ≤ ∞ iff

lp : = {a ∈ S |
∑

0≤i<∞

|ai|
p < ∞},

l∞ : = {a ∈ S | |ai| < ∞, 0 ≤ i < ∞} .

Let the spaces be equipped with the corresponding norms

‖a‖p :=
( ∑

0≤i<∞

|ai|
p
)1/p

, ‖a‖∞ := sup
0≤i<∞

|ai|.

Given a signal spaceV , define the “extended” signal space

Ve := {a ∈ S | ∀k ∈ N : Tka ∈ V}

where forv ∈ S, K ∈ N the truncation operator
TK : S → S is defined by

TKv(k) =

{
υ(k), 0 ≤ k ≤ K

0, otherwise
.

For σ, k ∈ N the restriction operatorRσ,k : S → R
h(σ+1),

h ∈ N is defined by

Rσ,kv(i) := v(k − σ + i), 0 ≤ i ≤ σ.

An operatorO : S → S is said to be to be causal iff

TkOTkv = TkOv, ∀k ∈ N, v ∈ S.



B. Plant and controller

Let U = Y = lp, 1 ≤ p ≤ ∞. Given a plantP : Ue → Ye

and a controllerC : Ye → Ue the closed loop system[P, C]
under consideration in figure 1 is defined via the following
set of system equations:

y1 = Pu1, u0 = u1 + u2, y0 = y1 + y2, (2.1)

u2 = Cy2 (2.2)

with u0 ∈ U , y0 ∈ Y, u1, u2 ∈ Ue, y1, y2 ∈ Ye where
(u0, y0) represent the input and output disturbances,(u1, y1)
represents the plant input and output and(u2, y2) represents
the observed signal or observation.
Let σ > 0 ∈ N, and as in [6] let the class of plants under

P

C

u0

y0

+ u1 y1

−

+y2u2

−

Fig. 1. The closed loop system[P, C]

consideration be specified by:

P =







p ∈ R
σ×σ × R

σ×1 × R
1×σ

∣
∣

p = (A, B, C),
[
A, C

]
is observable,

CB 6= 0,

B⊤ = [0 0 . . . 0
︸ ︷︷ ︸

σ−1

b]







(2.3)

whereb ∈ R.
For all p = (A, B, C) ∈ P define the plant operatorPp by

Pp : Ue → Ye : u1 7→ y1 (2.4)

with

x(k + 1) = Ax(k) + Bu1(k) (2.5)

y1(k) = Cx(k) (2.6)

x(−k) = 0 ∀k ∈ N. (2.7)

It is well known that for allp ∈ P , Pp is stabilizable by a
unique controllerCp of the form:

Cp : u2(k) = −a⊤
p






y2(k − σ + 1)
...

y2(k)




 (2.8)

with the dead beat property, i.e. such that for allk ∈ N and
for all (u0, y0) ∈ U × Y the closed loop[Pp, Cp] satisfies:

u0|(k,∞) = y0|(k,∞) = 0 ⇒ y1|[k+1,∞) = 0.

Hereafter we restrict our attention to such controllers.

C. Robustness and the closed loop operator

Let W = U×Y, We = Ue×Ye, wi = (ui, yi), i = 0, 1, 2.
To study the effects of input disturbances on the closed loop
signals it is useful to have some notion of system gain. For
that purpose we introduce the closed-loop operator

ΠP//C : W → We : w0 → w1,

and we define a system[P, C] to be (BIBO) gain stable if
ΠP//C is gain stable, i.e.∃M > 0 s.t.

‖ΠP//C‖ ≤ M.

D. The switched control system

Given a set of candidate plants, with a corresponding set
of candidate dead beat controllers, the basic MMAC algo-
rithm can informally be described as follows. At each time
step, and for each candidate plant, the size of the smallest
disturbance up to the current time which is consistent with
the observation is calculated and the controller corresponding
to the plant with the smallest such disturbance ‘explanation’
is switched into closed loop.

We first need to define for which plants we want to invoke
disturbance estimation. For that purpose we introduce the
parameter setPi corresponding to the set of plants we want
to consider for disturbance estimation. Further analysis will
show that it is advantageous to define this set as time varying
and dependent on the observation.

Let the set of plants under consideration withi ∈ N be
given by

Pi : = {p1, p2, . . . , pi} (2.9)

= {(A1, B1, C1), (A2, B2, C2), . . . , (Ai, Bi, Ci)}.

where
P1 ⊆ P2 ⊆ · · · ⊆ P . (2.10)

Let Ω = {Pi | i ∈ N}. Let G denote a “plant generating”
operator

G : We → map(N, Ω) (2.11)

subject to the constraint

G(w2)(0) = P1, G(w2)(k) ⊆ G(w2)(k+1)∀k ∈ N. (2.12)

A trivial but important example of a plant generating operator
is the constant mapping

G(w2)(k) = P ∗ ⊆ P ,

however it is advantageous to allow this operator to take a
more complex form, as will be shown in section 4.

Formally the causal switching operator

S : We → map(N, Ω) : w2 7→ q (2.13)

is given by the combination of the estimation operatorE,
the norm operatorN , the minimization operatorM and the
plant generating operatorG with

S = M(NE, G) (2.14)

whereM, N, E are defined below.



Let the time series of disturbance estimates up to timek

corresponding to a plantp ∈ P be given by

dp[k] : N → map(N, Rh)

and

dp[k] = (dp[k](0), dp[k](1), . . . , dp[k](k), 0, · · · )

with h ∈ N being dependent on the utilized estimator as well
as the plant orderσ ∈ N. We now define fork ∈ N, p ∈ P
the estimation operator

E : We → map(N, map(P , map(N, Rh))) (2.15)

by
w2 7→

[
k 7→ (p 7→ dp[k])

]
; (2.16)

the norm operator

N : map(N, map(P , map(N, Rh))) → map(N, map(P , R+))
(2.17)

by
[
k 7→ (p 7→ dp[k])

]
7→

[
k 7→ (p 7→ ‖dp[k]‖)); (2.18)

and the minimization operator

M : (map(N, map(P , R+)), map(N, Ω)) → map(N,P)

by
[
k 7→ (p 7→ rp[k]), (k 7→ Pi(k))

]
7→

[
k 7→ q(k)

]

where
q(k) = argminp∈Pi(k)

rp[k],

and we assume thatargminp∈Pi(k)
, i(k) ∈ N returns the

parameterpj corresponding to the smallest indexj ∈ N if
there exist multiple minimalrp[k], p ∈ Pi. HenceS defines
the map

q(k) = argminp∈G(w2)(k)‖dp[k]‖. (2.19)

Finally let the switching controller

C : Ye → Ue : y2 7→ u2

be defined from equation (2.8) by

(Cy2)(k) = (Cq(k)y2)(k)

= −(a⊤
q(k)Rσ−1,ky2)(k). (2.20)

E. Properties of the estimator

We define the setWp(k) of weakly consistent disturbance
signals to a plantp ∈ P and the observation(u2, y2) to be

Wp(k) :=







v ∈ R
σ × R

σ+1
∣
∣

∃(up
0, y

p
0) ∈ We s.t.

Rσ,kPp (up
0 − u2) = Rσ,k(yp

0 − y2)
v = (Rσ−1,k−1u

p
0, Rσ,ky

p
0)







and we consider a vectorv ∈ R
σ × R

σ+1 to be weakly
consistent with(u2, y2) and the plantp iff v ∈ Wp(k).

Instead of now giving an explicit algorithm for the
“disturbance estimator” NE we state some general
assumptions.

Let p∗ be the parameter corresponding to the “true”
unknown plantP := Pp∗

∈ P .

Assumption 2.1:

1) (Causality): NE is causal. Note thatN is always
causal and therefore it suffices to assume thatE is
causal.

2) (Minimality): There exists ac1 > 0 such that for all
k ≥ 0 and for all w2 ∈ We, w0 ∈ W satisfying
equation (2.1) forP = Pp∗

NE(w2)(k)(p∗) = ‖(E(w2)(k)(p∗)‖ ≤ c1‖w0‖.

3) (Weak consistency): There exists a map

Φ : map(N, Rh) → R
σ × R

σ+1,

such that for allw2 ∈ We, w0 ∈ W , p ∈ P satisfying
equation (2.1) forP = Pp

ΦE(w2)(k)(p) ∈ Wp(k)

and

‖ΦE(w2)(k)(p)‖ ≤ ‖Rσ,kE(w2)(k)(p)‖.

4) (Monotonicity): For allp ∈ P , for all k, l ∈ N with
0 ≤ k ≤ l and for all w2 ∈ We, w0 ∈ W satisfying
equation (2.1) forP = Pp there holds

‖E(w2)(k)(p)‖ ≤ ‖TkE(w2)(l)(p)‖.
By assumption 2.1(4), consistency of the disturbance esti-
mates is only required over the lastσ steps and therefore
finite horizon estimation is sufficient. In [6] a finite and an
infinite horizon estimator are presented fullfilling the above
assumptions.
Also note that it is sufficient to determineNE without
the explicit construction ofE as long as the disturbance
estimator fullfills the given assumption on it’s disturbance
estimates, e.g. the Kalman filter can be used for this purpose
in l2, as discussed in [2],[10].

3. A MMAC ALGORITHM WHICH DOES NOT SCALE

We will now show that the standard version of the
algorithm, with a constant plant generating operatorG,
can produce large closed loop gains for large parameter
uncertainties. Since this is a negative result we demonstrate
the effect on a simple example.

Let the true unknown plantP = Pp∗
be given by

p∗ = (i∗, 1, 1), i∗ ∈ N

where we assume1 ≤ i∗ ≤ l ∈ N and the uncertainty level
l = const. ∈ N to be known. Hence we let the set of plants
under consideration be parametrized by the uncertainty level
l ≥ 1 and be given by:

Pl = {(1, 1, 1), (2, 1, 1), . . . , (l, 1, 1)} (3.21)

and let
G(w2)(k) = Pl, ∀k ∈ N. (3.22)



The corresponding dead-beat controllerCp : Ye → Ue to
eachp ∈ Pl is defined by

Cp : u2 = −iy2, ∀p = (i, 1, 1) ∈ Pl. (3.23)

Observe that for allp ∈ Pl,
[
Pp, Cp

]
is gain stable.

The switching controller is given by

C[Pl] : Ye → Ue : y2 7→ u2 (3.24)

with
(C[Pl]y2)(k) := (Cq(k)y2)(k), (3.25)

where q(k) is determined by equations (2.11)-(2.19) and
equation (3.22) where forp ∈ Pl the estimation operator
E from equations (2.15),(2.16) is explicitly defined by

dp[k] := argminX∈Sp(k){‖X‖} (3.26)

and

Sp(k) := {(Tk−1u
p
0, Tky

p
0) ∈ W |

TkPp(Tk−1u
p
0 − Tk−1u2) = Tky

p
0 − Tky2} . (3.27)

Theorem 3.1: The given estimator fullfills assumption 2.1.
Proof The proof can be found in [6] and is omitted. 2

From [6] we know that:

‖ΠP//C[Pl]‖ < ∞, ∀l > 0,

however the gain bound scales poorly withl, as we show
next.

Theorem 3.2: Let l > 0 and let the parameter setPl

be given by equation (3.21). Let the switching operatorS

be defined by equations (2.11)-(2.19). Let the switching
controller C[Pl] be given by equations (3.24),(3.25). Then
for p∗ = (1, 1, 1), P = Pp∗

the closed loop system[P, C[Pl]]
has the property that there does not exist anM > 0 such
that

∥
∥ΠP,C[Pl]

∥
∥ ≤ M, ∀l > 0. (3.28)

Proof The proof is in two steps. Firstly, we show that
we can always make the switching algorithm switch to the
controller corresponding to the plant with the largest possible
a ∈ N, (a, 1, 1) ∈ Pl, that isa = l ∈ N. Secondly, we show
that this condition leads to the unbound increase of the gain
of the closed loop operator asl increases.

Let pb = (b, 1, 1), pl = (l, 1, 1) ∈ Pl, 1 ≤ b < l. Now
consider the closed-loop system[P, C[Pl]] and let

(
u0

y0

)

=

((
0
B

)

,

(
0
0

)

,

(
0

B − lB

)

,

(
0
0

)

,

(
0
0

)

, · · ·

)

whereB > 0. We now claim that these disturbances make
the algorithm switch to the controllerCpl

in two time steps,
i.e. q(2) = pl and that the signals in table I are consistent
with the closed loop[P, C[Pl]], where throughout this proof,
a vector with an entry marked× indicates that the entry is
irrelevant to the calculation that follows.

To see this we argue as follows. Letu0, y0 be as in table I.
At time k = 0 the disturbance estimatesdp[0], p ∈ {pb, pl}
are forced byy0(0) = B and zero initial conditions to be

dp[0] =

(
×

y
p
0(0)

)

=

(
×
B

)

, p ∈ {pb, pl}.

k

„

u0

y0

« „

u1

y1

« „

u2

y2

«

0

„

0
B

« „

B
0

« „

−B
B

«

1

„

0
0

« „

−B
B

« „

B
−B

«

2

„

0
B − lB

« „

l(B − lB)
0

« „

l(lB − B)
B − lB

«

3

„

0
0

« „

×

l(B − lB)

« „

×

×

«

TABLE I

SIGNALS FOR [P, C[Pl]] UP TO TIME k = 3

Consequently‖dp[0]‖ = B, p ∈ {pb, pl} andq(0) = p∗. It is
trivial to verify that the entries in tableI are consistent with
equations (2.1),(2.2) forP = P1, C = C[Pl] andk = 0.

At time k = 1 we havey1(1) = B and with y0(1) = 0
there holdsy2(1) = −B. By assumption 2.1(4), that is
‖dp[k]‖ ≤ ‖dp[k + 1]‖, p ∈ P , k ∈ N the smallest
disturbancedp[1], p ∈ {pb, pl} consistent with(T0u2, T1y2)
andPpb

, Ppl
can be found to be

dp[1] =

((
0
B

) (
×
0

))

, p ∈ {pb, pl}.

Since‖dpl
[1]‖ = ‖dpb

[1]‖, q(1) = p∗ and no switch occurs.
It is trivial to verify that the entries in tableI are consistent
with equations (2.1),(2.2) forP = P1, C = C[Pl] andk = 1.

At time k = 2 we havey1(2) = 0 and withy0(2) = B−lB

it follows thaty2(2) = B−lB. Now the smallest disturbance
estimate fordpl

[2] consistent with(T1u2, T2y2) andPpl
is

dpl
[2] =

((
0
B

) (
0
0

) (
×
0

))

since similarly minimality is ensured by consistency and
‖dpl

[2]‖ = ‖dpl
[1]‖. In fact the disturbances(u0, y0) are

not arbitrary but have been chosen so that this holds.
Sincey

pb

0 (0) = B, ‖dpb
[2]‖ ≥ ‖dpl

[2]‖, howeverdpb
[2] =

dpl
[2], pb 6= pl is not possible since the trajectories would

have the property that

ΠC[Pl]//Ppb
dpb

[2] = ΠC[Pl]//Ppb
dpl

[2] 6= (T1u2, T1y2).
(3.29)

This can be seen by choosing

dpb
[2] =

((
0
B

) (
0
0

) (
×

y
pb

0 (2)

))

.

In this case we haveypb

1 (2) = bB−B. With y
pb

2 (2) = B−lB

from above we would have to choose

y
pb

0 (2) = bB − lB 6= 0, ∀b 6= l

to be consistent with(T1u2, T2y2) and Ppb
. Therefore we

can conclude that

‖dpl
[2]‖ = B < ‖dpb

[2]‖,

Since this holds for all1 ≤ b < l, it follows that q(2) = l.
It is trivial to verify that the remaining entries in tableI are
consistent with equations (2.1),(2.2) forP = P1, C = C[Pl]



which establishes the claim, and completes the first part of
the proof.

We now show that this leads to the unbounded increase of
the gain of the closed loop operator asl increases.
From the definition ofΠP//C[Pl] we have

‖ΠP//C[Pl]‖ = sup
w0∈W \{0}

‖ΠP//C[Pl](w0)‖

‖w0‖

≥
‖w1‖

‖w0‖
≥

|y1(3)|

‖w0‖

=
B|(l − l2)|

B‖1, 1 − l, 0, 0, · · · ‖
.

Furthermore there exist scalarsL > 1, α, β > 0 such that

|l − l2| ≥ αl2, ∀l ≥ L

and
‖1, 1 − l, 0, 0, · · · ‖ ≤ βl, ∀l ≥ L.

Therefore
‖ΠP//C[Pl]‖ ≥

α

β
l, ∀l ≥ L,

as required. 2

4. AN ADAPTIVE ALGORITHM WHICH DOES SCALE

We now consider a version of the algorithm with an
explicit non constant plant generating operator. Since we
have shown that the availability of too many controllers right
after initialization can lead to high gains, this behaviouris
suppressed by limiting the number of available controllers
over time. We observe that a similar procedure has been
investigated in a stochastic context in [1], but with a rather
different motivation. In particular we choose to relate the
availability of controllers at timek ∈ N to the size of the
observed signal‖Tkw2‖.

For this purpose we generalize the bound obtained in [6]
to time varying plant sets.
Given an observationw2 ∈ We let the timek∗ ∈ N ∪ ∞
when the parameter setp∗, corresponding to the unknown
true plantPp∗

, is in the set of available plants for the first
time, be given by

k∗ =







min{k ∈ N | p∗ ∈ G(w2)(k)}
if ∃k s.t. p∗ ∈ G(y2, y2)(k)

∞ if not
(4.30)

Theorem 4.1: Let the class of plants under consideration
be given byP in equation (2.3), and letp∗ ∈ P . Let the
plantsPp, p ∈ P and controllersCp, p ∈ P be defined by
equations (2.5)-(2.7) and (2.8) respectively. LetS be defined
by equations (2.9)-(2.19) and fullfill assumption 2.1. Let
the switching controllerC be defined by equation (2.20).
Suppose‖Tk∗−1w2‖ ≤ β ∈ R with k∗ defined by equation
(4.30) and supposek∗ < ∞. Then there exists a function
γ : Ω → R such that

‖Tkw2‖ ≤ γ(G(w2)(k))(β + ‖w0‖), ∀k ∈ N.

Proof We only sketch this rather lengthy proof at this
point since it follows in large parts directly from [6]. It

is assumed that there exist a boundβ ∈ R such that
‖Tk∗−1w2‖ ≤ β ∈ R. Therefore we perform the analysis
along the lines of [6] from timek = k∗ onwards since by
definitionp∗ ∈ G(w2)(k), k ≥ k∗ and the analysis of [6] is
largely applicable. This leads to the desired result. 2

As a corollary to this result it can be shown that for
p∗ ∈ G(w2) = const. we obtain the bound given in [6]:

‖w2‖ ≤ γ‖w0‖

where
γ = γ(G(w2)(k)) = const. < ∞.

Now let γ : Ω → R be the achievable gain bound in theorem
4.1. It is important to remark that the proof is constructive:
an explicit expression forγ can be given.
Let γ̂ : Ω → R be an increasing function with the property

γ̂(Q) ≥ γ(Q), ∀Q ∈ Ω. (4.31)

Let v > 2. We now explicitly define a causal plant generating
operator

G : We → map(N, Ω) (4.32)

by
G(w2)(k) = Pi(k) (4.33)

where

i(k) =







max{a ∈ N
∣
∣

γ̂v(Pa) − γ̂v(P1) ≤ ‖Tkw2‖} if k < ∞
∞ if k = ∞






.

(4.34)
We will now show that this modification of the switching
algorithm gives us a new bound on‖w2‖ where the algorithm
automatically determinesPi(k).

Theorem 4.2: Let the plants sets under consideration be
given by P in equation (2.3), and letp∗ ∈ P . Let the
plants Pp, p ∈ P and controllersCp, p ∈ P be defined
by equations (2.5)-(2.7) and (2.8) respectively. Letv > 2
and let G be given by equations (4.33),(4.34). LetS be
defined by equations (2.9)-(2.19) and fullfill assumption 2.1.
Let C be defined by equation (2.20) and consider the closed
loop [Pp∗

, C] defined by equations (2.1),(2.2). Then for all
w0 ∈ W ,

‖w2‖ ≤ γmod(‖w0‖)

whereγmod : R+ → R+ is given by

γmod(r) = β1 + β2r + β3r
2

with

β1 = γ̂v+2(PN ) + γ̂(PN )γ̂v(P1)

β2 = 2γ̂2(PN ) + γ̂1−v(PN )γ̂v(P1)

β3 = γ̂2−v(PN ).

and
N := min{i ≥ 1 | p∗ ∈ Pi}.

Proof Let w0 ∈ W and letk∗ be given by equation (4.30).
By equation (4.34) we have

‖Tkw2‖ ≤ γ̂v(Pi(k)+1) ∀k ∈ N. (4.35)



By the fact that

i(k∗) ≥ N ≥ i(k∗ − 1) + 1 (4.36)

which follows from the definition ofk∗ and sinceγ̂ is an
increasing function we can write equation (4.35) with
k = k∗ − 1 as

‖Tk∗−1w2‖ ≤ γ̂v(Pi(k∗−1)+1) ≤ γ̂v(PN ). (4.37)

We now have to consider the two possibilities that

1) k∗ = ∞
2) k∗ < ∞.

In case 1, since

γ̂(PN ) ≥ γ(PN ) ≥ 1

it follows that

β1 ≥ γ̂v+2(PN ) ≥ γ̂v(PN )

hence
‖w2‖ = ‖Tk∗−1w2‖ ≤ γ̂v(PN ) ≤ β1.

In case 2 withk ≤ k∗ − 1 it follows similarly to 1 that

‖Tkw2‖ ≤ β1.

For k > k∗ − 1 we have by equation (4.34), Theorem 4.1
and equations (4.31),(4.37) that

γ̂v(Pi(k)) ≤ ‖Tkw2‖ + γ̂v(P1)

≤ γ(Pi(k))(‖Tk∗−1w2‖ + ‖w0‖) + γ̂v(P1)

≤ γ̂(Pi(k))(γ̂
v(PN ) + ‖w0‖) + γ̂v(P1).

Multiplication with γ̂1−v(Pi(k)) > 0 yields

γ̂(Pi(k)) ≤ γ̂2−v(Pi(k))(‖w0‖+γ̂v(PN ))+γ̂1−v(Pi(k))γ̂
v(P1).

Furthermore since by equations (4.33),(4.34)G satisfies
equation (2.12), that is that

G(w2)(k) ⊆ G(w2)(l), ∀l ≥ k,

by equation (4.36) we havePN ⊆ Pi(k). Since γ̂ is
increasing it follows that

γ̂q−v(Pi(k)) ≤ γ̂q−v(PN ), ∀q < v

and hence we obtain

γ̂(Pi(k)) ≤ γ̂2(PN ) + γ̂2−v(PN )‖w0‖ + γ̂1−v(PN )γ̂v(P1).

Hence by Theorem 4.1,

‖Tkw2‖ ≤ γ(Pi(k))(‖Tk∗−1w2‖ + ‖w0‖)

≤ (γ̂v(PN ) + ‖w0‖)
[
γ̂2(PN ) + γ̂2−v(PN )‖w0‖ + γ̂1−v(PN )γ̂v(P1)

]

≤ β1 + β2‖w0‖ + β3‖w0‖
2, ∀k ∈ N.

We observe that the bound is independent ofk and therefore

‖w2‖ ≤ β1 + β2‖w0‖ + β3‖w0‖
2

as required. 2

We remark that there is no requirement of finiteness of the
”limit set” limi→∞ Pi ⊂ P , for example, this result can be
applied to the plant setsPl of Section 3. In these cases, the
controller can be used in a universal context: if there is no
knowledge ofl > 0, then the switching controller realized
achieves the bound of Theorem 4.2 with an implementation
that never requires the consideration of more than a finite
number of plant estimators at any given time.

5. CONCLUSION

We have shown by an example that MMAC suffers from
a poor degradation of the closed loop induced gain under
certain scalings of the size of the uncertainty (for example
the number of candidate plants).

By replacing the notion of an induced gain by that of a
quadratic gain function, BIBO stability results were obtained
where the resulting bounds are independent of the maximum
size of the parametric uncertainty, (but are dependent only
on the ‘true’ plant).

Topics of current research include the generalization of
the result to a wider class of plants and controllers as well
as the improvement of the boundsγ.
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