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Abstract— We present an approximate optimization ap-
proach to the computation of stabilizing feedback laws using a
partitioning of the state space and a corresponding approxima-
tion of the optimal value function of the problem. By including
the discretization errors into the optimal control formulation we
are able to compute approximate optimal value functions which
preserve the Lyapunov function property and corresponding
optimally stabilizing feedback laws which are constant on each
partition element. The actual computation uses efficient graph
theoretic algorithms.

I. INTRODUCTION

Optimization based stabilization schemes, either based on
infinite horizon or on receding finite time horizon optimal
control formulations, can be implemented using online or
offline optimization techniques. In this paper we consider the
latter technique, in which the resulting optimal value function
and the optimal feedback law is computed offline and stored.
This approach has received considerable attention during the
last years, often under the name of explicit optimization
schemes (see, e.g., [6] for a survey), in particular for hybrid
systems or robust control problems where the resulting opti-
mization problems are typically difficult to be solved online.
Common feature of many of these approaches is that the
optimal value function can be used as a Lyapunov function
in order to ensure asymptotic stability of the resulting closed
loop system.

While under suitable structural assumptions on the un-
derlying system the optimization problem can in principle
be solved exactly, e.g., in the case of constrained linear
or piecewise affine systems [1], [14], [3], in the general
nonlinear setting this is not feasible and approximations have
to be used, typically involving some kind of partitioning
of the state space. In order to guarantee the stabilizing
property of the resulting approximately optimal feedback
law, the computed approximately optimal value function
should still be a Lyapunov function, i.e., it should decay
along the approximately optimal solution. This property can
be ensured in various ways, e.g., by using adaptive state
partitioning strategies based on numerical error estimation
techniques in order to ensure that the local error smaller
than the decay of the exact Lyapunov function [7], [10],
[15]. Although attractive due to its relation to approximation
theoretic considerations, this approach may lead to rather
fine (and thus memory consuming) partitions because the
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Lyapunov function property can only be established via suf-
ficiently small local errors. Another approach is to design the
partitioning in such a way that the approximated dynamics
on the partition are in a suitable sense consistent with the
exact dynamics, cf. e.g. [4], [5]. Here systems theoretic
arguments can be used in order to establish stability on rather
coarse partitions, however, the approach may lead to highly
complicated partition structures.

In this paper we propose a different approach in order to
preserve the Lyapunov function property in the approxima-
tion process. We consider simple state space partitionings and
ensure consistency of the approximate dynamics by interpret-
ing the discretization errors introduced by the partitioning as
perturbations. These perturbations are then explicitly taken
into account in the optimization which consequently becomes
a dynamic game, i.e., a min–max problem. Our approach
is developed within the graph theoretic setting introduced
in [11] and applied to stabilization problems in [7], which
relies on using Dijkstra’s Algorithm for the resulting optimal
control problem on the graph. Cornerstone of our approach is
the observation that the key idea of Dijkstra’s Algorithm, i.e.,
the reformulation of the minimization as a computationally
efficiently solvable sorting problem, can be carried over to
the min–max setting, cf. [9]. We prove that this approach
indeed yields the desired Lyapunov function property of
the approximated optimal value function. Furthermore, we
show that the corresponding stabilizing feedback law is
actually constant on each partition element. In particular,
while in [11], [7], [9] the partitioning was interpreted as a dis-
cretization procedure in the spirit of the numerical analysis
literature, this allows for a re-interpretation of the partitioning
as a quantization of the continuous state space which opens
the way for a variety of potential new applications for our
method which we discuss at the end of the paper.

The paper is organized as follows: In Section II we pose
the problem and summarize the main results from [11], [7],
[9]. In Section III we develop our approach by interpreting
the discretization error as a perturbation which acts as an
opponent in the “stabilization game” and prove that the
resulting optimal value function indeed has the Lyapunov
function property and that the stabilizing feedback law can
be chosen piecewise constant on each partition element.
In Section IV we illustrate our approach by a numerical
example. Finally, in Section V we give some conclusions
and discuss further applications of our approach which are
subject of ongoing research.



II. SETTING AND PRELIMINARIES

Our goal is to optimally stabilize the origin of the discrete-
time control system

xk+1 = f(xk, uk), k = 0, 1, . . . , (1)

subject to the continuous instantaneous cost g(xk, uk) ≥ 0.
To this end, we would like to construct an approximate

optimal feedback law u(xk) such that the origin is an
asymptotically stable equilibrium for the resulting closed
loop system

xk+1 = f(xk, u(xk)), k = 0, 1, . . . (2)

For simplicity of exposition, in this paper we consider a
compact state space X ⊂ Rd but we remark that this setting
is easily extended to more general compact metric spaces X
which may in particular contain discrete state components,
i.e., (1) may be a hybrid system, cf. [8] for details on how to
treat hybrid systems within our approach. Likewise, while a
typical system class we consider are sampled-data continuous
time systems, we do not explicitly elaborate the sampled-data
nature of the system but rather state our problem in discrete
time, keeping in mind that the instantaneous cost g(xk, uk)
may contain integral expressions along the continuous time
solution over a sampling interval. Finally, we note that our
approach is easily extended to the stabilization of arbitrary
compact target sets T , see [8].

A. The optimality principle

In what follows, we assume the map f : X×U → Rd to be
continuous on some compact subset X×U ⊂ Rd×Rm which
contains the origin, f(0, 0) = 0 and infu∈U g(x, u) > 0 for
all x 6= 0.

For a given control sequence u ∈ UN there is a unique
associated trajectory (xk(x,u))k∈N of (1). Let U(x) = {u ∈
UN : xk(x,u) → 0} denote the set of asymptotically
controlling sequences for x ∈ X and S = {x ∈ X : U(x) 6=
∅} the stabilizable subset S ⊂ X . The total cost along a
controlled trajectory is given by

J(x,u) =
∞∑

k=0

g(xk(x,u), uk) ∈ [0,∞]. (3)

Our feedback construction will be based on an approx-
imation of the (optimal) value function V : S → [0,∞],
V (x) = infu∈U(x) J(x,u), using the fact that V satisfies
the optimality principle

V (x) = inf
u∈U

{g(x, u) + V (f(x, u))} =: L[V ](x). (4)

The operator L acting on real valued functions on X is
called the dynamic programming operator and an alternative
characterization of V is that it is the unique fixed point of the
equation V = L[V ] which satisfied the boundary condition
V (0) = 0.

Using the optimality principle, an optimal stabilizing feed-
back is given by

u(x) = argmin
u∈U

{g(x, u) + V (f(x, u))} , (5)

whenever this minimum exists. The key property in order to
prove asymptotic stability is the fact that by the (obvious)
inequality

V (x) ≥ g(x, u(x)) + V (f(x, u(x))) (6)

the optimal value function is a Lyapunov function of the
closed loop system, provided V is finite, positive definite
and proper.1

B. Direct discretization

In this section we sketch the discretization procedure pro-
posed in [11]. We are going to approximate V by functions
which are piecewise constant. Let P be a partition of X ,
i.e. a collection of pairwise disjoint subsets P of X which
covers the state space X . For a state x ∈ X we let ρ(x) ∈ P
denote the element in the partition which contains x. In
order to simplify notation, in the sequel we identify any
subset {P1, . . . , Pk} ⊆ P with the corresponding subset⋃

i=1,...k Pi ⊆ X , and vice versa.
Let RP be the subspace of the space RX of all real valued

functions on X which are piecewise constant on the elements
of the partition P . The map

ϕ[v](x) = inf
x′∈ρ(x)

v(x′)

is a projection from RX onto RP . Using this projection, we
can define the discretized dynamic programming operator

LP = ϕ ◦ L : RP → RP .

Under the boundary condition VP(x) = 0 for all x ∈ ρ(0)
this operator has a unique fixed point VP — the approximate
(optimal) value function.

Since VP is constant on each partition element P ∈ P , we
write VP(P ) for the value of VP on P . Using this notation,
one can show (see [9]) that the fixed point equation VP =
LP [VP ] is equivalent to the discrete optimality principle

VP(P ) = min
P ′∈F(P )

{G(P, P ′) + VP(P ′)}, (7)

where the map F is given by

F(P ) = ρ(f(P,U)) = {P ′ ∈ P : P ′ ∩ f(P,U) 6= ∅} (8)

and the cost function G by

G(P, P ′) = inf{g(x, u) | x ∈ P, f(x, u) ∈ P ′, u ∈ U}. (9)

Note that the approximate value function VP(P ) is the length
of the shortest path from P to ρ(0) in the weighted directed
graph (P, E), where the set of edges is defined by E =
{(P, P ′) : P ′ ∈ F(P )} and the edge (P, P ′) is weighted by
G(P, P ′). As such, it can be computed by, e.g., Dijkstra’s
algorithm, cf. [11].

1These properties of V can be ensured by suitable asymptotic controlla-
bility properties and bounds on g whose details are not important for the
considerations in this paper.



C. Dynamic games

As we will see later, in many cases the direct discretization
described above is not very efficient. It will turn out that
a more efficient discretization procedure can be obtained
by employing ideas from dynamic game theory applied to
perturbed system — even if our basic system (1) does not
contain perturbations. In this section we briefly sketch how
our approach can be extended to dynamic games, for details
we refer to [9].

A dynamic game is a map F : X × U × W → X ,
where X ⊂ Rd is a closed set, U ⊂ Rm, W ∈ R`,
together with a cost function G : X × U × W → [0,∞).
For a given initial state x ∈ X , a given control sequence
u = (uk)k∈N ∈ UN and a given perturbation sequence
w = (wk)k∈N ∈ W N, the trajectory of the game is given
by the sequence (xk(x,u,w))k∈N with

xk+1 = F (xk, uk, wk), k = 0, 1, 2, . . . .

Specifying a target set T , we define the accumulated cost as

JF,G(x,u,w) =
k(T,x,uw)∑

k=0

G(xk(x,u,w), uk, wk),

with k(T, x,uw) := inf{k ≥ 0 |xk(x,u,w) ∈ T}. This
yields the upper value function

VF,G(x) = sup
β∈B

inf
u∈UN

JF,G(x,u, β(u)), x ∈ X, (10)

of this game. Here, B denotes the set of all nonanticipating
strategies β : UN → W N, i.e. all strategies β : UN → W N

satisfying

uk = u′k ∀k ≤ K ⇒ β(u)k = β(u′)k ∀k ≤ K

for any two control sequences u = (uk)k,u′ = (u′k)k ∈ UN.
By standard dynamic programming arguments [2] one sees
that this function fulfills and is uniquely determined by the
optimality principle

VF,G(x) = inf
u∈U

sup
w∈W

{G(x, u, w) + VF,G(F (x, u, w))}
(11)

for x /∈ T together with the boundary condition VF,G|T ≡ 0.
If G does not depend on w, then this equation can be written
as

VF,G(x) = inf
u∈U

{
G(x, u) + sup

x′∈F (x,u,W )

VF,G(x′)

}
. (12)

Note that in this equation the parameterization of F with
w is not needed any more since it is sufficient to know the
set valued image F (x, u, W ). The discretization described
in the following section will be based on this observation.

D. Discretization of the dynamic game

We employ the same approach as in Section II-B in order
to discretize (11). Note that the setting in Section II-B can
be seen as a special case of the more general situation here
using W = {0} and f(x, u, w) = f(x, u), which is why
we keep the same notation. In our perturbed setup, one can

show [9] that the corresponding discrete optimality principle
is given by

VP(P ) = inf
N∈F(P )

{
G(P,N ) + sup

P ′∈N
VP(P ′)

}
(13)

for P ∩ T = ∅ with boundary condition VP(P ) = 0 for
P ∩ T 6= ∅, where

F(P ) = {ρ(F (x, u, W )) : (x, u) ∈ P × U}. (14)

and

G(P,N ) = inf
{

G(x, u) :
(x, u) ∈ P × U,
ρ(F (x, u, W )) = N

}
.

Note the difference of F(P ) compared to (8): while in (8)
F(P ) was a subset of P , in (14) F(P ) now is a set of subsets
N of P . Thus, the map F , together with the cost function G
can be interpreted as a directed weighted hypergraph (P, E)
with the set E ⊂ P × 2P of hyperedges given by

E = {(P,N ) : N ∈ F(P )} .

Unlike other computational methods for optimal control
problems, it was shown in [9] that the main trick in Dijkstra’s
method, i.e., the reformulation of the minimization as a
computationally efficiently solvable sorting problem, can be
carried over to the min–max setting without increasing the
computational complexity, see [16] for details.

Denoting T := {P ∈ P : P ∩ T 6= ∅}, the algorithm
reads:

Algorithm 1: MIN–MAX DIJKSTRA((P, E),G, T )
1 for each P ∈ P set V (P ) := ∞
2 for each P ∈ T set V (P ) := 0
3 Q := P
4 while Q 6= ∅
5 P := argminP ′∈Q V (P ′)
6 Q := Q\{P}
7 for each (Q,N ) ∈ E with P ∈ N
8 if N ⊂ P\Q then
9 if V (Q) > G(Q,N ) + V (P ) then
10 V (Q) := G(Q,N ) + V (P )

III. THE DISCRETIZATION AS A PERTURBATION

Consider the feedback that results from the optimality
principle (5) using the directly discretized approximate value
function VP from (7), i.e.,

uP(x) = argmin
u∈U

{g(x, u) + VP(f(x, u))} .

It was shown in [7] that this feedback will practically stabi-
lize the system under suitable asymptotic controllability con-
ditions. Numerical experiments (e.g., the one in Section IV,
below), however, reveal that typically a rather fine partition is
needed in order to achieve stability of the closed loop system.
Furthermore, even on this fine partition, the approximate
optimal value function is not a Lyapunov function for the
closed loop system, i.e. it does not decay monotonically
along system trajectories. The reason is that the approximate
optimal value function is rather heavily underestimated by
the above discretization scheme. Whenever the trajectory



of the closed loop system enters a certain element of the
partition, it may be impossible to reach another element with
a lower value from the current state (but it is possible when
starting from another state in the same element). Formally,
this is reflected by the two inequalities

VP(x) ≤ V (x) (15)

and

VP(x) ≤ min
u∈U

{g(x, u) + VP(f(x, u))} (16)

= g(x, uP(x)) + VP(f(x, uP(x)))

which were shown in [11], [7]. In terms of the Lyapunov
function property (6), inequality (16) delivers exactly the
opposite than what is needed in order to prove asymptotic
stability.

In order to cope with this phenomenon — i.e., in order
to construct an approximation which satisfies (6) — we are
going to use the dynamic game formulation outlined above.
The idea is to additionally incorporate the discretization
error as a perturbation of the original control system. More
precisely, in our context, instead of dealing with the single-
valued system x 7→ f(x, u(x)), we consider the multi-valued
system x 7→ f(ρ(x), u(x)). When computing the value of a
given state x under the multi-valued dynamics, one assumes
the “worst case” and sums the one step cost g(x, u(x)) with
the maximum of V over the set f(ρ(x), u(x)).

A. The discretization is the opponent

Let us be more precise: we fix a partition P , pick a target
set T 3 0 and consider a dynamic game with

F (x, u, W ) = f(ρ(x), u) (17)

for every (x, u) and define

G(x, u) = sup
x′∈ρ(x)

g(x, u) (18)

where f and g are the control system and the instantaneous
cost defined in Section II-A. Observe that we do not need to
construct a parameterization F (x, u, w) for w ∈ W because,
as noted above, in the discretization this parameterization is
not needed anyway.

Using this specification of F and G, the discretization
from Section II-D leads to the graph map

F(P ) = {ρ(f(P, u)) : u ∈ U} (19)

and the weights

G(P,N ) = inf
{

sup
x∈P

g(x, u) : u ∈ U, f(P, u) = N
}

(20)

which can be used in order to define an approximate optimal
value function VP according to (13). By enlarging the target
set T , if necessary, we can assume that T is a union of
partition elements P ∈ P , i.e., T ⊂ P .

The following theorem shows the crucial properties of
this approximate value function VP , in particular, that this
function satisfies the opposite inequalities compared to (15),

(16), when the terminal set T is appropriately included in
the formulation.

Theorem 1: Let V denote the optimal value function of
the optimal control problem (1), (3) with cost function g
and let VP denote the approximate optimal value function
of the game F,G given by (17), (18) on a given partition P
with target set T ⊂ P with 0 ∈ T . Then,

V (x)−max
y∈T

V (y) ≤ VP(x) = VF,G(x), (21)

i.e. VP coincides with VF,G and is an upper bound for V −
max V |T . Furthermore, VP satisfies

VP(x) ≥ min
u∈U

{g(x, u) + VP(f(x, u))} (22)

for all x ∈ X \ T .
Proof: We first note that VF,G is actually constant on

the elements of the partition P . In fact, on T this immediately
holds since T is a union of partition elements, while outside
T by definition of the game F,G we have

VF,G(x)

= inf
u∈U

{
sup

x′∈ρ(x)

g(x′, u) + sup
x′∈f(ρ(x),u)

VF,G(x′)

}
,

so that infx′∈ρ(x) VF,G(x′) = VF,G(x). On the other hand,
according to [9, Proposition 4],

VP(x) = inf
x′∈ρ(x)

VF,G(x′),

so that VP = VF,G which shows the equality in (21). Now
for x /∈ T the equation (12) yields

VF,G(x) = inf
u∈U

sup
x′∈ρ(x)

{g(x′, u) + VF,G(f(x′, u))}

≥ min
u∈U

{g(x, u) + VF,G(f(x, u))} (23)

which shows (22). It remains to show the inequality in
(21). In order to prove this inequality we order the elements
P1, P2, . . . ∈ P such that i ≥ j implies VP(Pi) ≥ VP(Pj).

Since infu∈U g(x, u) > 0, the equality VP(Pi) = 0 is
equivalent to Pi ⊆ T . By the choice of our ordering this
implies that there exists i∗ ≥ 1 such that Pi ⊆ T ⇔ i ∈
{1, . . . , i∗} and consequently the inequality in (21) holds for
x ∈ P1, . . . , Pi∗ .

Now we proceed by induction: fix some i ∈ N, assume the
inequality in (21) holds for x ∈ P1, . . . , Pi−1 and consider
x ∈ Pi. If VP(Pi) = ∞ there is nothing to show. Otherwise,
since V satisfies the dynamic programming principle, using
expression (23) we obtain

V (x)− VF,G(x) ≤ inf
u∈U

{g(x, u) + V (f(x, u))}

− min
u∈U

{g(x, u) + VF,G(f(x, u))}

≤ V (f(x, u∗))− VF,G(f(x, u∗))

where u∗ ∈ U realizes the minimum in (23). Now, from
g(x, u∗) > 0 we obtain VF,G(f(x, u∗)) < VF,G(x) implying
f(x, u∗) ∈ Pj for some j < i. Since by the induction
assumption the inequality in (21) holds on Pj , this implies
that it also holds on Pi which finishes the induction step.



B. The feedback is the shortest path

In principle, the feedback value for each x can now be
obtained by taking the argmin in (22). However, the specific
structure of our approximation allows for a choice of uP
which, just as VP , is actually constant on each partition
element. To this end we define

uP(x) = argmin
u∈U

{
G(x, u) + sup

x′∈F (x,u,W )

VP(x′)

}
.

Due to the construction of the game F,G, this feedback is
indeed constant in each partition element. Moreover, we can
directly extract uP from the min–max Dijkstra Algorithm 1
by proceeding as follows: if we associate the minimizing
control value u(P,N ) to each hyperedge (P,N ),

u(P,N )

= argmin
u∈U

{
sup
x∈P

g(x, u) : u ∈ U, ρ(f(P, u)) = N
}

,

then this feedback is given by

uP(x) = u(ρ(x),N (ρ(x))), (24)

where

N (P ) = argmin
N∈F(P )

{
G(P,N ) + sup

N∈N
VP(N)

}
is defining the successor hypernode with minimal value for
each node in the hypergraph defined by F .

Note that u(P,N ) as well as N (P ) can be computed
offline. The computation of N (P ) can be inserted into the
min–max Dijkstra Algorithm 1 just like the computation of
the successor node on the shortest path in the standard Di-
jkstra algorithm. The augmented algorithm reads as follows:

Algorithm 2: MIN–MAX DIJKSTRA WITH FEEDBACK
((P, E),G, T )
1 for each P ∈ P set V (P ) := ∞ and N (P ) := ∅
2 for each P ∈ T set V (P ) := 0
3 Q := P
4 while Q 6= ∅
5 P := argminP ′∈Q V (P ′)
6 Q := Q\{P}
7 for each (Q,N ) ∈ E with P ∈ N
8 if N ⊂ P\Q then
9 if V (Q) > G(Q,N ) + V (P ) then
10 V (Q) := G(Q,N ) + V (P )
11 N (Q) := N

Once u(P,N (P )) has been computed for every partition
element, the only online computation that remains to do be
done is the determination of the partition element for each
state on the feedback trajectory. As described in [9] this can
be done efficiently by storing the partition in a binary tree.

C. Behavior of the closed loop system

Finally, we can now state the following theorem on the
properties of the feedback law uP(x) constructed in the last
section.

Theorem 2: Consider system (1), a target set T ⊂ P
with 0 ∈ T and the approximate optimal value function

VP defined via (13), (19), (20). Denote the trajectory of the
closed loop system (2) with feedback u = uP from (24) by
xk and assume VP(x0) < ∞.

Then there exists k∗ ∈ N such that

VP(xk) ≥ g(xk, uP(xk))+VP(xk+1), k ∈ {0, . . . , k∗−1},

xk∗ ∈ T and xk ∈ D, k > k∗

where D := {x ∈ X : VP(x) ≤ ν} and

ν := max
P⊆T

sup
N∈N (P )

VP(N),

i.e., the closed loop trajectory enters the target set T at time
k∗ and stays in the sublevel set D, afterwards.

Proof: From the construction of uP we immediately
obtain the inequality

VP(xk) ≥ g(xk, uP(xk)) + VP(xk+1) (25)

for all k ∈ N0 with xk ∈ X \ T . This implies the
existence of k∗ such that the first two properties hold since
g(xk, uP(xk)) > 0 for xk 6∈ T , VP is piecewise constant and
equals zero only on T . For xk ∈ P ⊆ T , the construction of
uP implies

xk+1 ∈ N

for some N ∈ N (P ) implying

VP(xk+1) ≤ ν.

Thus (25) implies VP(xk+1) ≤ ν for all k > k∗, i.e., xk ∈
D.

Remark 1: If system (1) is asymptotically controllable to
the origin and V is continuous, then we can use the same
arguments as in [9] in order to show that on increasingly
finer partitions Pl and for targets Tl shrinking down to
{0} we obtain VPl

→ V . Furthermore, the function V is
a control Lyapunov function for the system. Using similar
arguments as in [7], one can then show that the corresponding
sets Dl shrink down to {0}, too, and consequently the
family of feedback laws uPl

renders the closed loop system
semiglobally practically asymptotically stable in the sense
of, e.g., [13], with respect to the accuracy parameter l.

Note, however, that all our results hold without imposing
controllability assumptions on (1) or invariance assumptions
on the target set T and that the set D in which the trajectories
of the system will end up can be determined a posteriori from
the numerically computed VP .

IV. AN EXAMPLE

In order to illustrate the benefit of the proposed new
discretization method, we consider the classical inverted
pendulum on a cart as already considered for the old method
in [11], [7]. The system is given by the continuous time
control system(

4
3
−mr cos2 ϕ

)
ϕ̈ +

1
2
mrϕ̇

2 sin 2ϕ− g

`
sinϕ

= −u
mr

m`
cos ϕ, (26)



where we have used the parameters m = 2 for the pendulum
mass, mr = m/(m + M) for the mass ratio with cart mass
M = 8, ` = 0.5 as the length of the pendulum and g = 9.8
for the gravitational constant. The instantaneous cost is

q(ϕ, ϕ̇, u) =
1
2

(
0.1ϕ2 + 0.05ϕ̇2 + 0.01u2

)
. (27)

Denoting the evolution operator of the control system (26)
for constant control functions u by Φt(x, u), we consider
the discrete time system (1) with f(x, u) = ΦT (x, u) for
T = 0.1, i.e., the sampled continuous time system with
sampling rate T = 0.1. The map ΦT is approximated via the
classical Runge-Kutta scheme of order 4 with step size 0.02.
The discrete time cost function is obtained by numerically
integrating the continuous time instantaneous cost according
to

g(ϕ, ϕ̇, u) =
∫ T

0

q(Φt((ϕ, ϕ̇), u), u) dt,

We choose X = [−8, 8]× [−10, 10] as the region of interest.
In [7], a feedback trajectory with initial value (3.1, 0.1)

was computed that was based on the directly discretized
approximate optimal value function VP from Section II-B
on a partition of 218 boxes (cf. Figure 1 (top)). In contrast
to what one might expect, the approximate optimal value
function does actually not decrease monotonically along this
trajectory (cf. Figure 1 (bottom)). This effect is due to the
fact that the approximate optimal value function VP from
Section II-B is only an approximation of the exact optimal
value function but does not satisfy the Lyapunov inequality
(6). In particular, on a coarser partition of 214 boxes, the
associated feedback is not stabilizing this initial condition
any more.

In contrast to this, our new approach yields an approxi-
mation VP which does satisfy the Lyapunov inequality (6)
outside T and hence an approximation to V which is a
Lyapunov function itself. Figure 2 shows the approximate
upper value function on a partition of 214 boxes with target
set T = [−0.1, 0.1]2 as well as the trajectory generated
by the associated feedback for the initial value (3.1, 0.1).
As expected, the approximate value function is decreasing
monotonically along this trajectory. Furthermore, despite the
fact that we used considerably fewer boxes as for Figure 1,
the resulting trajectory is obviously closer to the optimal one
because it converges to the origin much faster.

Note that the behavior predicted by Theorem 2 is clearly
visible in Fig. 2(bottom): VP(xk) is strictly decreasing until
k∗ = 57 while for k > k∗ the trajectory xk occasionally
leaves T but remains inside D, where ν ≈ 0.25 here.

It should be remarked that in order to construct the graph
map F from (19) a numerical approximation of the set valued
images f(P, u) needs to be done, which is a serious problem
at its own right. In this example an approximation of this
image using a certain number of test points per partition
element P yields sufficient accuracy.

V. CONCLUSIONS AND OUTLOOK

In this paper we have presented an approximative solution
technique for infinite horizon optimal control problems. Our
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Fig. 1. Approximate optimal value function and feedback trajectory (top)
and the approximate optimal value function along the feedback trajectory
(bottom) for the inverted pendulum on a 218 box partition using the direct
discretization.

approach relies on a partitioning of the state space and
yields an approximation to the optimal value function which
preserves the Lyapunov function property of the original
value function and can be computed by an efficient graph
theoretic algorithm. The resulting stabilizing feedback law
is constant on each partition element. This property allows
to interpret the partitioning as a quantization of the systems
state space, because in order to evaluate the feedback law
only the partition element containing the current state must
be known. In particular, if a given state space quantization
allows for the construction of a stabilizing feedback law, then
the algorithm will find it.

The interpretation of the partitioning as a quantization
leads to several extensions of our method. For instance, the
method is easily adapted to discrete event systems in which
only the event of a transition from one partition element to
another is communicated to the controller. Another extension
is the design of more complex hierarchically organized con-
trollers, e.g., our approach can be used in order to optimize
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Fig. 2. Approximate upper value function and feedback trajectory (top) and
the approximate upper value function along the feedback trajectory (bottom)
for the inverted pendulum on a 214 box partition using the dynamic game
feedback construction.

the coefficients of a piecewise affine (with respect to the
partition) controller. Finally, since the resulting graph can
be interpreted as a finite automaton, ideas from supervisory
control can be included into our scheme, like including
information on the trajectory’s past in order to gather more
information on coarse partitions, as formalized in [12]. These
extensions are topics of current research.
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