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Abstract— The focus in this paper is on stochastic change
detection applied in connection with active fault diagnosis
(AFD). An auxiliary input signal is applied in AFD. This signal
injection in the system will in general allow to obtain a fast
change detection/isolation by considering the output or an error
output from the system. The classical CUSUM (cumulative sum)
method will be modified such that it will be able to detect change
in the signature from the auxiliary input signal in the (error)
output signal. It will be shown how it is possible to apply both
the gain as well as the phase change of the output vector in
the CUSUM test.

I. INTRODUCTION

The area of active fault diagnosis has been considered in a

number of papers [2], [3], [5], [10], [13], [15], [16], [17] and

in the books, [4], [8], [19].

The AFD is based on the inclusion of an auxiliary input

signal/vector into the system. As output from the system, a

standard residual signal known from the passive FDI (fault

detection and isolation) approach is applied, [6]. Using the

AFD approach from [12], [13], the auxiliary input is injected

in the closed-loop system such that the standard residual

vector is decoupled from this auxiliary input in the nominal

case and coupled in the case of parameter changes.

There are mainly two approaches in AFD. In the approach

derived by Zhang, [19] and has later been investigated

extensively in [4], [8], [10], the auxiliary input is designed

with respect to a fast fault diagnosis/multi model selection.

By using a dedicated design of the auxiliary input gives a

fast diagnosis/selection.

The other AFD approach in [12], [13] and applied in [14],

a periodic auxiliary input is applied. The signature from this

periodic input in the output/residual will also be periodic

with the same frequency. A change in the system due to e.g.

parametric changes/faults, will give a change in the signature.

This change can be in the amplitude and/or the phase of the

periodic output.

Using the AFD approach from [12], [13], the auxiliary input

is decoupled in the output/residual vector in the nominal

case. The detection of parameter changes can then be done

by a detection of a signature from the auxiliary input in the

residual signal. Another approach is to use a filter/observer

to estimate the periodic signature with the known frequency

directly. This approach will not be considered in this paper.

Instead the classical CUSUM method, [1], [7], will be

applied for change detection. The CUSUM method will be

modified with respect to detect changed based on the periodic

auxiliary input. This modification can be done in different

ways. It is possible to let the CUSUM test be based only

on the amplitude/gain of the signature in the residual signal

from the auxiliary input or it can be based on both the gain

and the phase shift in the signature signal. Using both the

gain and the phase shift for the change detection, it will

also be possible to isolate change in different parameters.

From a theoretical point of view, it will be possible to isolate

an unlimited number of parameter changes. In practice,

however, there will be an upper bound on the number of

parameters that can be isolated based on a single periodic

auxiliary input. This number will depend strongly on the

signal/noise ratio.

Only the SISO (single input single output) case will be

considered in this paper, but it is possible to extend the results

to the MIMO (multi input multi output) case without any

major difficulties. Further, only periodic stationary auxiliary

inputs will be applied as considered in [9] in connection with

AFD.

II. SYSTEM SET-UP

Let a general system be given by:

ΣP,θ :

{

et = Ged(θ)dt + Geu(θ)ut

yt = Gyd(θ)dt + Gyu(θ)ut

(1)

where dt ∈ R
r is a disturbance signal vector, ut ∈ R

m the

control input signal vector, et ∈ R
q is the external output

signal vector to be controlled and yt ∈R
p is the measurement

vector. θ is given by

θ = (θ1, · · · , θi, · · · , θk)
T

represents the k parametric faults in the system. It will in

many cases be possible to give an explicit expression of the

connection between the system and the parametric faults as

described in [13], [14].

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

WeA12.1

1-4244-1498-9/07/$25.00 ©2007 IEEE. 346

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 09:58 from IEEE Xplore.  Restrictions apply. 



Let the system be controlled by a stabilizing feedback

controller given by:

ΣC :
{

ut = Kyt (2)

A. Coprime Factorization

Let a coprime factorization of the nominal system Gyu(0)
from (1) and the stabilizing controller K from (2) be given

by:

Gyu(0) =
N

M
, K =

U

V
(3)

where the four stable transfer functions in (3) must satisfy

the Bezout equation given by, see [18]:

MV −NU = 1 (4)

III. AFD SET-UP

Now, let’s consider the AFD set-up described in [13], [14].

The set-up is shown in Fig. 1. The diagram include the

residual vector εt and an auxiliary input vector ηt . The

residual vector εt for ΣP,θ in (1) is given by:

εt = Myt −Nut (5)

is the same residual generator applied in connection with

the passive fault diagnosis, [6]. A more detailed discussion

of the applied AFD set-up is given in [13], [14].

ΣP,θ

1

V U
+

ytut

dt et

+-N M

εt

+

ηt

Fig. 1. Block diagram for an AFD set-up based on a closed-loop system.
The set-up includes a residual vector εt and an external input vector ηt .

Based on the feedback system in Fig. 1, the transfer functions

from the two input vectors dt ,ηt to the two output vectors

et ,εt , are given by ([12], [14]):

ΣFD :

{

et = Ped(θ)dt + Peη(θ)ηt

εt = Pεd(θ)dt + Pεη(θ)ηt

(6)

where

Ped = Ged(θ)+
Geu(θ)UGyd(θ)

V−Gyu(θ)U

Peη = Geu(θ)
V−Gyu(θ)U

Pεd =
Gyd(θ)

V−Gyu(θ)U

Pεη = −
N−Gyu(θ)M
V−Gyu(θ)U

(7)

The transfer function from the input vector ηt to the residual

vector εt is equal to the dual YJBK (after Youla, Jarb,

Bongiorno and Kucera) transfer function, [12], [14]. An

important thing in this connection is that the dual YJBK

transfer function is equal to zero in the nominal case. In

[12]-[14], the dual YJBK transfer function has been named

as the fault signature matrix in connection to AFD and it will

be denoted by S(θ) = Pεη(θ) in the following. An explicit
equation for S(θ) has been derived in [11] - [13].

IV. CHANGE DETECTION

The implementation of the AFD set-up is not unique, because

the coprime factorization is not unique. This will give an

extra freedom in the implementation of the AFD set-up.

It is e.g. possible to based the coprime factorization of

Gyu on a Kalman filter. This will give a residual vector

with well defined disturbances properties in the nominal

case. The design freedom introduced in connection with the

coprime factorization of the system and controller will not

be discussed further in this paper. It will be assume that the

residual vector is the innovation vector from a Kalman filter.

In a passive scheme the detection is often based on a change

in the statistics (mean, variance, correlation or spectral

properties) of the residual sequence. In an active scheme an

auxiliary signal is introduced and the residual vector in (6)

takes then the following form:

εt = S(θ)ηt + ξt (8)

where ξt ∈ N(0,σ2
0
) in the nominal case. From (7), [12]-[14],

we have that S(θ) is zero in the nominal case, i.e.

S(0) = 0 (9)

It is clear from this observation, that S(θ) is very important
in connection with active change detection (or active fault

detection). A direct consequence of (9) is the following

condition:
S(θ) = 0 for θ = 0
S(θ) 6= 0 for θ 6= 0

(10)

The detection (isolation) of parameter variations can then be

based on the following hypothesis, [1], [7]:

H0 : S(θ) = 0
H1 : S(θ) 6= 0

(11)

Test of the above two hypothesis can be done by on-line

evaluation of the residual signal with respect to the signature

from the auxiliary input in the residual εt . Consequently

the auxiliary signal is chosen such that the signature in the

residual is distinctive. This is contradiction to methods in

which the objective is a change in statistics (normally the

mean and variance) of the residual. For this (and others

explained later) reasons the auxiliary input is chosen as being

a periodic signal given by

ηt = aη sin(ω0t) (12)
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where the amplitude aη and the frequency ω0 are the tuning
parameters in the auxiliary input. The specific signature

in the residual of this signal is particular easy. Using the

auxiliary input given by (12), the residual signal is given by

εt = ξt ξ ∈ N(0,σ20) (13)

in the nominal case and

εt = aη|S|sin(ω0t + φ)+ ξt ξ ∈ N(m,σ21) (14)

in the case of parameter changes. For brevity we have

omitted the dependency of θ and ω0 in S = S(θ,ω0), φ =
φ(θ,ω0), m = m(θ) and σ1= σ1(θ). m will in general be zero.
Both the amplitude and the phase of the periodic signal in εt

depend on θ and on the chosen frequency, ω0. The periodic
signal in εt is the signature of the periodic auxiliary input

ηt .

Detection of parameter changes is then based on a detection

of the signature from ηt in εt . Further, isolation of parameter

changes might be possible from an investigation of the

amplitude and phase of the signature in εt . It might be needed

to include more than a single periodic signal in ηt to be

able to isolate different parameter changes. This is the case

when the amplitude of S(θ) is insensitive to change of one
parameter and sensitive to change of another parameter at

a specific frequency. Here, we will only consider a single

periodic auxiliary input signal due to the fact that at the

chosen ω0 it is possible to isolate changes in the system
parameters by also using the phase of S.

The selection of aη and ω0 need to done with respect to
a number of conditions. The choice of amplitude is given

by the tolerated increase in power in et due to the auxiliary

signal in the normal case. It is clear that a higher amplitude

will increase the speed of detection and enable the algorithm

to detect smaller parameter changes. The selection of ω0
need to be done with respect to the following conditions:

1) Maximize the signal to noise ratio between the signa-

ture from ηt on the residual signal εt in the faulty case

and the effect from disturbance input dt in the residual

signal.

2) Minimize the effect from ηt on the external output et

in the fault free case.

3) The selection of the frequency must be done with

respect to obtain (if possible) a possibility for discrim-

inate the different type of changes from the signature

from ηt in residual signal εt .

Using the closed-loop transfer function from the AFD set-up,

the above conditions can be formulated as follows:

1) is equivalent with: maxω
|S(θ,ω)ηt |
|Pεd(θ,ω)dt |

.

2) is equivalent with: minω |Peη(θ,ω)ηt |.

3) specifies that the signature from ηt in εt given by (14)

must be different for different faults. This is satisfied if the

amplitude and the phase change of the periodic signature in

εt is unique for the single faults.

Condition 1) and 2) are related to fault detection whereas 3)

is only related to fault isolation.

A. Parameter Change Detection

Assume that an auxiliary input signal has been selected, i.e.

the amplitude A and the frequency ω0 has been specified.
In order to detect if the signature of the auxiliary signal is

present in the residual, the following two signals are formed:

st = εt sin(ω0t) ct = εt cos(ω0t)

where according to (14)

st = |S|
aη

2

(

cos(φ)− cos(2ω0t + φ)
)

+ ξt sin(ω0t)

ct = |S|
aη

2

(

sin(φ)+ sin(2ω0t + φ)
)

+ ξt cos(ω0t)

From this it is clear that in the fault free situation

st = ξt sin(ω0t) ∈ N(0,σ20 sin
2(ω0t))

ct = ξt cos(ω0t) ∈ N(0,σ20 cos
2(ω0t))

Additionally, the two signals are (when a filter parameteri-

zation is applied) white. The time average variance is equal

to 1
2
σ2
0
.

In a faulty situation the fault signature matrix, S, is different

from zero and the two detection signals, st ,ct , will have a

deterministic component

m(S(θ),aη) =

[

ms

mc

]

= |S|
aη

2

[

cos(φ)
sin(φ)

]

(15)

This component can be used for fault detection.

Besides the mentioned component the detector signals will

have a time varying deterministic component

|S|
aη

2

[

−cos(2ω0t + φ)
sin(2ω0t + φ)

]

The effect of this component can be eliminated by means of

an average or integration technique such as in the CUSUM

methodology.

The detection can be implemented as a CUSUM detection

given by

zt+1 = max(0,zt +
[ δt

σ1
−
1

2
γ
]

) (16)

where

δt =









st

ct

−st

−ct









, σ21 =
1

2
σ20

The H0 is accepted if zt is smaller than the threshold, i.e.

zt ≤
log(B)

γ
= h
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where the inequality is to be understood element wise. The

tuning parameters in this CUSUM detector is B, which is

related to the average length between false detections, γ
which forms a typical lower limit of changes to be detected.

The latter quantity is off course related to the lower limits of

detection for the individual parameter changes. Furthermore

note that the time average variance of ct and st has been

used in (16).

The time distance from the last zero crossing of the elements

in zt forms an estimate of the fault time instance, Td .

B. Parameter Change Isolation

The phase information can be utilized in the process of

isolate the type of parameter changes. For each type of error

(and for fixed ω0), the fault signature matrix, S(ω0,θ) forms,
as illustrated in Fig. 2 (for a two parameter problem) a

curve in the complex plane which pass trough the origin

for θ = 0. Let us for brevity denotes these as fault curves.
The fault isolation can then be done by estimating the

fault signature matrix, S(ω0,θ) and match with the possible
values. However, due to stochastic disturbances an estimate

of S will inherently be uncertain. Instead the estimate should

be matched with the nearest (e.g. in a least squares sense)

fault curve. These curves will then divide the complex plane

into double conic areas each related to each type of parameter

change. The isolation procedure will then be a classification

in which of the areas an estimate of the S belong to.

This classification can for small parameter change easily be

mechanized by assigning a (unit) vector, vi i ∈ {1, · · · ,k}, to
each type of parameter changes. The vectors are parallel to

the tangent of S(ω0,θi) in origin. Let T̂d denoted the estimate

of the fault time. The vector

v =

Z t

T̂d

[

sτ

cτ

]

dτ (17)

is an estimate of S. The classification is then simply to

find the maximal projection among the considered types of

parameter changes, i.e.

î = arg max
i∈{1,··· ,k}

vT vi (18)

V. EVALUATION OF FAULT DETECTORS

It is relevant to evaluate the fault detectors based on the AFD

by using a number of the standard performance measures.

Some of these performancemeasures are: mean time between

false alarms (MTFA) (or similar false alarm rate (FAR)) and

mean time to detect (MTD). These performance measures

can be determined from the average run length (ARL func-

tion, which in general cannot be calculated exactly. Instead,

approximations of the performance measures can be derived,

see e.g. [1], [7].

Real

Imag

Fault 2

Fault 1

Fig. 2. For each type of errors (and for fixed ω0), the fault signature
matrix, S(ω0,θ) forms a curve (shown dashed lines) in the complex plane.
The individual type of parameter changes forms a double coned area (shown
shaded for type 2 of parameter change).

Let µα and σ2α be the mean an the variance of each of the
component in the increment

αt =
δt

σ1
−
1

2
γ

in the CUSUM test. An approximative solution to ARL

function is given by, [1], [7]:

L̂(µα,σα,h) =
exp(−2( µαh

σ2α
+ µα

σα
β))−1+2( µαh

σ2α
+ µα

σα
β)

2µ2α
σ2α

(19)

where h = log(B)
γ is the detection threshold and β = 1.166.

This approximation is based on αt being white, which

is satisfied in the fault free situation (and when a filter

parametrization is applied). In the faulty situation this is only

satisfied to a certain approximation.

Let α
j
t , j = 1, ... ,4 denote the components of the CUSUM

increments. In the fault free situation we have

α
j
t ∈ N

(

−
γ

2
,1
)

and the mean time between false alarms, τ̂MT FA, can the be

assessed through:

τ̂MT FA = L̂(−
γ

2
,1,h)

In a faulty situation

α
j
t ∈ N

(

|S(θ)|Al j

2σ1
−
1

2
γ,

σ2f

σ2
0

)

Here

lT = [cos(φ(θ)) sin(φ((θ)) − cos(φ(θ)) − sin(φ((θ))]

where l j is the j′th component of l. The mean time for

detection, τ̂MT D, can be assessed from

τ̂MT D =min
j

L̂(
|S(θ)|Al j

2σ1
−

γ

2
,

σ2f

σ2
0

,h) (20)
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An important thing with the AFD set-up used in this paper

is that it is possible to change t̂MTD and t̂MTFA by the design

of of the auxiliary input signal ηt . The mean values of st and

ct are directly proportional with the amplitude of ηt when

faults has occurred in the system.

VI. EXAMPLE

Let’s consider a sampled version of a simple second order

system given by

G(s) =
k

s2+2ζψs+ ψ2
=

1

s2+0.2 s+1

influenced by stochastic disturbances. Variations in the three

parameters k, ζ and ψ will be considered as parametric faults
in the system.

In discrete time (Ts = 0.01 sec) and in state space the system

is given by

xt+1 = Axt + But + Bdt, yt = Cxt + et

where the noise processes are zero mean white noise se-

quences and

Var
{

[

dt

et

]

}

=

[

0.1 0

0 0.01

]

The process noise is here an input disturbance, but the

methods are by no means restricted to this type. The control

is based on a state estimate obtained by means of a stationary

Kalman filter and the control is an ordinary LQ controller

which aim at minimizing the objective function

J = E
{ ∞

∑
t=0

xT
t Qxt + uT

t Rut

}

Q = I2 R = 0.2

This design results in a controller given by:

V =
z2−1.931z+0.9332

z2−1.957z+0.9581
U =

−0.2664z+0.2661

z2−1.957z+0.9581

and a model parameterized through

N =
5.05z+5.046

z2−1.957z+0.9581
10−5 M =

z2−1.998z+0.998

z2−1.957z+0.9581

A simple analysis of this closed system results in σ2
0

=
1.04e−3. As mentioned in the precious section the auxiliary
signal was chosen to be a harmonic function, which has a

distinct signature in the residual signal if a fault is present.

The frequency was chosen by investigating the variation

of S(ω,θ) (see Fig. 3) in relation to Peη and Pεd over a

range of frequencies and type of faults. It has been selected

to use the same harmonic function for both detection and

isolation. It is therefor also relevant to consider the variation

of S(ω,θ) in the complex plane for different frequencies and
fault parameters. Based on this analysis, the frequency was

chosen to be ω0 = 2.5 rad/sec. The amplitude was chosen

to be 0.64 which is equivalent of having an power increase
to a level ten times the stochastic variance. In Fig. 4, S(ω,θ)
is shown in the complex plane for different parametric faults

for ω0 = 2.5 rad/sec.

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3 −2

−1

0

1

2
−100

−90

−80

−70

−60

−50

−40

−30

log(ω)

S−function. Variations in k

∆ k/k

|P
εη

 1
| 
in

 d
B

Fig. 3. The variation of |S| as function of ω and ∆k/k.
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Fig. 4. Real and Imaginary part of S for ω0 = 2.5rad/sec and three type
of parameter changes (in k, ζ and ψ). The parameters varies in a range
from −0.1 to 0.1 in relative scale. The 10% increase in the parameters are
indicated with a *.

As described in section IV-B the complex plane is divided

into three double coned areas with top in the origin. Each

type of parameter change are assigned a designated unit

vector in the complex plane(see Table I).

TABLE I

DESIGNATED VECTOR DIRECTIONS

k ζ ψ
Re 0.9830 0.1539 0.9934
Imag -0.1834 0.9881 0.1144

The parameters in the CUSUM detector was chosen to be:

γ = 0.01 B = 50

The choice of σ1 was based on the knowledge of σ2
0
. This

is related to the fact that for these choices τ̂MT FA = 9181.

Consider now an initial (at t = 0) change in each of the three
parameters: k, ζ and ψ. The detector signals are plotted in
the Fig. 5 for a a change in ζ from 0.1 to 0.15. Additionally,
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an equivalent deterministic simulation is plotted as well. The

results of the three simulations for all three parameters are

summarized in Table II. Each row in this table is related

to one type of parameter change (in k, ζ and ψ). The first
column gives the channel number which alarm for a fault.

Second column contains the time instant of detection, td , and

the third column contains the assessment in (20) of τ̂MT D.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700
CUSUM signals

z
t

time (sec)

Fig. 5. CUSUM signals for a fault in ζ.

TABLE II

DETECTION RESULTS

Chanel td τ̂MT D

— 1 58.60 sec 49.34 sec
Fig. 5 2 115.60 sec 115.01 sec
— 1 120.12 sec 124.50 sec

When a fault has been detected and the fault instant, Td ,

has been estimated, data from T̂d to td is used according

to (17) to estimate the fault signature matrix, S(ω,θ). The
estimate of the time difference between fault occurrence, T̂d ,

and detection, td are listed as the second column in Table

III. This is illustrated in Fig. 6, where the vector v easily

is recognized as the line from origin. The fault isolation is

carried out as given by (18) which is a mechanization of

finding the nearest fault curve. The results are summarized

in Table III where each row corresponds to one fault (and

one simulation). The column wise data (the last 3 column)

is the projection of v on each vi i ∈ [1, 2, 3] in procent
(with sign). As could be predicted from Fig. 4 it is in the

table clear that it is harder to isolate changes in k and ψ than
from changes in ζ.

TABLE III

ISOLATION RESULTS

td − T̂d k ζ ψ
—, fault in k 58.47 sec 48.77 3.24 47.99
Fig. 6, fault in ζ 115.55 sec -8.69 76.99 14.31
—, fault in ψ 115.59 sec 44.44 9.81 45.75
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Fig. 6. Isolation signals for a fault in ζ.
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