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Disturbance decoupling by state feedback and PD control law
for systems with direct feedthrough matrices

Lorenzo Ntogramatzidis

Abstract— In this paper new geometric necessary and suf-
ficient conditions are provided for the solvability of the exact
disturbance decoupling problem with a control input consisting
of a static state feedback and a PD function of the signal to
be rejected, with the requirement of internal stability of the
closed loop. Differently from previous results presented in the
literature on this issue, we will not restrict our attention to
strictly proper systems. Indeed, both feedthrough matrices from
the control and from the disturbance to the output will be
considered to be possibly non-zero.

I. I NTRODUCTION AND PROBLEM STATEMENT

In the last thirtyfive years, the so-calledgeometric ap-
proach to systems and control theory has provided valuable
tools for the understanding of several system-theoretic prop-
erties of LTI models and for the solution of many control
and estimation problems. The first and most famous problem
that was studied and solved with geometric techniques by
Basile and Marro in their first pioneering paper on the
geometric approach [2] was the disturbance decoupling by
state feedback.

Afterwards, many different versions of this problem have
been investigated with geometric tools, e.g., the disturbance
decoupling with stability of the closed-loop [16], the decou-
pling of measurable input functions [6] and the disturbance
decoupling by dynamic output feedback [14].

The problem dealt with in this paper is the decoupling of
an input signal by means of a control function involving a
static state feedback and a feedforward PD function of the
signal to be rejected, which can be precisely formulated as
follows. Consider the LTI system

{
ρx(t) = Ax(t)+Bu(t)+H w(t),

y(t) = C x(t)+Du(t)+Gw(t),
(1)

where A ∈ R
n×n, B ∈ R

n×m, H ∈ R
n×r, C ∈ R

p×n, and the
feedthrough matricesD ∈ R

p×m and G ∈ R
p×r are possibly

non-zero. In what follows, whether the underlying system
(1) evolves in continuous or discrete time is irrelevant and,
accordingly, the time index set of any signal is denoted by
T, on the understanding that this represents eitherR

+ in
the continuous time orN in the discrete time. The symbol
Cg denotes either the open left-half complex planeC

− in
the continuous time or the open unit discC

◦ in the discrete
time. The operatorρ denotes either the time derivative in the
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continuous time, i.e.,ρx(t) = ẋ(t), or the unit time shift in
the discrete time, i.e.,ρx(t) = x(t +1). In (1), for all t ∈ T,
x(t)∈R

n represents the state,u(t)∈R
m the control input and

w(t) ∈ R
r the disturbance input to be decoupled from the

outputy(t)∈R
p. From now on, we identify theundisturbed

system characterized by the quadruple(A,B,C,D) with the
symbol Σ, and thedisturbed system characterized by the
quadruple(A, [B H ],C, [D G ]) with the symbolΣd .
The purpose of this paper is finding necessary and sufficient
conditions for the solution of the disturbance decoupling
with internal stability of the closed-loop using a control
law involving a state feedback and a PD function of the
disturbance of a prescribed degreeq ∈ N, i.e., of the form

u(t) = F x(t)+
q

∑
i=0

Si ρ i w(t), (2)

whereF ∈ R
m×n and Si ∈ R

m×r for i ∈ {0,1, . . . ,q}, under
the standing assumption thatρ iw(t) is bounded for alli ∈
{0,1, . . . ,q}. Our objective can be stated in more precise
terms as follows.

Problem 1: Find necessary and sufficient conditions for
the existence of a control law (2) such that:

1) for all initial conditions and allw(t) the outputy(t)
converges to zero ast approaches infinity;

2) the poles of the closed-loop are all stable, i.e.,σ (A+
BF) ⊂ Cg.

In the discrete case, this problem is often referred to as the
previewed signal decoupling, see e.g. [1]. A first solution
to this problem withD = 0p×m and G = 0p×r was given
by Willems in [13] in terms of the geometric notion of
almost invariance (see also [12] for further details). In
that paper, for the problem of the existence of an integer
q ∈ N for which Problem 1 admits solutions the condition
imH ⊆ V ? + S ? was proposed, whereV ? := sup{V ⊆
kerC | AV ⊆ V + imB} andS ? := inf{S ⊇ imB | A(S ∩
kerC) ⊆ S }. Under the requirement of pole placement of
the closed loop, such condition becomes imH ⊆ S ?. The
second fundamental contribution on this topic was given by
Bonilla Estrada and Malabre in [7], by taking into account
the more specific requirement of stability of the closed-loop
system. In particular, in the case whenD andG are both zero,
a necessary and sufficient condition for the solvability of
Problem 1 was presented, which was concisely expressed by
means of the geometric inclusion imH ⊆ V ?

g +Sq+1, where
V ?

g := sup{V ⊆ kerC | ∃F ∈ R
m×n : (A+BF)V ⊆ V and1

1If A : X −→ Y and J ⊆ X , the restriction of the mapA to J is
denoted byA |J . If X = Y and J is A-invariant, the eigenvalues ofA
restricted toJ are denoted byσ (A |J ).



σ (A+BF |V )⊂Cg} andSq+1 is the(q+1)-th term of the
sequence of subspacesS0 = 0n and Si = imB + A(Si−1∩
kerC) for i ∈ N\{0}.
An alternative solution to the same problem, (under the
same standing assumption of zero feedthrough matrices)
was presented by Barbagli, Marro and Prattichizzo in [1],
relying on the geometric concept of self-bounded controlled
invariance. By defining withΦ(Σ) the lattice ofself-bounded
controlled invariant subspaces of Σ contained in the null-
space ofC, i.e.,

Φ(Σ) := {V ⊆ kerC | AV ⊆ V + imB andV ⊇ V ? ∩ imB},

(see [3], [9] and [4, p.207] for details), the conditions
of solvability of the disturbance decoupling problem with
stability by PD action were expressed in terms of:

1) a geometricstructural condition

imH ⊆ V ? +Sq+1; (3)

2) the so-calledstability condition

Vm := minΦ(Σd) is internally stabilizable, (4)

whereVm is the smallest element of the latticeΦ(Σd),
this second condition meaning that a feedback matrix
F exists such that(A+BF)Vm ⊆ Vm and the eigenval-
ues ofA+BF restricted toVm are stable, in symbols
σ (A+BF | Vm) ⊂ Cg.

Checking the solvability of the decoupling problem through
these conditions enables the burden deriving from the com-
putation of eigenspaces in the determination ofV ?

g to be
avoided, as pointed out in [5]. Indeed,Vm can be computed
as the intersectionVm = V ? ∩ S̃ , whereS̃ is the limit of
the sequenceS̃0 = 0n andS̃i = im [B H ]+A(S̃i−1 ∩ kerC),
i ∈ N\{0}, which converges in at mostn steps; hence, only
the basic tools and algorithms of the geometric approach are
necessary for the implementation of such solution. Moreover,
the dimension of the resolvent subspaceVm is smaller than
that of V ?

g in the solution of [7], since in generalVm ⊆ Vg

holds. In the same paper, a hint on how to tackle this
problem when the feedthrough matrices are not zero has been
proposed, relying on the contrivance of solving a slightly
modified decoupling problem, in which an integrator in the
continuous time or a unit delay in the discrete time, described
by

{
ρz(t) = y(t),

h(t) = z(t),

is inserted at the output of the original system and by solving
the same decoupling problem with respect to the overall
strictly proper system

{
ρs(t) = Â s(t)+ B̂u(t)+ Ĥ w(t),

h(t) = Ĉ s(t),
(5)

wheres(t) :=

[
x(t)
z(t)

]
, Â :=

[
A 0n×p

C 0p×p

]
, B̂ :=

[
B
D

]
, Ĥ :=

[
H
G

]
, Ĉ :=

[
0p×n Ip×p

]
. In fact, the following straight-

forward result holds.

Lemma 1: Problem 1 stated with respect to the non-
strictly proper systemΣ is equivalent to Problem 1
stated with respect to the strictly proper system̂Σ :=(

Â,
[

B̂ Ĥ
]
,Ĉ

)
.

On the one hand, no further details were given in [1]
concerning the structure of the solvability conditions in this
case. On the other hand, the exploitation of this dummy
integrator or delay unit, along with the material presented
in [1], would lead to solvability conditions stated in termsof
the fictitious variablez(t). Hence, the purpose of this paper is
to address this issue, by determining necessary and sufficient
conditions for the solvability of Problem 1 expressed in terms
of characteristic subspaces of the original system, and notof
the extended system including the dummy unit (5). Hence,
the main result of this paper is Theorem 1 in Section III,
where, in the general case ofD and G possibly non-zero,
new necessary and sufficient conditions written in terms of
the problem data are presented for the solvability of Problem
1, which cannot be trivially deducted from those expressed
in terms of the matrices of the extended modelΣ̂. It will
be shown that the structural solvability condition proposed
here encompasses those presented in [13], [7], [1] when the
feedthrough matricesD andG are both zero.
Notice that the present is not the first attempt to extend ge-
ometric results and techniques to non-strictly proper system
(see e.g. [8] and [10] for the model matching problem and for
the disturbance decoupling with measurement feedback and
internal stability of the closed loop, respectively). However,
to date a similar extension to the decoupling with state-
feedback and PD feedforward action has been neglected.

II. GEOMETRIC PRELIMINARIES

In this section some fundamental definitions and results
of the geometric approach which are used in the sequel are
recalled (for a detailed discussion on these topics we referto
[4], [11], [15]). First, recall that anoutput-nulling subspace
V of Σ = (A,B,C,D) is a subspace ofRn satisfying

[
A
C

]
V ⊆ (V ×0p)+ im

[
B
D

]
. (6)

The set of output-nulling subspacesV (Σ) of Σ is an upper
semi-lattice with respect to subspace addition. Thus, the sum
of all the output-nulling subspaces ofΣ is the largest output-
nulling subspace ofΣ, and will be denoted byV ?. For the
case where the feedthrough matrixD is zero, the output-
nulling subspace coincides with the controlled invariant
subspace contained in the null-space of matrixC introduced
by Basile and Marro in [2]. In the following lemma, the
most important properties of the output-nulling subspaces
are presented.

Lemma 2: The following results hold:

• The subspaceV is output-nulling forΣ if and only if a
matrix F ∈R

m×n exists such that

(A+BF)V ⊆ V ⊆ ker(C+DF). (7)



• The sequence of subspaces(V i)i∈N described by the
recurrence





V0 = R
n,

V i =

[
A
C

]−1(
(V i−1×0p)+ im

[
B
D

])
, i > 0,

(8)
is monotonically non-increasing. Moreover, there exists
k≤n−1 such thatVk+1=Vk. For suchk the identity
V ? =Vk holds.

Any matrix F satisfying (7) will be referred to as afriend
of the output-nulling subspaceV . We denote byFΣ(V )
the set of friends of the output-nulling subspaceV . Let
F ∈FΣ(V ): the output-nulling reachability subspace RV

on V is the smallest(A+BF)-invariant subspace ofRn

containing the subspaceV ∩BkerD. We denote byR? the
output-nulling reachability subspace onV ?, i.e., R? :=
<A + BF,V ?∩BkerD>. For F ∈ FΣ(V ), the eigenvalues
of (A + BF) restricted toV , i.e. σ(A + BF |V ), can be
split into two sets: the eigenvalues of(A+BF |RV ) are all
freely assignable by a suitable choice of the friendF of
V in FΣ(V ) (provided that the eigenvalues to be assigned
are mirrored with respect to the real axis). The eigenvalues
σ (A + BF | V /RV ) on the contrary do not depend on the
choice ofF ; if σ (A+BF | V /RV )⊂Cg, the output-nulling
V is said to beinternally stabilizable. The dual concept is
the input-containing subspace: a subspaceS of R

n is said
to be input-containing if

[
A B

] (
(S ×R

m)∩ker
[

C D
])

⊆ S . (9)

The set of all input-containing subspaces ofΣ is a lower
semi-lattice with respect to subspace intersection. The inter-
section of all input-containing subspaces ofΣ is therefore
the smallest input-containing subspace ofΣ, and will be
denoted byS ?. In the case whenD is zero,S ? reduces to
the smallest(A,C)-conditioned invariant subspace containing
the range ofB, [2]. The counterpart of Lemma 1 for input-
containing subspaces clearly holds; however, here we are
only interested in the dual of property (8) in Lemma 2, which
is as follows.

Lemma 3: The sequence of subspaces(S i)i∈N described
by the recurrence
{

S0 = 0n,

Si =
[

A B
](

(Si−1×R
m)∩ker

[
C D

])
, i > 0,

(10)
is monotonically non-decreasing. Moreover, there exists
k≤n−1 such thatSk+1=Sk. For such k there holds
S ? =Sk.

III. SOLUTION OF PROBLEM 1

The following lemma and corollary will be useful in the
determination of a structural condition for the solution of
Problem 1. As a second step, the stability requirement will
be taken into account.

Lemma 4: Consider the sequence(Si)i∈N given by (10)
and the sequence(Ŝi)i∈N described by

{
Ŝ0 = 0n+p,

Ŝi = im B̂+ Â(Ŝi−1 ∩ kerĈ), i ∈ N\{0},
(11)

where Â, B̂ and Ĉ have been defined in Section I. For all
i ∈ N there holds

Ŝi ∩ im

[
In

0p×n

]
= Si ×0p. (12)

Proof: We proceed by induction. Wheni = 0, the statement
is clearly true. Let us now suppose that it holds for a given
i−1, and let us prove the same fact fori. By definition of
Ĉ and by the inductive assumption it is found that

Ŝi = im B̂+ Â(Ŝi−1 ∩ kerĈ)

= im B̂+ Â(Ŝi−1 ∩ im

[
In

0p×n

]
)

= im B̂+ Â(Si−1×0p) = im B̂+

[
A
C

]
Si−1

Hence, we have shown that

Ŝi ∩ im

[
In

0p×n

]
=

(
im B̂+

[
A
C

]
Si−1

)
∩ im

[
In

0p×n

]
.

Now, we want to prove that, given a matrix basisZ of Si−1,
there holds

(
im B̂+

[
A
C

]
Si−1

)
∩ im

[
In

0p×n

]
=

(13)
=

[
AZ B

]
ker

[
C Z D

]
×0p.

To this end, let

[
x
y

]
∈

(
im B̂+

[
A
C

]
Si−1

)
∩ im

[
In

0p×n

]
,

such thatx ∈ R
n and y ∈ R

p. Hence, on the one hand,

two vectorsk1 and k2 exist such that

[
x
y

]
=

[
A
C

]
Z k1 +

[
B
D

]
k2 and, on the other,y = 0, the two leading

to
[

C Z D
][

k1

k2

]
= 0. As a result, we findx =

[
AZ B

][
k1

k2

]
∈

[
AZ B

]
ker

[
C Z D

]
. It is easy

to establish that these steps can be performed in the reversed
order, hence (13) holds with the equality sign. The last fact
to be proved is that

Si ×0p =
[

AZ B
]

ker
[

C Z D
]
×0p, (14)

so that (13) and (14) yield (12). To this end, letξ ∈

Si×0p =
[

A B
](

(Si−1×R
m)∩ker

[
C D

])
: a vec-

tor

[
l1
l2

]
exists such thatξ = Al1 + Bl2, where

[
l1
l2

]
∈

Si−1 × R
m and

[
C D

][
l1
l2

]
= 0. Hence, sincel1 ∈

Si−1, we can definẽl1 such thatl1 = Z l̃1. It follows that[
l̃1
l2

]
∈ ker

[
C Z D

]
, so thatξ =

[
AZ B

][
l̃1
l2

]
∈

[
AZ B

]
ker

[
C Z D

]
. Again, by performing the same



steps in the reversed order, (14) follows. This completes the
proof.

Corollary 1: Consider the sequence(Si)i∈N in (10) and
the sequence(Ŝi)i∈N in (11). Then

Ŝi = im

[
B
D

]
+

[
A
C

]
Si−1 ∀ i ∈ N\{0}. (15)

Proof: The proof follows straightforwardly from Lemma 4.
Indeed,

Ŝi = im

[
B
D

]
+

[
A 0n×p

C 0p×p

] (
Ŝi−1∩ im

[
In

0p×n

])

= im

[
B
D

]
+

[
A 0n×p

C 0p×p

]
(Si−1×0p)

= im

[
B
D

]
+

[
A
C

]
Si−1.

Now we introduce a lattice that will play a key role in the
determination of a stability condition for the solvabilityof
Problem 1. Let the set̃Φ(Σ) be defined as

Φ̃(Σ) :=

{
V ∈ V (Σ)

∣∣∣∣∣ V ×0p ⊇ (V ? ×0p)∩ im

[
B
D

]}
.

The following preliminary result holds.
Lemma 5: The identitiesV (Σ̂) = {V × 0p | V ∈ V (Σ)}

andΦ(Σ̂) = {V ×0p | V ∈ Φ̃(Σ)} hold.
Proof: It is first proved thatV (Σ̂)⊆ {V ×0p | V ∈ V (Σ)}.
Let V̂ := V1×V2 ∈ V (Σ̂) be such thatV1 and V2 are sub-
spaces ofRn andR

p, respectively. SinceV1×V2 ⊆ kerĈ =
ker

[
0p×n Ip×p

]
, it follows that V2 = 0p. From Â(V1×

0p)⊆ (V1×0p)+ im B̂ it follows that

[
A
C

]
V1 ⊆ (V1×0p)+

im

[
B
D

]
, so thatV1 ∈ V (Σ). The opposite inclusion, i.e.,

V (Σ̂) ⊇ {V ×0p | V ∈ V (Σ)}, is now straightforward, and
can be easily proved by following these steps backwards. As
a consequence, it is now easily seen thatV̂ ? := maxΦ(Σ̂)
can be written asV ? ×0p, whereV ? := maxΦ̃(Σ).
Let us now prove thatΦ(Σ̂) ⊆ {V × 0p | V ∈ Φ̃(Σ)}. Let
V̂ = V1 × V2 be an element ofΦ(Σ̂). Since V1 × V2 ∈
V (Σ̂), as already seenV2 = 0p andV1 ∈ V (Σ). Now, since

V̂ ? = V ? × 0p, from V̂ ⊇ V̂ ? ∩ im

[
B
D

]
it follows that

V1×0p ⊇ (V ?×0p)∩ im

[
B
D

]
, so thatV1 ∈ Φ̃(Σ). Again,

the opposite inclusionΦ(Σ̂) ⊇ {V ×0p | V ∈ Φ̃(Σ)} is now
straightforward.

Corollary 2: The set(Φ̃(Σ),+,∩;⊆) is a non-distributive
modular lattice. It admits a maximum element, which isV ?,
and a minimum element, which isV ? ∩S ?.
Proof: The proof is a direct consequence of Lemma 5,
since (Φ(Σ̂),+,∩;⊆) is a non-distributive modular lattice,
[4, p.207]. Moreover, by Lemma 5 it follows thatV ? =
maxΦ̃(Σ) if and only if V ? × 0p = maxΦ(Σ̂). We only
have to show that minΦ(Σ) = V ? ∩ S ?. It is a well-
known fact that minΦ(Σ̂) = V̂ ? ∩ Ŝ ?, where V̂ ? and Ŝ ?

are respectively the largest controlled invariant subspace in
(Â, B̂) contained in the null space of̂C and the smallest
conditioned invariant subspace in(Â,Ĉ) containing the image
of B̂, see e.g. [4, Theorem 4.1.4]. By Lemma 4 it follows
that

minΦ(Σ̂) = (V ? ×0p)∩ Ŝ ?

= (V ? ×0p)∩ im

[
In

0p×n

]
∩ Ŝ ?

= (V ? ×0p)∩ (S ? ×0p) = (V ? ∩S ?)×0p.

As a consequence of Lemma 5, it is found that minΦ̃(Σ) is
indeedV ? ∩S ?.

Theorem 1: Let the pair(A,B) be stabilizable. Problem 1
is solvable if and only if

1) im

[
H
G

]
⊆ (V ? ×0p)+ im

[
B
D

]
+

[
A
C

]
Sq,

2) Vm := min Φ̃(Σd) is internally stabilizable.
Proof: By virtue of Lemma 1 and by taking [1, Theorem
3.2] into account, it is easily found that Problem 1 admits
solutions if and only if imĤ ⊆ V̂ ? + Ŝq+1, where V̂ ? =

maxV (Σ̂) andŜq+1 is the(q+1)-th element of the sequence
(11), andV̂m is internally stabilizable, wherêVm = minΦ(Σ̂).
By virtue of Corollary 1 the inclusion im̂H ⊆ V̂ ? +Ŝq+1 is
equivalent to the structural condition1). Hence, our aim now
is to show thatV̂m is internally stabilizable with respect to
Σ̂ if and only if such isVm with respect to systemΣ. Let
V̂m = Vm×0p be internally stabilizable with respect tôΣ. Let
F̂ =

[
F1 F2

]
∈FΣ̂(Vm×0p) be such thatσ(Â+ B̂ F̂ |Vm×

0p) ⊂ Cg. The inclusion

(Â+ B̂ F̂)(Vm ×0p) =

[
A+BF1 BF2

C +DF1 DF2

]
(Vm ×0p)

(16)
⊆ Vm ×0p,

can be written as

[
A+BF1 BF2

C +DF1 DF2

] [
V
0

]
=

[
V
0

]
X ,

for a suitable matrixX ∈ R
h×h, whereh is the dimension of

Vm and whereV is a basis matrix ofVm, and the eigenvalues
of X are the internal eigenvalues ofVm × 0p with respect
to the feedback matrix̂F . Since F̂ is stabilizing for Vm ×
0p, it follows that σ(X) = σ(Â+ B̂ F̂ |Vm ×0p) ⊂ Cg. Thus,

equation (16) yields

[
(A+BF1)V
(C +DF1)V

]
=

[
V X
0

]
, so that

F1 ∈ FΣ(Vm) andσ(A+BF1 |Vm) = σ(X)⊂ Cg. As a result,
Vm is stabilizable with respect toΣ.
These steps can be performed backwards. Indeed, ifVm is
internally stabilizable with respect toΣ and we callF the
friend of Vm such thatσ(A+BF |Vm)⊂Cg, thenV̂m = Vm×

0p is stabilizable for̂Σ, sinceF̂ :=
[

F 0m×p
]
∈ FΣ̂(V̂m)

andσ(Â+ B̂ F̂ | V̂m) ⊂ Cg. This completes the proof.
Remark 1: The stability condition2) in Theorem 1 is very

easy to check from a computational point of view: indeed, if
we denote byV ?

d and byS ?
d the largest output-nulling and

the smallest input-containing subspaces ofΣd , respectively,
by (2) it is found thatVm = minΦ̃(Σd) = V ?

d ∩ S ?
d .

Remark 2: Notice that when the information available on
the disturbancew(t) consists of its sole current measure, i.e.,



when the control law is in the formu(t) = F x(t)+Sw(t), the
structural condition1) in Theorem 1 reduces to the relation

im

[
H
G

]
⊆ (V ? ×0p)+ im

[
B
D

]
,

in this caseSq = S0 being the origin. Hence, as a particular
case the presented approach solves the so-calledmeasurable
signal decoupling problem, [6], when the feedthough matri-
ces are possibly non-zero.
It is also worth noticing that1) encompasses the classical
condition (3) when both the feedthrough matricesD and G
are zero. In fact, it can be proved that the inclusion

im

[
H

0p×r

]
⊆ (V ? ×0p)+ im

[
B

0p×m

]
+ im

[
A
C

]
Sq (17)

is equivalent to imH ⊆ V ? +Sq+1. Suppose in fact thatH
satisfies (17), and letV and Z be basis matrices ofV ? and
Sq, respectively. Letnv and ns be the dimensions ofV ?

and Sq, respectively. It follows that three matricesΞ1 ∈
R

nv×r,Ξ2 ∈ R
m×r andΞ3 ∈ R

ns×r exist such that
[

H
0p×r

]
=

[
V

0p×nv

]
Ξ1 +

[
B

0p×m

]
Ξ2 +

[
A
C

]
Z Ξ3.

It follows that imΞ3 ⊆ ker(C Z), so that the former can be
written as

imH ⊆ V ? + imB+AZ ker(C Z). (18)

On the other hand, it is not difficult to check that the subspace
imB + AZ ker(C Z) is indeedSq+1, since AZ ker(C Z) =
A(imZ ∩ kerC). In fact, x ∈ imZ ∩ kerC if and only if a
vector h exists such thatx = Z h and C x = 0, and the two
together yieldC Z h = 0; this is equivalent tox ∈ Z ker(C Z).
Therefore, (18) can be written as imH ⊆ V ? + A(Sq ∩
kerC)+ imB = V ? +Sq+1 by (11) written with respect to
Σ.

Remark 3: The solution presented for Problem 1 can be
easily adapted to the case when the orderq in (2) is no longer
a prescribed integer but a design parameter. In that case,
since the sequence (10) is monotonically non-decreasing, the
structural solvability condition becomes

im

[
H
G

]
⊆ (V ? ×0p)+ im

[
B
D

]
+

[
A
C

]
S ?. (19)

Hence, (19) is the condition ensuring the existence of an
integerq for which Problem 1 admits solutions.

IV. CONCLUSIONS

Geometric solvability conditions have been presented in
this paper for the disturbance decoupling by state feedback
and PD feedforward action, in the general case when the
model of the plant is non-strictly proper, i.e., when the
feedthrough matrices of the model may differ from the zero
matrices. The approach suggested in [1] consisting of the
insertion of a dummy unit at the output of the given system
in order to obtain an overall strictly proper system has been
exploited in this case only as an intermediate step to derive
solvability conditions expressed in terms of the extended

plant. Afterwards, new solvability conditions involving the
characteristic subspaces of the original system have been
obtained, which generalize the well-known conditions pre-
sented in [1]. A similar analysis leads to a generalization
of the necessary and sufficient solvability condition of [7],
yielding

im

[
H
G

]
⊆ (V ?

g ×0p)+ im

[
B
D

]
+

[
A
C

]
Sq

instead of1)-2) of Theorem 1, whereV ?
g is the stabilizable

output-nulling subspace, see e.g. [11, p.171]. In order to
determine the control law solving Problem 1, both techniques
described in [7] and [1] may be easily adapted to this more
general setting.
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