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Disturbance decoupling by state feedback and PD control law
for systems with direct feedthrough matrices

Lorenzo Ntogramatzidis

Abstract— In this paper new geometric necessary and suf- continuous time, i.e.px(t) = x(t), or the unit time shift in
ficient conditions are provided for the solvability of the exact the discrete time, i.epx(t) =x(t+1). In (1), for allt € T,
disturbance decoupling problem with a control input consisting x(t) eR" represents the state(t) e R the control input and

of a static state feedback and a PD function of the signal to r . .
be rejected, with the requirement of internal stability of the w(t) € R" the disturbance input to be decoupled from the

closed loop. Differently from previous results presented in the Outputy(t) €RP. From now on, we identify thendisturbed
literature on this issue, we will not restrict our attention to  system characterized by the quadrup(é,B,C,D) with the

strictly proper systems. Indegd, both feedthrough matrice§ fom symbol %, and thedisturbed system characterized by the
the c_ontrol and from _the disturbance to the output will be quadruple(A,[B H],C,[D G]) with the symbol=g.
considered to be possibly non-zero. ; L -
The purpose of this paper is finding necessary and sufficient
|. INTRODUCTION AND PROBLEM STATEMENT conditions for the solution of the disturbance decoupling
with internal stability of the closed-loop using a control

In the last thirtyfive years, the so-callegiaometric - jaw involving a state feedback and a PD function of the
proach to systems and control theory has provided valuablgisturbance of a prescribed dege N, i.e., of the form
tools for the understanding of several system-theoretippr T

erties of LTI models and for the solution of many control u(t) = Fx(t) + . Sp'w(t), )
and estimation problems. The first and most famous problem i;
that was studied and solved with geometric techniques Ryhere F ¢ R™M and § € R™ for i € {0,1,...,q}, under

Basile and Marro in their first pioneering paper on thghe standing assumption thatw(t) is bounded for alli
geometric approach [2] was the disturbance decoupling byy 1 ... q}. Our objective can be stated in more precise
state feedback. terms as follows.

Afterwards, many different versions of this problem have problem 1: Find necessary and sufficient conditions for

decoupling with stability of the closed-loop [16], the daeo 1) for all initial conditions and all(t) the outputy(t)
pling of measurable input functions [6] and the disturbance converges to zero dsapproaches infinity;

decoupling by dynamic output feedback [14]. 2) the poles of the closed-loop are all stable, i(A+
The problem dealt with in this paper is the decoupling of BF) C Cq.

an input signal by means of a control function involving an the discrete case, this problem is often referred to as the
static state feedback and a feedforward PD function of ”}ﬁeviewed signal decoupling, see e.g. [1]. A first solution
signal to be rejected, which can be precisely formulated &g this problem withD = Opxm and G = Op,; was given
follows. Consider the LTI system by Willems in [13] in terms of the geometric notion of
px(t) = AX(t) + Bu(t) + Hw(t), almost invariance (see also [12] for further deta|ls). In
(1) that paper, for the problem of the existence of an integer
y(t) = Cx(t) +Du(t) + Gw(t), g€ N for which Problem 1 admits solutions the condition
where A€ R™", B R™™M H ¢ R™", C € RP*", and the imH C 7* + 7% was proposed, wher¢” := sup(¥’ C

; ; kerC|AY C ¥ +imB} and.* :=inf{.¥ DIimB|A(< N
feedth h mat RPxM RPT I
eedthrough matrice® andG e are possibly erC) C .#}. Under the requirement of pole placement of

non-zero. In what follows, whether the underlying systeni1 o "
(1) evolves in continuous or discrete time is irrelevant,anc} e closed loop, such coqd|t|9n becomeerg T The
econd fundamental contribution on this topic was given by

accordingly, the time index set of any signal is denoted by~ " . N
T, on th?eyunderstanding that this rgpreients eitRerin onilla Estrad:?\_and M_alabre in [7], b_y_ taking into account
the continuous time oN in the discrete time. The symbol the more Spec'.f'c requirement of stability of the closedploo
Cy denotes either the open left-half complex plaie in system. In particular, n t_he case M.andG are both Zero,

a necessary and sufficient condition for the solvability of

the continuous time or the open unit di§¢ in the discrete Problem 1 ted. which isel db
time. The operatop denotes either the time derivative in the roblem - was presented, which was COPC'Se y expressed by
means of the geometric inclusion MnC 75" + %41, where
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0 (A+BF|7) C Cq4} and.#441 is the(q+ 1)-th term of the Lemma 1: Problem 1 stated with respect to the non-
sequence of subspace% =0, and . =imB+A(_1N strictly proper systemZ is equivalent to Problem 1
kerC) for i € N\ {0}. stated with respect to the strictly proper systén=
An alternative solution to the same problem, (under t%ﬁ’[ B H ]76 .
same standing assumption of zero feedthrqugh mgtric the one hand, no further details were given in [1]
was presented by Barbagli, Marro and Prattichizzo in [1l,onceming the structure of the solvability conditions hifst
relying on the geometric concept of self-bounded contlle.a5e  On the other hand, the exploitation of this dummy
invariance. By defining witlb(Z) the lattice ofself-bounded  jyteqrator or delay unit, along with the material presented
controlled invariant subspaces of 2 contained in the null- j, 117 would lead to solvability conditions stated in terofs
space ofC, i.e,, the fictitious variableg(t). Hence, the purpose of this paper is
®(2):={¥ CkerC|A¥ C ¥ +imBand? O 7*NnimB}, 1o address this issue, by determining necessary and sofficie
. ...___conditions for the solvability of Problem 1 expressed imter
(see [3]’.[9] and [4,.p.207] for detaﬂs), the cond|t|opsof characteristic subspaces of the original system, anafot
of solvability of the disturbance decoupling problem with

o . . ) the extended system including the dummy unit (5). Hence,
stability by PD a_lctlon were exprgssed in terms of. the main result of this paper is Theorem 1 in Section Il
1) a geometricstructural condition

where, in the general case Bf and G possibly non-zero,
imH C 7"+ %441 (3) new necessary and sufficient conditions written in terms of
the problem data are presented for the solvability of Prable
1, which cannot be trivially deducted from those expressed
Yin:=min®(Zq) is internally stabilizable  (4) in terms of the matrices of the extended modellt will

where ¥4 is the smallest element of the lattids=y) be shown that the structural solvability condition prombse
this second condition meaning that a feedback matriQere encompasses those presented in [13], [7], [1] when the
F exists such thatA+ BF ) %, C ¥n and the eigenval- feedthrough matrice® and G are both zero.

ues of A+ BF restricted to¥%n, are stable, in symbols Notice that the present is not the first attempt to extend ge-
0 (A+BF | #) C Cq ’ ometric results and techniques to non-strictly properesyst

see e.g. [8] and [10] for the model matching problem and for
ir_ue disturbance decoupling with measurement feedback and
internal stability of the closed loop, respectively). Howe

to date a similar extension to the decoupling with state-
feedback and PD feedforward action has been neglected.

2) the so-calledstability condition

Checking the solvability of the decoupling problem throug
these conditions enables the burden deriving from the co
putation of eigenspaces in the determination’gf to be
avoided, as pointed out in [5]. Indee#; can be computed
as the intersectionm = ¥* N ./, where.7 is the limit of
the sequence’y =0, and.% =im[B H|+A(_1 NkerC),

i € N\ {0}, which converges in at moststeps; hence, only
the basic tools and algorithms of the geometric approach are| this section some fundamental definitions and results
necessary for the implementation of such solution. Morgovepf the geometric approach which are used in the sequel are
the dimension of the resolvent subspatg is smaller than recalled (for a detailed discussion on these topics we tefer
that of 7 in the solution of [7], since in generalm € 75 [4], [11], [15]). First, recall that amutput-nulling subspace

holds. In the same paper, a hint on how to tackle thig of s = (A,B,C,D) is a subspace dk" satisfying
problem when the feedthrough matrices are not zero has been

Il. GEOMETRIC PRELIMINARIES

proposed, relying on the contrivance of solving a slightly A c : B
modified decoupling problem, in which an integrator in the C 7S (7 % 0p)+im D |’ )
continuous time or a unit delay in the discrete time, desckib ] )
by The set of output-nulling subspac#§%) of X is an upper
semi-lattice with respect to subspace addition. Thus, tine s
pz(t) =y(t), of all the output-nulling subspaces Bfis the largest output-
h(t) = z(t), nulling subspace ok, and will be denoted by *. For the

is inserted at the output of the original system and by sglvinCase where the feedthrough matiiXis zero, the output-

the same decoupling problem with respect to the overaiulling subspace coincides with the controlled invariant
strictly proper system subspace contained in the null-space of maiixtroduced

by Basile and Marro in [2]. In the following lemma, the

ps(t) = As(t) + Bu(t) + Hw(t), ©) most important properties of the output-nulling subspaces
h(t) = Cs(t), are presented.
Lemma 2: The following results hold:
. Xt | A A Op| g Bl 4. . . . .
wheres(t) := ) A | e Opp |' 27| D" H = « The subspacé is output-nulling fors if and only if a

H]l =« _ . matrix F € R™*" exists such that
([G , C:=[0pxn lpxp]. In fact, the following straight-
o

rward result holds. (A+BF)7 C 7 Cker(C+DF). (7)



« The sequence of subspacgs)icy described by the  Lemma 4. Consider the sequende”)icy given by (10)

recurrence and the sequence#)icn described by
Yo = R", . { 5%0 = 0n+/|ga R R (11)
Vo= [é} ((%_1xop)+im{gb, i >0, S = imB+A(SA_1nkerC), ieN\{0},

(8) where A B and C have been defined in Section I. For all

is monotonically non-increasing. Moreover, there exists€ N there holds

k<n-—1 such that¥;1="7k. For suchk the identity A I

¥ * =" holds. ZiNim opxn =7 x Op. (12)
Any matrix F satisfying (7) will be referred to as fiiend  Proof: We proceed by induction. Whenr= 0, the statement
of the output-nulling subspac#’. We denote bygs(?) s clearly true. Let us now suppose that it holds for a given
the set of friends of the output-nulling subspage Let i—1, and let us prove the same fact forBy definition of
FegFs(¥): the output-nulling reachability subspace % C and by the inductive assumption it is found that

on ¥ is the smallest(A+BF)-invariant subspace oR"

containing the subspact NBkerD. We denote byZ* the S = ImB+A(H-1 N kerC)
output-nulling reachability subspace ofi*, ie., Z* = — imB+A(S 1 Nim { In })
<A+ BF,7*NBkerD>. For F € §s(7), the eigenvalues Opxn

of (A+BF) restricted to?, i.e. o(A+BF|¥), can be
split into two sets: the eigenvalues @A+ BF | %y ) are all
freely assignable by a suitable choice of the friehdof
¥ in Fs(¥) (provided that the eigenvalues to be assigneH'ence’ we have shown that
are mirrored with respect to the real axis). The eigenvalues ~ . In I A . In

o(A+BF | ¥ /%y) on the contrary do not depend on the Zinim [ ] = ('mB+ { c } :%71) nim [ ] .
choice ofF; if 0 (A+BF | ¥ /%y ) C Cy, the output-nulling
¥ is said to beinternally stabilizable. The dual concept is

— imB4+A(S_1x0p) =imB+ {é] S

Opxn Opxn

Now, we want to prove that, given a matrix baZisf .%4_1,

the input-containing subspace: a subspateof R" is said there holds
to beinput-containing if (im B+ [ é} (5471) Aim {Oln ] _
pxn
3
[A B]((#xEMnker[C D])cs. (9 —[AZ B]ker[CZ D ]x0, ~

The set of all input-containing subspaces 2fis a lower ; X ( = | A , ) . In
semi-lattice with respect to subspace intersection. Tteg-in To this end, let y € (imB+ C Fi-1)nim Opxn |’

section of all input-containing subspaces Dfis therefore such thatx € R" and y € RP. Hence, on the one hand,

the smallest input-containing subspace Xf and will be  two vectorsk; andk, exist such that X | _ | A Zky +

denoted by*. In the case whel is zero,.#* reduces to y C

the smallestA, C)-conditioned invariant subspace containing[ B ko, and, on the othery = 0, the two leading
the range ofB, [2]. The counterpart of Lemma 1 for input-

containing subspaces clearly holds; however, here we aig [Cz D] { ke ] — 0. As a result, we findx =
only interested in the dual of property (8) in Lemma 2, which ko

is as follows. [AZ B] ki | o [ AZ B lker[CZ D] ltis easy

. . ; ka
Lemma 3: The sequence of subspace)icy described to establish that these steps can be performed in the reiverse
by the recurrence

order, hence (13) holds with the equality sign. The last fact
{ Yo = Op, to be proved is that

A=A B]((%,lme)mker[c D]), i>0, S x0,=[ AZ B]ker[CZ D ]xO0p, (14)
(10) . .

is monotonically non-decreasing. Moreover, there exisf® that (13) and (14) yield (12). To this end, I§te

k<n—1 such that.% 1=%. For suchk there holds “ix0p=[A B ] ((yi—lXRm)ﬂker[ c D ]) a vec-

S =S tor { :; } exists such that = Al1 +Bl,, where { ::} €

I
The following lemma and corollary will be useful in the % _,;, we can defind; such thatl, = Ziy. It follows that
determination of a structural condition for the solution of] I3 ] eker[ CZ D], sothaté — [ AZ B ] { Il} c

I1l. SOLUTION OF PROBLEM 1 Sy xR™ and [C D ] {h} — 0. Hence, sincd; ¢

Problem 1. As a second step, the stability requirement will |, I

be taken into account. AZ B |ker[ CZ D ]. Again, by performing the same




steps in the reversed order, (14) follows. This completes ttare respectively the largest controlled invariant subspac

proof. |
Corollary 1: Consider the sequende)icy in (10) and
the sequencey),eN in (11). Then

7 —im gl Alsa vien(on @5
Proof: The proot follows straightforwardly from Lemma 4.
Indeed,

’t s [ B A Onxp I

si=im | D ]JF{C Opxp} (y vim [Opxnb
. [B A Onep :
_|m_ :|+|:C Opxp:|(§ﬂ|1><0p)
[ B A
= im -D}-F{C]e;ﬂil-

Now we introduce a lattice that will play a key role in the

determination of a stability condition for the solvabilibf
Problem 1. Let the seb(X) be defined as

D(2) = {7/ €V (3)

¥ % 0p 2 (¥* x 0p) Nim [ : } }

The following preliminary result holds.

Lemma 5: The identities? (2) = {# x0p | ¥ € ¥(2)}
and®(3) = {¥ x 0, | ¥ € B(Z)} hold.
Proof: It is first proved that¥ () C {# x Op |V eV (%)}
Let ¥ := YIX Vs € 7/(3) be such that/; and ¥, are sub-
spaces ofR" andRP, respectively. Since; x ¥ C kerC =
ker[ Opxn lpxp ], it follows that #5 = 0p. From A(#; x

Op)g A//lg<7/1xop)+

|mD

(71 x 0p) +imB it follows that

} so that¥; € ¥ (Z). The opposite inclusion, i.e.,

V() 2 {¥ x0p| ¥ € ¥(5)}, is now straightforward, and ¢an be written as

(A,B) contained in the null space & and the smallest
conditioned invariant subspace(iA,C) containing the image
of B, see e.g. [4, Theorem 4.1.4]. By Lemma 4 it follows
that

min®(Z) = (¥* x 0p)N.S*
= (#*x0p)Nim [OI“ }05’?*
pxn
= (V* XOp)m(y* XOp) = ('V*ﬂy*) XOp

As a consequence of Lemma 5, it is found that @i&) is
indeed?™ N.7*. |

Theorem 1: Let the pair(A, B) be stabilizable. Problem 1
is solvable if and only if

1) im{g}C(“I/*xop)—kim{g]—k[é}yq,

Ym = min ®(Z4) is internally stabilizable.
Proof: By virtue of Lemma 1 and by taking [1, Theorem
3.2] into account, it is easily found that Problem 1 admits
solutions if and only if inH C 7~ +<5”q+1, where ¥* =
max? (%) andyqﬂ is the(g+1)-th element of the sequence
(12), and¥m is internally stabilizable, wheréfm_ min®( )
By virtue of Corollary 1 the inclusion it C 7/*+5ﬂq+1 is
equivalent to thgstructural conditid). Hence, our aim now
is to show that/n, is internally stabilizable with respect to
Z if and only if such is”m, with respect to systen. Let
”//m = 7mx Op be internally stabilizable with respect o Let
F= [ Fi F2 | €35(¥mx0p) be such thatr(A+BF | ¥ x
Op) C Cg. The inclusion

~ A+BF, B
16
C Pm % Op, (16)
A+BFy BFR v vy
C+DF DR |10 '

can be easily proved by following these steps backwards. Agr a suitable matrixX € R™", whereh is the dimension of

a consequence, it is now easily seen thiat: = maxCD(Z)
can be written as/* x Op, where?* := max®(Z).

Let us now prove thatb(3) C {# x 0p | ¥ € ®(2)}. Let
¥ = ¥ x 75 be an element ofd(3). Since ¥4 x ¥ €
¥ (%), as already seets = 0p and 71 € 7(Z). Now, since

Y* = 9% x0p, from ¥ D ¥*Nim [ g } it follows that

Y1 x0p 2 (¥* x 0p)Nim [ , S0 that¥; € ®(Z). Again,

the opposite inclusio®(Z) D {¥ x Op| 7 € ®(Z)} is now

straightforward. |
Corollary 2: The set(®(Z),+,N; <) is a non-distributive

modular lattice. It admits a maximum element, whict¥is,

and a minimum element, which ig*N.*.

Proof:

O w

¥m and wheré/ is a basis matrix o¥/f,, and the eigenvalues
of X are the internal e|genvalues o, x Op with respect
to the feedback matrif. SlnceF _is stabilizing for ¥m x

Op, it follows that o(X) = 0(A+BF | ¥ x 0p) C Cg. Thus,

: : (A+BF)V | [ VX
equation (16) welds{ C+DR)V |~ | o
F1 € 3=(m) ando(A+BF | 7m) = 0(X) C Cq. As a resullt,
Ym is stabilizable with respect ta.

These steps can be performed backwards. Indeet, ifs
internally stabilizable with respect ta and we callF the
friend of ¥4, such thata(A+ BF | 7m) C Cy, then ¥, = Vm X
Op is stabilizable fors, sinceF := [ F Omxp } € 3’2(7/m)
and o(A+BF | %) C Cy. This completes the proof. W
Remark 1. The stability conditior2) in Theorem 1 is very

, SO that

The proof is a direct consequence of Lemma 5easy to check from a computational point of view: indeed, if

since (®(%),+,N;C) is a non-distributive modular lattice, we denote by#;* and by.#} the largest output-nulling and

[4, p.207]. Moreover, by Lemma 5 it follows that™ =
max®(%) if and only if #* x 0p = max®(Z). We only
have to show that mie(Z) = »*n.7* It is a well-
known fact that mib(Z) = ¥*N.#*, where ¥* and .#*

the smallest input-containing subspaces>gf respectively,
by (2) it is found that/y, = min&)(zd) =77 NS,

Remark 2: Notice that when the information available on
the disturbancev(t) consists of its sole current measure, i.e.,



when the control law is in the form(t) = F x(t) + Sw(t), the

plant. Afterwards, new solvability conditions involvinge

structural conditior) in Theorem 1 reduces to the relationcharacteristic subspaces of the original system have been

im [ g ] C (7 x0p)+im [ g ],

obtained, which generalize the well-known conditions pre-
sented in [1]. A similar analysis leads to a generalization
of the necessary and sufficient solvability condition of, [7]

in this case”y = % being the origin. Hence, as a particularyielding

case the presented approach solves the so-cataslirable

signal decoupling problem, [6], when the feedthough matri-

ces are possibly non-zero.

A

im{g]g(“/@*xop)—kim[g]—i—[c]j’q

It is also worth noticing thatl) encompasses the classicalinstead of1)-2) of Theorem 1, where/j" is the stabilizable

condition (3) when both the feedthrough matrié@sand G
are zero. In fact, it can be proved that the inclusion

output-nulling subspace, see e.g. [11, p.171]. In order to
determine the control law solving Problem 1, both techrsque
described in [7] and [1] may be easily adapted to this more

im { H B ]Jrim [ A
Opsxr Opxm C

is equivalent to inH C 7™+ .%4,1. Suppose in fact that

} C (7% x 0p) +im [ } S (A7)

satisfies (17), and leY andZ be basis matrices of* and [
4 respectively. Letn, and ns be the dimensions of™*
and .7, respectively. It follows that three matrices, € [2]
RWV*I =, ¢ R™T and =3 € R™*" exist such that

e P e P R )

Opur | [Opwny | 7 [ Opxm] 27| C|77%
It follows that im=3 C ker(CZ), so that the former can be 4
written as

(5]

imH C ¥*+imB+AZker(C2). (18)

On the other hand, it is not difficult to check that the subspac [6]
imB+ AZker(CZ) is indeed.?441, since AZker(CZ) =

-
A(imZ N kerC). In fact, x e imzZ N kerC if and only if a 7
vector h exists such thak=Zh andCx =0, and the two

together yieldCZh = 0; this is equivalent tx € Z ker(CZ). (8]

Therefore, (18) can be written as HnC 7* + A(7 N
kerC) +imB = ¥* + .%4+1 by (11) written with respect to
>

Remark 3: The solution presented for Problem 1 can beig)
easily adapted to the case when the ogier (2) is no longer
a prescribed integer but a design parameter. In that case,
since the sequence (10) is monotonically non-decreadirg, [11]
structural solvability condition becomes

im[g] g("f/*xop)+im{g}+{é]y*. (19)

Hence, (19) is the condition ensuring the existence of andl
integerq for which Problem 1 admits solutions. [14]

[12]

IV. CONCLUSIONS

Geometric solvability conditions have been presented iﬁ%s]
this paper for the disturbance decoupling by state feedbagilé]
and PD feedforward action, in the general case when the
model of the plant is non-strictly proper, i.e., when the
feedthrough matrices of the model may differ from the zero
matrices. The approach suggested in [1] consisting of the
insertion of a dummy unit at the output of the given system
in order to obtain an overall strictly proper system has been
exploited in this case only as an intermediate step to derive
solvability conditions expressed in terms of the extended

general setting.
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