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Supervisory control theory for discrete event systems, introduced by Ramadge and Wonham,
is based on a non-probabilistic formal language framework. However, models for physical
processes inherently involve modelling errors and noise-corrupted observations, implying

that any practical finite-state approximation would require consideration of event occurrence
probabilities. Building on the concept of signed real measure of regular languages, this paper
formulates a comprehensive theory for optimal control of finite-state probabilistic processes.
It is shown that the resulting discrete-event supervisor is optimal in the sense of elementwise

maximizing the renormalized langauge measure vector for the controlled plant behaviour and
is efficiently computable. The theoretical results are validated through several examples includ-
ing the simulation of an engineering problem.

1. Introduction

Supervisory control theory (SCT) of discrete-event

systems (DES), pioneered by Ramadge and

Wonham (1987), models a physical or human-engi-

neered process as a finite-state language generator and

constructs a supervisor that attempts to constrain the

‘‘supervized’’ plant behaviour within a specification lan-

guage. The original theory is based on a deterministic

language framework. Although allowing non-determin-

ism in the sense that more than one continuation of a

generated event trace (i.e., a string) is possible, no

attempt is made to quantify this randomness.

As Wonham himself observes in Lawford and

Wonham (1993), ‘‘the choice of a possible continuation

of a string is made by some internal structure unmodeled

by the systems designer’’. The notion of probabilistic

languages in the context of studying qualitative stochas-

tic behaviour of discrete-event systems first appears

in Garg (1992a, b), where the concept of p-languages

(‘p’ implying probabilistic) is introduced and an algebra

is developed to model probabilistic languages based on

concurrency (Milner 1989). A regular p-language is

essentially a set of prefix-closed traces of events,

generated by a finite-state automaton with probabilities

associated with the transitions. A p-language-theoretic

model differs in several important aspects from

other discrete-event models of stochastic analysis

such as Markov chains (Cassandras and Lafortune

1999), stochastic Petri nets (Molloy 1982, Chung et al.

1994), probabilistic automata (Rabin 1963, Paz 1971,

Doberkat 1981), and fuzzy models (Lee and

Zadeh 1969). Garg et al. (1999) and Kumar and Garg

(2001) provide a brief comparison of the p-language-

theoretic modelling paradigm with the above-mentioned

theories.
Lawford and Wonham (1993) have attempted to

extend discrete-event (SCT) to plants modelled by

p-languages, where a formal statement of the probabilis-

tic supervisory control problem (PSCP) first appears and

the notion of probabilistic supervision is introduced by

random disabling of controllable events. The key differ-

ence from other stochastic supervision approaches (e.g.,

Mortzavian 1993) lies in the fact that the computed

probabilistic supervisor is not allowed to change the*Corresponding author. Email: axr2@psu.edu
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underlying plant dynamics in the following sense:
‘‘The probabilistic effect of random disablement is deter-
mined entirely by the plant’’. The control objective is
specified as a p-language and necessary and sufficient
conditions are derived for existence of a probabilistic
supervisor that attempts to restrict the plant language
within the control specification in a probabilistic sense.
The theory of supervision of p-languages is further
developed by Kumar and Garg (2001), where the control
objective is specified as upper and lower bound
constraints. The upper bound is a non-probabilistic
language that serves as a legality constraint, while the
lower bound is a p-language. This relatively relaxed
approach to control objective specification allows for a
non-probabilistic supervisor that attempts to cut down
illegal event traces, while ensuring that legal traces
occur with probabilities greater than or equal to that
specified by the lower bound. Intuitively, the designed
supervisor stops ‘‘bad’’ strings from occurring while
guaranteeing that ‘‘good’’ strings occur with some mini-
mum pre-set frequency. However, construction of such
a control objective specification may not be possible in
many applications (e.g., battlefield command, control,
communications, and intelligence (C3I) (Phoha et al.
2002)), especially if the decisions are to made in real
time. For the theory to be useful in practice, one
must generate the specification from the definition of
the physical problem at hand. Given that one has
to come up with a non-probabilistic language to serve
as the upper legality constraint and a probabilistic
language to serve as the lower bound, this goal
may not always be achievable. The situation becomes
worse for non-stationary stochastic environments,
where the control specifications may have to be updated
online.
A significantly simplified approach to the above pro-

blem is reported by Ray (2005) and Ray et al. (2005),
where the control objective is specified as characteristic
weights on the states of the plant automaton. These
weights are normalized in the interval ½�1, 1� with posi-
tive weights assigned to good states and negative weights
to bad states. A signed real measure of regular languages
(of event traces) is defined as a function of the character-
istic weights and the state transition probabilities; and
supervisory control laws are synthesized by elementwise
maximizing the language measure vector (Ray et al.
2004, 2005). Intuitively, the supervisor ensures that the
generated event traces cause the plant to visit the
‘‘good’’ states while attempting to avoid the ‘‘bad’’
states in a probabilistic sense. As mentioned earlier,
Kumar and Garg’s work on supervisory control of
probabilistic automata (Kumar and Garg 2001) also
has a notion of ‘‘good’’ and ‘‘bad’’ strings. However,
the classification is strictly binary; the theory has no
way of saying if one ‘‘good’’ string is ‘‘better’’ than

another ‘‘good’’ string and vice versa. This implies that
the supervisor must eliminate all bad strings and hence
may not be optimal, or fail to exist if the conditions
defined in Kumar and Garg (2001) are not satisfied.
In contrast, in the measure-theoretic approach
(Ray 2005), the event traces are less or more desirable
in a continuous scale with the supervisor optimizing
the controlled plant behaviour to ensure that the
‘‘most’’ desirable strings occur ‘‘most’’ often. This has
an immediate advantage that the problem of existence
disappears; the optimal supervisor always exists and
can be computed effectively with polynomial complex-
ity. The latter approach is, in one sense, closer to
Markov chain modelling since the control specification
is state-based. However, as shown by Ray (2005),
this does not restrict the modeling power of the techni-
que. It is shown in Kumar and Garg (2001) that,
in general, maximally permissive supervisors are
non-unique. For the measure-theoretic approach, how-
ever, the optimization is shown to yield unique maximal
permissiveness among all optimal supervisors (Ray et al.
2004, 2005).

Optimal control in the context of discrete event
dynamic systems has been addressed earlier by several
investigators as cited in (Ray et al. 2004). For example,
Sengupta and Lafortune (1998) have analysed
non-probabilistic DES with assigned event and control
costs; the optimal supervisor is computed in the frame-
work of dynamic programming (DP) with two critical
assumptions to guarantee polynomial complexity of
the solution: all costs are strictly positive and there is
only one marked state (Sengupta and Lafortune 1998,
p. 34). The work reported in Ray (2005) and Ray
et al. (2005) is different in the sense that the latter
deals with probabilistic automata and the optimization,
even in the completely general case, has guaranteed
polynomial complexity of Oðn3Þ, where n is the number
of states in the unsupervised plant model. The mea-
sure-theoretic approach was originally reported for a
restricted class of terminating p-languages Ray (2005)
and Ray et al. (2005); and this restriction has been elimi-
nated in a subsequent publication (Chattopadhyay and
Ray 2006a).

The notion of terminating and non-terminating auto-
mata is originally due to Garg (19992a, b). A probabil-
istic automaton is terminating if there exist states at
which the sum of the probabilities of all defined events
is strictly less than 1. The interpretation is that the differ-
ence of the sum from 1 is the probability that the plant
terminates operation at that particular state. It is shown
in Ray (2005) that the language measure vector can be
expressed as ½I�&��1s where & is the transition prob-
ability matrix and s is the characteristic vector, where
�ij is the probability of transition from the ith state to
the jth state and �i is the characteristic weight of the
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state i). A sufficient condition for the inverse of
�
I�&

�
to exist is that

P
j �ij < 1 2 i, i.e., the plant has a strictly

non-zero probability of termination from each state.
This paper eliminates the above restrictive assumption

by adopting the recently reported renormalized measure
of regular languages (Chattopadhyay and Ray 2006a)
as the performance index. It also extends the measure-
theoretic concept for optimal control of terminating
plants (Ray et al. 2004) to non-terminating plant
models, which requires a minor modification of the
control philosophy as explained below.
Supervisors in the SCT paradigm are allowed to affect

the underlying plant behaviour by selectively disabling
controllable events (Ramadge and Wonham 1987).
In case of terminating p-languages, a similar approach
suffices; the supervisor selectively nulls the occurrence
probability of controllable events to achieve the desired
control objective. However, the non-terminating case
poses a problem since any such disabling action converts
the system to a terminating p-language (i.e., the prob-
abilities of the events defined at a state fail to add up
to 1). The solution (Kumar and Garg 2001) is to propor-
tionately increase the probabilities of the remaining
enabled events at the state at which event disabling is
undertaken. An alternative approach is proposed in
this paper, where each disabled event creates a self
loop at the state (at which the event was generated)
with occurrence probability of the original transition.
The paper is organized in six sections and an

appendix. Section 2 lays down the basic framework of
the analysis and briefly reviews the original notion of
language measure (Ray 2005) and its renormalization
(Chattopadhyay and Ray 2006a). Section 3 formulates
the optimal control problem based on the concept of
renormalized measure and presents the key results.
Section 4 presents a solution of the optimal control
problem and derives the necessary algorithms for its
implementation. Section 5 presents an engineering
example, where the optimal supervisor is designed for
a three-processor message decoding system. The
paper is summarized and concluded in x 6 along with
recommendations for future research. Appendix G
establishes bounds on the derivatives of the
renormalized measure that is necessary for formulation
of the optimal control law in x 3.

2. Preliminary concepts

This section briefly reviews the concept of signed real
measure of regular languages Ray (2005) and Ray
et al. (2005) followed by a review of the notion of
renormalized measure and the pertinent notations used
in the sequel.

2.1 Brief review of language measure

Let the plant behaviour be modelled as a deterministic
finite state automaton (DFSA) as Gi , ðQ,�, �, qi,QmÞ,
where Q is the finite set of states with jQj ¼ n, and
qi2Q is the initial state; � is the (finite) alphabet of
events with �j j ¼ m; the Kleene closure of � is denoted
as �? that is the set of all finite-length strings of events
including the empty string "; the (possibly partial) func-
tion � : Q��! Q represents state transitions and
�?: Q��? ! Q is an extension of �; and Qm � Q is
the set of marked (i.e., accepted) states.

Definition 1: The language L(Gi) generated by the
DFSA Gi is defined as LðGiÞ ¼ fs 2 �� j ��ðqi, sÞ 2 Qg.

Definition 2: The marked language Lm(Gi) by the
DFSA Gi is defined as LmðGiÞ ¼ fs 2 ��j ��ðqi, sÞ 2 Qmg.

The language LðGiÞ of the DFSA Gi is partitioned as
the non-marked and the marked languages,
LoðGiÞ,LðGiÞ � LmðGiÞ and LmðGiÞ, consisting of event
strings that, starting from qi 2 Q, terminate at one of
the non-marked states in Q�Qm and one of
the marked states in Qm, respectively. The set Qm is
partitioned into Qþm and Q�m where Qþm contains all
good marked states that one may desire to terminate
on, and Q�m contains all bad marked states that one
would attempt to avoid terminating on, although it
may not always be possible to bypass a bad state
before reaching a good state. The marked language
LmðGiÞ is further partitioned into LþmðGiÞ and L�mðGiÞ

consisting of good and bad strings that, starting from
qi, terminate on Qþm and Q�m, respectively.

A signed real measure �: 2�
?
! R, �1, 1ð Þ is

constructed for quantitative evaluation of every event
string s 2 �?. The language LðGiÞ is decomposed into
null, i.e., LoðGiÞ, positive, i.e., LþmðGiÞ, and negative,
i.e., L�mðGiÞ sublanguages.

Definition 3: The language of all strings that, starting
at a state qi 2 Q, terminates on a state qj 2 Q, is denoted
as Lðqi, qjÞ. That is,

Lðqi, qjÞ, fs 2 LðGiÞ : �
?ðqi, sÞ ¼ qjg: ð1Þ

Definition 4: The characteristic function that assigns a
signed real weight to each state qi, i ¼ 1, 2, . . . , n, is
defined as: � : Q! ½�1, 1� such that

�ðqjÞ 2

½�1, 0Þ if qj 2 Q�m

f0g if qj =2Qm

ð0, 1� if qj 2 Qþm

8>>><>>>:
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Definition 5: The event cost is conditioned on a DFSA
state at which the event is generated, and is defined as
~� : �? � Q! ½0, 1� such that 8qj 2 Q, 8�k 2 �,
8s 2 �?,

1. ~�½�k, qj�, ~�jk 2 ½0, 1Þ;
P

k ~�jk < 1;
2. ~�½�, qj� ¼ 0 if �ðqj, �Þ is undefined; ~�½�, qj� ¼ 1;
3. ~�½�ks, qj� ¼ ~�½�k, qj� ~�½s, �ðqj, �kÞ�.

The event cost matrix, denoted as e�-matrix, is
defined as

e� ¼ ~�11 . . . ~�1m

..

. . .
. ..

.

~�n1 . . . ~�nm

264
375

An application of the induction principle to part (3) in
Definition 5 shows ~�½st, qj� ¼ ~�½s, qj� ~�½t, �

�ðqj, sÞ�.
The condition �k ~�jk < 1 provides a sufficient condition
for the existence of the real signed measure as discussed
in Ray (2005) along with additional comments on the
physical interpretation of the event cost.
Now let us define the measure of a sublanguage of the

plant language L Gið Þ in terms of the signed characteristic
function � and the non-negative event cost ~�.

Definition 6: The signed real measure � of a singleton
string set fsg � Lðqi, qjÞ � LðGiÞ 2 2�? is defined as

�ðfsgÞ, ~�ðs, qiÞ�ðqjÞ 8s 2 Lðqi, qjÞ:

The signed real measure of Lðqi, qjÞ is defined as

� Lðqi, qjÞ
� �

,

X
s2Lðqi, qjÞ

� fsgð Þ

and the signed real measure of a DFSA Gi, initialized at
the state qi 2 Q, is denoted as

�i ,�ðLðGiÞÞ ¼
X

j
� Lðqi, qjÞ
� �

:

Definition 7: The state transition cost of the DFSA is
defined as a function �: Q� Q! ½0, 1Þ such that

�ðqj, qkÞ

¼

0 if f� 2�: �ðqj, �Þ ¼ qkg ¼;P
�2�:�ðqj, �Þ¼qk

~�ð�, qjÞ, �jk otherwise :

8<:
ð2Þ

The state transition cost matrix, denoted as &-matrix, is
defined as

& ¼

�11 . . . �1n

..

. . .
. ..

.

�n1 . . . �nn

264
375:

It has been shown in (Ray 2005 and Ray et al. 2005)
that the measure �i ,�ðLðGiÞÞ of the language LðGiÞ,
with the initial state qi, can be expressed as
�i ¼

P
j �ij �j þ �i where �i ,�ðqiÞ. Equivalently, in

vector notation

l ¼ &lþ s ¼) l ¼ ½I�&��1s; ð3Þ

where the measure vector l, ½�1 �2 � � � �n�
T and

the characteristic vector s, ½�1 �2 � � � �n�
T; and the

condition
P

j ~�ij < 1 2 i (see Definition 5) is sufficient
for the inverse to exist.

Although the preceding analysis reported
in (Ray 2005 and Ray et al. 2005) was intended for
non-probabilistic regular languages, the event costs can
be easily interpreted as occurrence probabilities.
As such the ~&-matrix is analogous to the morph
matrix of a Markov chain in the sense that an element
~�ij represents the probability of the jth event occurring
at the ith state with the exception that the strict inequal-
ity condition

P
j ~�ij < 1 is enforced instead of satisfying

the equality. Equivalently, the &-matrix is analogous to
the state transition probability matrix of a Markov
chain in the sense that an element �jk is analogous to
the transition probability from state qj to state qk with
the exception that the strict inequality conditionP

k �jk < 1 is enforced instead of satisfying the
equality. It follows that the preceding analysis is applic-
able to the case of terminating probabilistic languages
(Garg et al: 1992a, b) that have a strictly non-zero
probability of termination at each state.

Let �u denote the set of all unmodelled events in the
terminating plant. A new unmarked absorbing state
qnþ1, called the dump state (Ramadge and Wonham
1987), is created and the transition function � is extended
to �ext : ðQ [ fqnþ1gÞ � ð� [�

uÞ ! ðQ [ fqnþ1gÞ. The
residue �j ¼ 1�

P
k �jk denotes the probability of transi-

tion from qj to qnþ1. Consequently, the &-matrix
(see Definition 7) is augmented to obtain the stochastic
state transition probability matrix as

&aug ¼

�11 �12 . . . �1n �1

�21 �22 . . . �2n �2

..

. ..
. . .

. ..
. ..

.

�n1 �n2 . . . �nn �n

0 0 0 . . . 1

26666664

37777775: ð4Þ

Since the dump state qnþ1 is not marked (Ramadge and
Wonham 1987), it follows from Definition 4 that the
corresponding state weight �nþ1 ¼ 0. Hence, the
�-vector is augmented as

saug ¼ ½s
T 0�T: ð5Þ
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Denoting ? ¼ ½�1 �2 � � � �n�
T, where �i 2 ð0, 1Þ is the

probability of transition from the state qi to the dump
state, it follows from equations (4) and (5) that the
measure of the augmented system (Chattopadhyay and
Ray 2006a) is

laugð?Þ ¼ ½lð?Þ
T 0�T: ð6Þ

Then, the event cost matrix (see Definition 5) and the
state transition cost matrix (see Definition 7) can be
represented as

e&ð?Þ ¼ �I�Diag½?�

�eP and &ð?Þ ¼

�
I�Diag½?�

�
P;

ð7Þ

where eP and P are both stochastic matrices (Bapat and
Raghavan 1997), i.e., �j

ePij ¼ 1 8i 2 f1, . . . ,mg and
�jPij ¼ 1 8i 2 f1, . . . , ng.
If the probability of termination (or equivalently the

probability of transition to the dump state) is equal
for all states, qi 2 Q, i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, then
equation (6) is expressed as

laugð�Þ ¼ ½lð�Þ
T 0�T ð8Þ

Consequently, e& and& in equation (7) are represented as

e&ð�Þ ¼ ð1� �ÞeP and &ð�Þ ¼ ð1� �ÞP ð9Þ

where � is the uniform probability of termination at all
states; and botheP and P retain the properties of stochas-
tic matrices (Bapat and Raghavan 1997).

2.2 Renormalization of language measure

The notion of language measure has been recently
extended to non-terminating models by assuming a uni-
form non-zero probability of termination (�) at each
state, renormalizing the language measure vector with
respect to the probability of termination and computing
the limit of the renormalized measure (Chattopadhyay
and Ray 2006a) as �! 0þ. As the probability of termi-
nation approaches zero (i.e., �! 0þ), and the plant
coincides with the desired non-terminating model in
the limit. The construction of renormalized measure is
briefly outlined below.
The regular language generated by the DFSA under

consideration is a sublanguage of the Kleene closure
�� of the alphabet �, for which the automaton states
can be merged into a single state. In that case, the
state transition cost matrix &ð�Þ degenerates to the
1� 1 matrix ½1� �� and the normalized state weight

vector s becomes one-dimensional and can be assigned
as s ¼ 1; consequently, the measure vector lð�Þ
degenerates to the scalar measure ��1. To alleviate the
singularity of the matrix operator ½I�&ð�Þ� at �¼ 0,
the measure vector lð�Þ in (3) is normalized with respect
to ��1 to obtain the renormalized measure vector.

Definition 8: The renormalized measure is defined as

mð�Þ ¼ � lð�Þ ¼ � ½I�&ð�Þ��1s ð10Þ

and it follows from (8) that

� laugð�Þ ¼ ½mð�Þ
T 0�T: ð11Þ

3. Optimal control problem: formulation

The following notations are needed for elementwise
comparison of finite-dimensional vectors and matrices
for the analysis developed in the sequel.

Notation 1: Let Va and Vb be ðm� nÞ real matrices.
The following elementwise equality and inequalities
imply that�

Va�EV
b

�
,

�
Va

ij ¼ Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va 6¼E Vb

�
,

�
Va

ij 6¼ Vb
ij

�
9 i 2 f1, . . . ,ng, j 2 f1, . . . ,mg�

Va^EV
b

�
,

�
Va

ij � Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg�

Va >E Vb

�
,

�
Va

ij > Vb
ij

�
8i 2 f1, . . . ,ng 8j 2 f1, . . . ,mg:

For the terminating plant, investigated in (Ray 2005
and Ray et al. 2005), the optimal supervisor selectively
disables controllable transitions by setting their occur-
rence probabilities to zero. This implies that if &? and
& are the transition probability matrices for the opti-
mally supervised plant and the unsupervised plant,
respectively, then

&? %E &, i:e:, �?
ij 	 �ij:

Since for any non-trivial supervisor, there is at least one
disabled transition in the supervised plant, i.e.,

9i, j such that �i, j > 0 and �?
i, j ¼ 0

it follows that if the unsupervised plant is non-
terminating, then any non-trivial supervision will result
in a terminating model. The policy of Kumar and
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Garg 2001 maintains the non-termination property by
proportionately increasing the probabilities of the
remaining enabled events at the state at which
the disabling action is applied. The first issue here is
that the supervisor must be able to affect the event
occurrence probabilities, which is more than just inhibit-
ing a transition. The second issue is that there is a
possibility of disabling all events defined at a given
state if all these events are controllable. In that case,
the row sum cannot be maintained at 1 as it becomes
strictly equal to zero. Thus, it is necessary to impose
special constraints on the unsupervised plant to circum-
vent this situation. This paper investigates an alternative
approach as described below.

Definition 9 (control philosophy): Disabling any
transition � at a given state q results in reconfiguration
of the automaton structure as: Set the self-loop
�ðq, �Þ ¼ q with the occurrence probability of � from
the state q remaining unchanged in the supervised and
unsupervised plants.
This is equivalent to adding a self-loop to the state at

which the event is being disabled, with the same occur-
rence probability as the disabled transition.

Preposition 1: For the control philosophy in
Definition 9, a supervised plant is non-terminating if
and only if the unsupervised plant is non-terminating.

Proof: The proof follows from two lemmas.

Lemma 1: Each row sum of the &-matrix remains
unchanged after supervisory actions for the control
philosophy in Definition 9.

Proof: Let & and &y be the transition probability
matrices for the unsupervised and supervised plants,
respectively. Let there be exactly one disabled transition,
in which a (controllable) event � at state qi is disabled
and let the occurrence probability of � at state qi be ~�.
If �ðqi, �Þ ¼ qk, then it follows that

kth column

#

&y ¼ &þ

0 0 � � � � � � 0 0

..

. . .
. ..

. ..
. ..

.

0 � � � ~� � � � � ~� 0

..

.
� � � 0 . .

.
0 ..

.

..

. ..
. ..

. . .
. ..

.

0 � � � � � � � � � � � � 0

266666666664

377777777775
 ith row

implying
P

j �
y

ij ¼
P

j �ij 8i. The proof follows by
induction on the number of disabled events. œ

Lemma 2: Self-loops cannot be disabled.

Proof: For the control philosophy in Definition 9,
disabling a self-loop at any given state causes regenera-
tion of the self-loop at the same state with identical
occurrence probability. œ

It is evident from the above two lemmas that each row
sum of the reconfigured &-matrix remains invariant.
The proof of Proposition 1 is thus complete. œ

Remark 1: The control philosophy in Definition 9 is
natural in the following sense. If qi !� qk, and the
controllable event � is disabled at state qi, then
the sole effect of the supervisory action is to prevent
the plant from making a transition to the state qk.
That is, the plant is forced to stay at the original state
qi and this is represented by the additional self-loop at
state qi instead of the original arc from qi to qk.

The notion of controllability is now clarified in the
context of the present paper.

Definition 10 (controllable transitions): For a given
plant, transitions that can be disabled in the sense of
Definition 9 are defined to be controllable transitions
in the sequel.

In view of Definition 10, controllability becomes state-
based, i.e., transitions labelled by the same event may be
controllable from one state and uncontrollable from
some other state. This implies that the event alphabet
� cannot be partitioned into uncontrollable and
controllable events sets as proposed in Ramadge and
Wonham (1987). Thus, a controllable transition qi

�
!
qk

refers to a triple fqi, �, qkg and the set of all such
transitions is denoted by C .

3.1 Model specification

Plant models considered in this paper are deterministic
finite state automata (DFSA) with well-defined event
occurrence probabilities. In other words, the occurrence
of events is probabilistic, but the state at which the plant
ends up, given a particular event has occurred, is
deterministic. Furthermore, no emphasis is laid on the
initial state of the plant and it is assumed that the
plant may start from any state. Furthermore, having
defined the characteristic state weight vector s, it may
not be necessary to specify the set of marked states,
because if �i ¼ 0, then qi is not marked and if �i 6¼ 0,
then qi is marked. Therefore, plant models with an
arbitrary uniform termination probability � 2 ð0, 1Þ,
i.e., �i ¼ � 8i 2 f1, 2, . . . , ng, can be completely specified
by a sextuple as

Gð�Þ ¼
�
Q,�, �,e&ð�Þ, s,C�; ð12Þ
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where e&ð�Þij is the occurrence probability of event �j from
state qi and

P
j
e&ð�Þij ¼ 1� � 8i. An application of (7)

with uniform uniform termination probability � yields
an alternative representation of the sextuple in (12).

Gð�Þ ¼
�
Q,�, �, ð1� �ÞeP, s,C�; ð13Þ

where eP is the the morph matrix of the underlying
Markov chain.
As �! 0þ, the resulting non-terminating plant model

is denoted as

Gð0Þ ¼ ðQ,�, �,eP, s,C Þ: ð14Þ

Definition 11: Given � 2 ð0, 1Þ, a terminating plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ is defined to be the
�-neighbour of the non-terminating plant
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ.
For a given non-terminating plant G(0) and a fixed
�0 2 ð0, 1Þ, there is exactly one �0-neighbour Gð�0Þ.

Notation 2: Let � 2 ð0, 1Þ be the unform probability of
termination for a terminating plant Gð�Þ ¼ ðQ,�, �,
ð1� �ÞeP, s,C Þ. Let P be the state transition probability
matrix of the underlying Markov chain, which is gener-
ated from � and e& (see equation (2)). Then, the (renor-
malized) language measure vector (see Definition 8)
is obtained as

mð�Þ ¼ �
h
I� ð1� �ÞP

i�1
s ð15Þ

where ð1� �ÞP is the sub-stochastic transition probabil-
ity matrix for the terminating plant. Similarly, for a non-
terminating plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ having the
stochastic transition probability matrix P, the (renorma-
lized) measure vector (Chattopadhyay and Ray 2006a) is
denoted as

mð0Þ ¼ lim
�!0þ

mð�Þ ¼ lim
�!0þ

�

�
I� ð1� �ÞP

��1
s ð16Þ

In the sequel, renormalized measure m in equations (10)
and (11) is referred to as measure for brevity.

3.2 Construction of an optimal supervisor

A supervisor disables a subset of the set C of controlla-
ble transitions and hence there is a bijection between the
set of all possible supervision policies and the power set
2C . That is, there exists 2jC j possible supervisors and
each supervisor is uniquely identifiable with a subset of
C and the language measure � allows a quantitative
comparison of different supervision policies.

Definition 12: For an unsupervised (non-terminating)
plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, let Gy and Gz be the
supervised plants with sets of disabled transitions,
Dy � C and Dz � C , respectively, whose measures are
my and mz. Then, the supervisor that disables Dy is
defined to be superior to the supervisor that disables
Dz if my^E m

z and strictly superior if my>E m
z.

Definition 13 (Optimal supervision problem): Given a
(non-terminating) plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ, the
problem is to compute a supervisor that disables a
subset D?

� C , such that

m? ^E m
y 8Dy � C

where m? and my are the measure vectors of the supervised
plants G? and Gy under D? and Dy, respectively.

Remark 2: For a non-trivial plant Gð0Þ ¼ ðQ,�, �,eP, s,C Þ (i.e., jQj > 1), there may exist two supervisors
that are not comparable in the sense of Definition 12.
For example, given a two-state unsupervised plant G,
if Gy and Gz are supervised plants under two different
supervisors with disabled transition sets, Dy and Dz,
respectively, then the following situation may occur for
the indices i 6¼ j.

�yi > �zi

	 
 ^
�yj < �zj

	 

;

where myi and m
z

i are the ith elements of the measure vec-
tors for Gy and Gz, respectively. It is shown in the next
section that, for a given plant, an optimal supervisor
(in the sense of Definition 13) does exist for which the
measure vector is elementwise greater than or equal
to the measure vector of the plant under any other
supervision policy.

Terminating plant models have sub-stochastic
transition probability matrices (see Definition 7). By
postulating the existence of unmodelled transitions,
such plants can be transformed to non-terminating
models as explained below. For uniform termination
probability � 2 ð0, 1Þ, equations (8) and (11) suggest
the possibility of computing optimal supervision
policies for terminating plants based on the analysis of
non-terminating plants.

4. Optimal control problem: solution

This section presents a solution to the optimal supervi-
sion problem by assuming a uniform non-zero probabil-
ity of termination, �, at each state. Then, it is shown that
the solution for the corresponding non-terminating
plant can be obtained from the control policy of the
terminating plant and the bounds on the derivatives of
the language measure (see Appendix A).
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Let � 2 ð0, 1Þ be the uniform termination probability of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ.
The resulting (substochastic) state transition cost
matrix is &ð�Þ ¼ ð1� �ÞP. For such plants with uniform
non-zero termination probability, the following lemma
states existence of an augmented plant model.

Lemma 3: For the terminating plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ, let the corresponding
augmented non-terminating plant be Gaug ¼ ðQaug,
�aug, �aug,e&aug, saug,C Þ. Let m

?ð�Þ and myð�Þ be the mea-
sures of the terminating plant with the respective sets of
disabled transitions D?

� C and Dy � C . Then,

9D?
� C s:t: m?ð�Þ^Em

yð�Þ 8Dy � C 8� 2 ð0, 1Þ

ð17Þ

which implies that an optimal supervisor for Gaug exists
(in the sense of Definition 13) which disables D?

� C .

Proof: The first n elements of the measure vectors of
the augmented plant and the unaugmented plant are
identically equal as seen in equation (11). Then, the
proof follows from Definition 12. œ

The remainder of this section derives an algorithm for a
supervision policy that elementwise maximizes
the measure of the terminating plant G(�). Lemma 3
guarantees that the optimal policy is based on a non-
terminating plant.

Proposition 2 (Monotonicity): Let &ð�Þ and mð�Þ be the
state transition cost matrix and the measure vector of
an unsupervised plant Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ,
respectively. Let a supervisor be constructed to reconfi-
gure the plant by disabling a set of controllable transi-
tions Dy � C such that & is modified to &y by
following Algorithm 1. Then, denoting the measure
vector of the supervised plant by my, it follows that
my^E m; and equality holds if and only if &y ¼ &.

Proof: It follows from equation (15) in Notation 2 that

my � m ¼ � I�&y
� ��1

�� I�&½ �
�1s

¼ � I�&y
� ��1

½I�&� � ½I�&y�
� �

I�&½ �
�1s

¼ � I�&y
� ��1

&y �&
� �

m:

Defining the matrix ",&y �&, and the ith row of " as
�i, it follows that

�i
Tm ¼

X
j

�ij�j ¼
X
j

�	ij�ij ð18Þ

where

�ij ¼

ð�i � �jÞ if �i > �j

0 if �i ¼ �j

ð�j � �iÞ if �i < �j

8>><>>: ¼)�ij ^ 0 8i, j:

Since
Pn

i¼1 &ij ¼
Pn

i¼1 &
y

ij; 8j, k, it follows from non-
negativity of &, that ½I�&y��1>E 0. Since 	i � 0 8i, it
follows that �i

Tm � 0 8i ) my^E m. For �j 6¼ 0 and
� as defined above, �T

i m
k ¼ 0 if and only if �¼ 0.

Then, &y ¼ & and my ¼ m. œ

Corollary 1: Under an identical situation to that
assumed in the statement of Proposition 2, let the
plant be reconfigured as given in Algorithm 2. Then,
denoting the measure vector of the modified plant by
my, it follows that my%E m; and equality holds if and
only if &y ¼ &.

Proof: The proof is similar to that of
Proposition 26. œ

Proposition 2 facilitates formulation of the algorithm
for computing an optimal supervisor for plants with
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uniform non-zero probability of termination at

each state. Let the kth iteration of the algorithm com-

pute a set D½k� � C of controllable transitions to be

disabled in the sense of the control philosophy in

Definition 9. The language measure vector computed

in the kth iteration of the algorithm is denoted by m½k�.

The algorithm terminates at the ðkþ 1Þth iteration if

D½k� ¼ D½kþ1�, which is the optimal set of disabled transi-

tions computed by the algorithm and is denoted by D?.

The algorithm is started with the unsupervised plant

(i.e., with all controllable transitions enabled) and

hence D½0� ¼ ;. A formal description is given in

Algorithm 3.

Proposition 3: Let m½k� be the language measure

vector computed in the kth iteration of Algorithm 3.

The measure vectors computed by the algorithm

form an elementwise non-decreasing sequence, i.e.,

m½kþ1�^E m
½k� 8k.

Proof: Let the state transition probability matrix in

the kth iteration of Algorithm 3 be denoted by &½k�.
Then, the matrix &½kþ1� is generated from &½k� by follow-

ing the procedure as described in Proposition 2. Hence,

m½kþ1�^E m
½k�. œ

Proposition 4 (effectiveness): Algorithm 3 is an

effective procedure (Hopcroft et al. 2001), i.e., it is

guaranteed to terminate.

Proof: Let Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ be the unsu-

pervised plant and let CardðC Þ ¼ ‘ 2 N. Denoting the

set of all permutations of the vector ½1 2 � � � ‘�T by

P ð‘Þ, a function 
 : 2C�!P ð‘Þ is defined as

1: 8Dy � C , �yi1 > �yi2 > � � � > �yin

	 

¼) 
ðDyÞ ¼ ½i1 i2 � � � in�

T
� �

2: �yis ¼ �yit

	 

^ is > itð Þ

¼) if 
ðDyÞs ¼ is and 
ðDyÞt ¼ it then s > t
� �

:

Let m½k� be the measure vector computed in the kth itera-
tion of Algorithm 3. Then, m½k� ¼ m½kþ1� implies that

Algorithm 3 terminates in kþ 1 iterations according to

its stopping rule.
Next let D½k1� and D½k2� be the disabling sets in itera-

tions k1 and k2, respectively. If 
ðD
½k1�Þ ¼ 
ðD½k2�Þ, then

m½k1þ1� ¼ m½k2þ1�. Since 
ðD½k1�Þ ¼ 
ðD½k2�Þ, it follows from

the definition of 
 that if �½k1�i > �½k1�j , then �½k2�i ^ �½k2�j .

If �½k2�i > �½k2�j then controllable transitions qi!� qj are

disabled in both iterations k1 þ 1 and k2 þ 1. If

�½k1�i ¼ �½k1�j , then disabling or enabling controllable

transitions qi!� qj does not affect the measure vector.

Hence, it follows that m½k1þ1� and m½k2þ1� can be obtained

by disabling the same set of controllable transitions,

thus implying m½k1þ1� ¼ m½k2þ1�. Since the measure

vectors can repeat only at the final iteration,

Algorithm 3 is guaranteed to terminate within

CardðP ð‘ÞÞ ¼ ‘! iterations. Therefore, effectiveness of

Algorithm 3 is established. œ

Next it is established that Algorithm 3 is correct in the

sense that an optimal supervision policy is generated.

Proposition 5 (Optimality): For a terminating plant

Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP,s,C Þ, the supervision policy

computed by Algorithm 3 is optimal in the sense of

Definition 13.

Proof: Let G(�) have the state transition cost matrix &,

measure m½0�, no disabled events, i.e., D0
¼ ;. Let G(�) be

configured as the supervised plant G?ð�Þ by application

of Algorithm 3 when it stops.
Let Gy be another configured plant distinct from G?.

Let D?
� C and Dy � C be the respective sets of

disabled transitions and �? and �y be the respective

measures for G? and Gy; and D?
6¼ Dy.

Let the following set differences be denoted as:

4D,D?
nDy and rD,Dy nD?. An application of

Algorithm 3 yields

. 8i, j �?i > �?j ¼) all controllable transitions qi
!

� qj are

disabled.
. 8i, j �?i%�?j ¼) all controllable transitions qi

!

� qj are

enabled.
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To change the plant configuration from G? to Gy, all
transitions in 4D are enabled and all transitions in
rD are disabled. Since any such change requires us to
either disable a transition qi!� qj where �?i 	 �?j or
enable a disabled transition qi!� qj where �?i > �?j , it
follows from Corollary 1 that my%E m

?.
Since Gy is an arbitrary configuration distinct from

G?, it follows that G? is an optimal supervision policy
in the sense of Definition 13. œ

In the reported work on discrete event control of non-
probabilistic regular languages (e.g., (Ramadge and
Wonham 1987)), the emphasis is on computing the
maximally permissive supervisor in the sense that the
supervised plant language is the supremal controllable
sub-language of the specification. A similar approach
is taken for probabilistic regular languages (Garg
1992a, b). In contrast, the measure-theoretic concept
in this paper computes a policy that maximizes the
elements of the language measure vector elementwise
to find a supervisor with maximal performance.
Proposition 5 shows that there exists at least one optimal
supervisor. Now it is shown that the optimal
supervisor computed by Algorithm 3 is unique in the
sense of being maximally permissive among all
policies that guarantee optimal performance of the
supervised plant.

Proposition 6 (uniqueness): Given an unsupervised
plant G(�), the optimal supervisor G?ð�Þ, computed by
Algorithm 3, is unique in the sense that it is maximally
permissive among all possible supervision policies with
optimal performance. That is, if D? and Dy are the dis-
abled transition sets, and m? and my are the language
measure vectors for G? and an arbitrarily supervised
plant Gy, respectively, then

m?�E m
y ¼)D?


 Dy � C : ð19Þ

Proof: If G? and Gy are distinct, then D#
6¼ D?. Given

m?�E m
#, let G? be reconfigured to Gy by disabling and/or

re-enabling appropriate controllable transitions. It
follows from equation (18) that

0 ¼ my � m? ¼ I�&y
� ��1

&y �&?
� �

m?

) &y �&?
� �

m? ¼ 0: ð20Þ

The ith element of &y �&?
� �

m? is expressed as the
finite sum of real numbers

0 ¼

 
&y �&?
� �

m?

!
i

¼
X�
r¼1

Ti
r; ð21Þ

where 0 	 � 	 2CardðC Þ and each Ti
r is of the form:

Ti
r ¼

�i
rð�

?
i � �?j Þ > 0, if Ti

r arises due to disabling

qi
!

� qj for some qj 2 Q

�i
rð�

?
j � �?i Þ � 0, if Ti

r arises due to enabling

qi
!

� qj for some qj 2 Q

8>>>>><>>>>>:
ð22Þ

because each �i
r represents event occurrence

probabilities and hence are positive, and the the logic
of disabling and re-enabling follows Algorithm 3.
Therefore, it follows from equation (22) that
Ti
r ¼ 0 8r 2 f1, . . . , �g.
Hence, it is necessary to re-enable controllable transi-

tions qi!� qj and disable the self loop at qi such that

�yi ¼ �yj for reconfiguration from Gy� to G?
�. Note that

all such transitions are guaranteed to be enabled in G?
�

(see line 10 in Algorithm 3). Therefore, given m?�E m
y,

it follows that D?
� Dy. That is, G?ð�Þ is unique for

all � 2 ð0, 1Þ in the sense that the configured plant is
maximally permissive among all other configurations
that yield the same optimal measure m?ð�Þ. œ

4.1 Optimal control of non-terminating plants

This section presents the optimal supervision problem
for non-terminating plants (i.e., with termination prob-
ability �¼ 0 at each state) having the structure
Gð0Þ ¼ ðQ,�, �,eP, s,C Þ and the corresponding stochas-
tic transition probability matrix is P. The rationale
for working on a terminating plant, instead of the
non-terminating plant is explained below.

By maximizing the measure mð�Þ for a given � 2 ð0, 1Þ,
an optimal control law can be derived based on the state
transition cost matrix &ð�Þ ¼ ð1� �ÞP of the supervised
plant language and the originally assigned s-vector.
Such an optimal control law is sought to be �-indepen-
dent in the sense of having the same disabling set
D � C for a given range of �, where � might be restricted
to be not too far away from 0þ. On the other hand, from
the perspective of numerical stability and accuracy in
computation of mð�Þ (see Definition 8), it is desirable to
have a relatively large positive value of �. The results
derived in this section serve toward establishing upper
bounds on � for which the optimal control law should
be �-independent and the associated computation is
numerically stable. The main objective is summarized
below.

A uniform non-zero probability of termination �? 2 ð0, 1Þ is to
be computed such that the terminating plant Gð�?Þ and the
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non-terminating plant G(0) shall have the same the disabling set
D � C . However, in general, their measures could be different,
i.e., mð�?Þ 6¼E mð0Þ.

Proposition 7: Let ð1� �ÞP and mð�Þ be the state transi-
tion cost matrix and the measure of the plant
Gð�Þ ¼ ðQ,�, �, ð1� �ÞeP, s,C Þ. Then, for all qi, qj 2 Q,
there exists �?ij 2 ð0, 1� such that 8� 2 ð0, �?ijÞ, the sign
of �ið�Þ � �jð�Þ

� �
is fixed (i.e., positive, negative or

zero); and �?ij can be computed as an explicit function
of the stochastic matrix P and state characteristic
vector s.

Proof: Let 
ijð�Þ, �ið�Þ � �jð�Þ 8� 2 ð0, 1Þ, which is a
smooth function of �, and 
ijð0Þ ¼ lim�!0þ
ijð�Þ. The
proof is based on the following two cases.

Case 1: No sign change of 
ijð�Þ in ð0, 1Þ ) �?ij ¼ 1.
This includes: 
ijð0Þ ¼ 0 and ðdk
ijð�Þ=d�

kÞj�¼0 ¼ 0 for all
k� 0 because 
ijð�Þ ¼ 0 8� 2 ð0, 1Þ by Proposition A.3.

Case 2: 
ijð�Þ changes sign in ð0, 1Þ; and
ð@r
ijð�Þ=@�

rÞj�¼0 ¼ �ij 6¼ 0 for some integer r� 0.

If r¼ 0, there exists �1 2 ð0, 1Þ such that 
ijð�1Þ ¼ 0 for
the first time. If r>0, it is possible that 
ijð0Þ ¼ 0.
Then, as � is increased from zero, 
ijð�Þ becomes non-
zero and there exists �1 2 ð0, 1Þ such that 
ijð�1Þ ¼ 0
again. Smoothness of 
ijð�Þ necessitates that
ð@r
ijð�Þ=@�

rÞj�¼�?
ij
¼ 0 for some �?ij 2 ð0, �1Þ. Then, it

follows from the Mean value Theorem that there exists
�2 2 ð0, �

?
ijÞ such that

@rþ1
ijð�Þ

@�rþ1
��
�¼�2
¼

�ij
�?ij

for the given r� 0, Proposition A.2, triangular inequal-
ity, and the relation 
ijð�Þ ¼ �ið�Þ � �jð�Þ yield

�?ij ¼

����ð@r�ið�Þ=@�rÞ���¼0 � ð@r�jð�Þ=@�rþ1Þ���¼0����
ðrþ 1Þ! 2rþ3 inf�6¼0

���������I� Pþ �P
��1��������

1

� �rþ1

¼

jf½I�PþP ��1��P�gi �f½I�PþP ��1��P�gjj

8� inf�6¼0 I�Pþ�P½ ��1k k1ð Þ
; if r ¼ 0

I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 

i

� I�PþP½ ��1 I� I�PþP½ ��1½ �
r
s

� 

j

������
������

2r�3
�
inf�6¼0

�����
I�Pþ�P

��1����
1

�rþ1 ; if r > 0:

8>>>>>>>><>>>>>>>>:
ð23Þ

œ

Remark 3: For a non-terminating plant Gð0Þ ¼

ðQ,�, �, ~P, sÞ, let �? ¼ mini, j �
?
ij. Then, the plant config-

uration obtained by applying a single iteration of

Algorithm 3 to the �-parameterized plant Gð�Þ ¼
ðQ,�, �, ð1� �ÞeP, s,C Þ is identical for all � 	 �?.

The procedure of computing �? is summarized as

Algorithm 4.

Proposition 8: Complexity of computing a positive

bound for �? is Oðn3Þ where n is the number of

plant states.
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Proof: Referring to Algorithm 4, the part within the

nested For loops (lines 10 to 32) is executed at most n2

times and each iteration involves only single-iteration

scalar operations. Thus the computational complexity
of this part is of the order of Oðn2Þ. Lines 5 and 6 involve

inversion of n� n dimensional non-singular matrices
and hence the complexity of execution is of the order

of Oðn3Þ. Proposition G (see Appendix) guarantees
that the complexity of computing P is, in general,

of the order of Oðn3Þ. Line 7, which computes
M2 ¼ inf�6¼0 k½I� Pþ �0P �

�1
k1, is a search problem.

However, since M2 appears only in the denominator of
the expressions for �curr, it follows that, if for some

� ¼ �0 6¼ 0 and by using

M2 ¼

�����I� Pþ �0P
��1����

1

ð24Þ

it is possible to obtain a positive lower bound of �?
in Algorithm 4. Since the computation of
k½I� Pþ �0P �

�1
k1 is of the order of Oðn3) due to the

matrix inversion, it is concluded that a positive lower
bound of �? can be computed with a complexity
of Oðn3Þ. œ

Remark 4: It is shown in (Chattopadhyay and Ray
2006a) that for any stochastic matrix P

�
I�Pþ�P

��1
¼
�
I�PþP

��1
þ

�
1��

�

�
P 8 � 6¼ 0

¼)

	�
I�PþP

��1
�P



þ

�
1

�

�
P : ð25Þ

Using M2 ¼ k½I� Pþ P ��1k1 instead of
M2 ¼ inf�6¼0 k½I� Pþ �P ��1k1 (i.e., using � ¼ 1) in

Algorithm 4 yields a value which satisfies the require-
ment stated in Remark 3 and therefore qualifies as �?.
Thus, the major advantage of this approximation is
having significantly smaller computational complexity

because the search involved in computing the infimum
is avoided at the cost of using a smaller value of �?,
which may make subsequent computation of measure
slightly more difficult due to possible ill-conditioning

(see Definition 8).

On account of Proposition 7 and Remark 3, Algorithm 3
is modified to solve the optimal supervision problem

for non-terminating plants and the modified version is
formally presented in Algorithm 5.

Proposition 9 (effectiveness): Algorithm 5 is an effec-
tive procedure (Hopcroft et al. 2001), i.e., it is guaran-
teed to terminate.

Proof: Comparison of Algorithm 3 and Algorithm 5
reveals that while the former assumes a fixed probability
of termination � at each state, the latter modifies
this parameter, denoted as �½k�? , at each iteration k. Let
�min ¼ min

�
�½1�? , �½2�?

�
and let D½1�ð�minÞ and D½2�ð�minÞ be

sets of disabled transition at the first and second itera-
tions, respectively, for the terminating plant Gð�minÞ.
Similarly, for the non-terminating plant G(0), let
D½1�ð0Þ and D½2�ð0Þ be the sets of disabled transitions
at the first and second iterations, respectively. It
follows from Remark 3 that D½1�ð0Þ ¼ D½1�ð�minÞ and
D½2�ð0Þ ¼ D½2�ð�minÞ.

Extending the above argument by induction based
on k iterations of Algorithm 5 and denoting
�min ¼ minð�½1�? , . . . , �½k�? Þ, an application of Algorithm 3
on a terminating plant Gð�minÞ yields

D½r�ð0Þ ¼ D½r�ð�minÞ 8r 2 f1, . . . , kg:
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Proposition 4 states that, for an arbitrary plant,
Algorithm 3 is guaranteed to terminate within finitely
many iterations. Hence, Algorithm 5 is an effective
procedure. œ

Next, it is shown that the plant configuration obtained
by Algorithm 5 is optimal in the sense of Definition 13.

Proposition 10 (optimality): For a non-terminating
plant Gð0Þ ¼ ðQ,�, �,eP, s,C ÞÞ, the supervision policy
computed by Algorithm 5 is optimal in the sense of
Definition 13.

Proof: Let the set of disabled transitions computed at
the kth iteration Algorithm 5 be denoted by D

½k�
lim and

the termination probability be denoted by �½k�? .
Let the set of disabled transitions at the convergence
of Algorithm 5 be D

½m�
lim. Let �min ¼ minr2f1,..., ‘g

ð�½1�? , . . . , �½‘�? Þ > 0.
Let Gð�minÞ be a terminating plant with

&ð�minÞ ¼ ð1� �minÞP. It follows from the proof of
Proposition 9 that applications of Algorithm 3 to
Gð�minÞ and Algorithm 5 to G(0) yield the same set D

of disabled controllable events although the optimal
measures, being �-dependent would be different, i.e.,

mð�minÞ 6¼E mð0Þ.
Proposition 5 implies that the optimal disabling set

for a plant G(�) generates the the same set of disabled
controllable transitions for all 0 < �% �min. Because of
continuity of mð�Þ with respect to �, it is argued that
G?ð0Þ is optimal in the sense of Definition 13, i.e.,
m? ^E m

y, where Gyð0Þ is obtained by arbitrarily disabling
controllable transitions in G. This completes the
proof. œ

Next it is shown that the supervision policy computed by
Algorithm 5 is unique in the same sense as
Proposition 6.

Proposition 11 (Uniqueness): Let G(0) be an unsuper-
vised non-terminating plant and G?ð0Þ be the supervised
plant configured by Algorithm 5. Then, G? is unique in
the sense that it is maximally permissive among super-
vised plants that yield optimal performance based on

�-neighbours G(�) of G(0) (see Definition 11) for all
� 2 ð0, �?Þ, where �? is computed by Algorithm 4.
Equivalently, if Gyð�) is an arbitrarily supervised plant,
then the following condition holds:

�
m?ð�Þ^E m

yð�Þ
�^��

D?
� Dy

�_�
m?ð�Þ 6¼E m

yð�Þ
��

;

where m and D denote respective language measures and
sets of disabled transitions.

Proof: It follows from Proposition 10 that
m?ð0Þ^E m

yð0Þ. It also follows from Proposition that
m?ð�Þ^E m

yð�Þ for � 2 ð0, �?Þ. If m
?ð�Þ�E m

yð�Þ, then G?ð�Þ
and Gyð�Þ are both optimal supervised configurations
of the unsupervised terminating plant G(�). It follows
from Proposition 6 that D?

� Dy; otherwise
m?ð�Þ 6¼E m

yð�Þ. œ

Proposition 12: Computational complexity of
Algorithm 5 is of the same order as that of Algorithm 3.

Proof: Algorithm 5 computes �? in each iteration and
complexity of this computation is Oðn3Þ, where n is the
number of states in the plant (see Proposition 8). Each
iteration of both Algorithm 3 and Algorithm 5 involves
computation of the measure vector m, whose complexity
is also Oðn3Þ because of n� n matrix inversion. Hence,
computational complexity of each iteration is Oðn3Þ
for both Algorithm 3 and Algorithm 5. Finally, the
argument presented in Proposition 9 implies that
the number of iterations in Algorithm 5 is of the
same order as that in Algorithm 3. This completes
the proof. œ

4.2 Testing of computational complexity

Proposition 4 shows that Algorithm 3 is an effective
procedure (Hopcroft et al. 2001), i.e., the solution is
guaranteed to converge in a finite number of iterations.
Extensive simulation suggests that the the maximum
number of iterations for Algorithm 3 is actually of poly-
nomial order in n, where n is the number of states in the
unsupervised plant. The result is illustrated in figure 6,
where the maximum number of required iterations
Imax is plotted against number, n, of plant states. For
each n, 10, 000 simulation runs were conducted for
synthesis of optimal plant configuration with randomly
generated entries in the pair

�
ð1� �ÞP, s

�
; and Imax

was chosen to be the maximum number of iterations
required by Algorithm 3 to converge; this is the most
conservative case. The plot in figure 1 shows a distinct
sub-linear variation. The following conjecture is made
based on these observations.

Conjecture 1 (polynomial convergence): Given a termi-
nating plant G(�) with a uniform non-zero probability of
termination � at each of the n plant states,

1. Algorithm 3 converges in at most O(n) iterations.
2. Computational complexity of Algorithm 3 is bounded

by Oðn4Þ.

Statement 2 in Conjecture 1 follows from Statement 1
and the following facts: Each iteration has complexity
of Oðn3Þ due to matrix inversion in the computation of
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the language measure vector, and matrix inversion has
complexity of Oðn3Þ). Combination of Conjecture 1
and Proposition 12 implies that Algorithm 5 converges
in O(n) iterations and that complexity of the algorithm
is Oðn4Þ. Similar to the procedure, described above for
Algorithm 3, 10, 000 random simulation runs for each
n were conducted for testing Algorithm 5. Figure 2
shows the plot of average number of iterations required
to converge at each value of n in contrast to figure 1,
where the maximum number of iterations is potted. As
expected, the plot of figure 2 is also sub-linear.

5. Optimal control of three processor message decoding

This section presents the design of a discrete-event
(controllable) supervisor for a multiprocessor message

decoding system, described in an earlier
publication (Ray et al. 2004). The optimal supervisory
algorithm has been synthesized based on the algorithms
presented in earlier sections.

Figure 3 depicts the arrangement of the message
decoding system, where each of the three processors,
p1, p2 and p3, receives encoded messages that are to
be decoded. The processor p3 normally receives the
most important messages, and p1 receives the least
important messages. There is a server between each
pair of processors—s1 between p1 and p2; s2 between
p2 and p3; and s3 between p3 and p1. Each server is
connected to each of its two adjacent processors by
a link—the server sj is connected to the adjacent pro-
cessors pi and pk through the links Lij and Lkj, respec-
tively. Out of these six links, each of the three links,
L11, L12, and L21, is equipped with a switch to disable
the respective connection whenever it is necessary;
each of the remaining three links, L22, L32, and L33,
always remain connected. Each server si is equipped
with a decoding key ki that, at any given time, can
only be accessed by only one of the two processors,
adjacent to the server, through the link connecting
the processor and the server. In order to decode the
message, the processor holds the information on
both keys of the servers next to it, one at a time.
After decoding, the processor simultaneously releases
both keys so that other processors may obtain
access to them.

Figure 4 depicts the unsupervised plant model of the
decoding system as a finite state automaton, where
state 1 is the initial state. The event pij indicates that
processor pi has accessed the key kj; and the event fi
indicates that the processor pi has finished decoding
and (simultaneously) released both keys in its possession
upon completion of decoding. The events fi
are uncontrollable because, after the decoding is
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initiated, there is no control on when a processor finishes
decoding.
Table 1 lists the event cost matrix e&. Two different

control specifications are investigated. The first set of
specifications, which emphasizes avoiding deadlock, is

represented by the s vector in the first column of
table 2. The second set of specifications, which focuses

on increasing the throughput of processor 1, is repre-
sented by the s vector in the second column of table 2.

The positive elements of the s vector are assigned to
the states 8 to 16 that represent successful decoding of
each processor. The s values of the deadlock states 26

and 27, where each processor holds exactly one key
and hence no processor releases its key, are assigned

negative values. The remaining states are non-marked
and are assigned zero weights.
Algorithm 5 is applied to obtain the sequence of

measure vectors for the two control specifications.
The results of successive iterations, enumerating the
renormalized measure vectors, are presented in Table 3

and 4 respectively. The last column in each table is
the optimal renormalized measure vector. The

optimization requires 7 iterations in Case 1 and 5
iterations in Case 2.
The optimal configurations for the plant obtained

under Algorithm 5 are depicted in figures 5 and 6 respec-
tively. For supervisor policy 1, the controlled plant is
not trim and, for supervisor policy 2, there are discon-

nected states in the controlled model. This is interpreted
as the supervisor successfully preventing the plant

from visiting these states. The critical values for the
termination probability �? computed by the optimiza-

tion algorithm for each control specification is shown
in figure 7.

Next the stable probability distributions of the plant
states are compared for the following three cases:

. Open-loop or unsupervised plant

. Plant with the optimal supervision policy for
specification 1

. Plant with the optimal supervision policy for
specification 2

The distributions are obtained by considering the first
row of the matrix P , based on the measure �1
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Figure 4. Finite state model of the message decoding system.

Table 1. Event occurrence probabilities for
processor models.

p11 p13 p21 p22 p32 p33 f 1 f 2 f 3

0.16 0.04 0.16 0.16 0.16 0.32 0.00 0.00 0.00
0.00 0.16 0.00 0.26 0.26 0.32 0.00 0.00 0.00

0.37 0.00 0.21 0.21 0.21 0.00 0.00 0.00 0.00
0.32 0.11 0.26 0.00 0.00 0.32 0.00 0.00 0.00
0.00 0.11 0.00 0.28 0.28 0.33 0.00 0.00 0.00
0.25 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00

0.28 0.11 0.28 0.00 0.00 0.33 0.00 0.00 0.00
0.00 0.00 0.00 0.39 0.39 0.00 0.22 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.14 0.00 0.00 0.00 0.43 0.00 0.43 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.34
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.25 0.00 0.00 0.00 0.75 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34
0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.34

Table 2. Vectors for control specifications.

Case 1 Case 2

0.000 0.010 0.000 0.000 1.000 0.000
0.000 0.020 0.000 0.000 0.020 0.000

0.000 0.020 0.000 0.000 0.020 0.000
0.000 0.020 0.000 0.000 0.020 0.000
0.000 0.040 0.000 0.000 0.040 0.000

0.000 0.040 0.000 0.000 0.040 0.000
0.000 0.040 0.000 0.000 0.040 0.000
0.010 0.000 �1.000 1.000 0.000 �0.200
0.010 0.000 �1.000 1.000 0.000 �0.200
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corresponding to state 1 which is the initial state in both
cases. If the stochastic matrix P is primitive (i.e., irredu-
cible and acyclic), then all rows of P would be identical.
However, primitiveness of P is not guaranteed even if
the unsupervised plant model have this property because
any subsequent event disabling may cause loss of
reducibility or acyclic properties.
The results on evolution of the distribution are plotted

in figure 8. While the unsupervised plant has a finite
probability of reaching the deadlock states 26 and 27,
the optimal supervisors in both cases successfully
prevent occurrence of deadlock in the sense that the
stable occupation probabilities for states 26 and 27 are
zero for each supervisor. However, supervisor 2
increases the throughput of processor 1 as seen from
the increased probability of occupying states 1 and 2.

6. Summary, conclusions, and recommendations for

future work

This paper presents the theory, formulation, and
validation of optimal supervisory control policies for
dynamical systems, modelled as probabilistic finite

state automata. The procedure for synthesis of the opti-
mal control policy relies on a (renormalized) signed
real measure of regular languages (Chattopadhyay and
Ray 2006a) to construct the performance index. The
language measure is based on the state transition

Table 3. Iteration vectors for multi-processor model: case 1.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5 Itr 6 Itr 7

�0.0616 0.0006 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0002 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0055 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0013 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0010 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0011 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0001 0.0063 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0001 0.0000 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0000 0.0093 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0009 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0000 0.0000 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0003 0.0000 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0014 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0012 0.0110 0.0124 0.0124 0.0143 0.0143

�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143
�0.0616 0.0007 0.0110 0.0124 0.0124 0.0143 0.0143

Table 4. Iteration vectors for multi-processor model: case 2.

Itr 1 Itr 2 Itr 3 Itr 4 Itr 5

0.0598 0.2076 0.2879 0.3245 0.3245
0.0598 0.2074 0.2880 0.3245 0.3245

0.0598 0.2101 0.2879 0.3245 0.3245
0.0598 0.2167 0.2876 0.3232 0.3245
0.0598 0.2109 0.2878 0.3236 0.3245

0.0598 0.2084 0.2882 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2090 0.2879 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245

0.0598 0.2175 0.2875 0.3230 0.3245
0.0598 0.2089 0.2879 0.3245 0.3245
0.0598 0.2105 0.2879 0.3245 0.3245

0.0598 0.2086 0.2882 0.3245 0.3245
0.0598 0.2078 0.2879 0.3245 0.3245
0.0598 0.2114 0.2878 0.3235 0.3245

0.0598 0.2076 0.2880 0.3245 0.3245
0.0598 0.2080 0.2880 0.3245 0.3245
0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2216 0.2872 0.3241 0.3245

0.0598 0.2059 0.2878 0.3245 0.3245
0.0598 0.2147 0.2879 0.3245 0.3245
0.0598 0.2116 0.2879 0.3245 0.3245

0.0598 0.2084 0.2879 0.3245 0.3245
0.0598 0.2105 0.2878 0.3232 0.3245
0.0598 0.2110 0.2878 0.3236 0.3245

0.0598 0.2077 0.2879 0.3245 0.3245
0.0598 0.2077 0.2879 0.3245 0.3245
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Figure 5. Optimal plant configuration for specification 1.
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probability matrix of the underlying finite-state Markov
chain model of the process and a characteristic vector of
state weights, which serves as the control specification.
The main contribution of the paper is reformulation

of the optimal supervisor synthesis algorithm (Ray
et al. 2004, 2005) for probabilistic finite state plant
models in terms of the renormalized measure and
extension of the technique to general non-terminating

probabilistic models. Specifically, the work reported in
this paper removes a fundamental restriction of earlier
analysis (Ray et al. 2004, Ray 2005), namely, each row
sum of the state transition cost matrix & being strictly

less than one, instead of being exactly equal to one.
The novel concept of language-based control synthesis,
presented in this paper, allows quantification of plant

performance instead of solely relying on its qualitative

performance (e.g., permissiveness), which is the current

state of the art for discrete event supervisory

control (Ramadge and Wonham 1987, Cassandras and

Lafortune 1999).
The following conclusion is drawn in view of using the

language measure for construction of the performance

index for deriving an optimal control policy. Like any

other optimization procedure, it is possible to choose

different performance indices to arrive at different

optimal policies for discrete event supervisory control.

Nevertheless, usage of the language measure provides

a systematic procedure for precise comparative evalua-

tion of different supervisors so that the optimal control

policy(ies) can be unambiguously identified. These

theoretical results also lay the foundation for extension

of the language-measure-theoretic framework to plant

modelling and control, where all events may not be

observable at the supervisory level.
The paper provides details of the algorithms that are

required for synthesis of the optimal supervisory control

policy. These algorithms are executable in real time on

commercially available platforms. Computational com-

plexity of the presented algorithms is polynomial in

the number of plant model states. The concepts are

elucidated with simple examples and a relevant engineer-

ing example. As such it is straight-forward to develop

real-time software codes in standard languages, based

on the algorithms provided in this paper.
There are several issues that need to be addressed for

implementation of the theory of discrete-event supervi-

sory control in an operating plant. For example, the

events must be generated in real time, based on physical

measurements, to provide the supervisor with the
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current information on the plant; this is beyond what is
done off-line for construction of the plant model and
control synthesis. Similarly, the event disabling/enabling
decisions of the supervisor must be translated in real
time as appropriate actions to control the plant.

6.1 Recommendations for future research

Synthesis of supervisory control systems may become a
significant challenge if some of the events are delayed,
intermittent, or not observable at all, possibly due to
sensor faults or malfunctions in network communication
links. In that case, the control algorithms may turn out
to be computationally very complex because of
delayed or lost information on the plant dynamics.
Future work in this direction should involve research
on construction of language measures under partial
observation (Chattopadhyay and Ray 2006b) and
associated synthesis of optimal control policies to miti-
gate the detrimental effects of loss of observability.
The latter research could be an extension of the work
on optimal control under full observation, reported in
this paper.
It would be a challenging task to extend the concept

of (regular) language measure for languages higher up
in the Chomsky hierarchy (Hopcroft et al. 2001) such
as context-free and context-sensitive languages. This
extension would lead to controller synthesis when the
plant dynamics is modelled by non-regular languages
such as the Petri net (Cassandras and Lafortune 1999,
Murata 1989). The research thrust should focus
on retaining the polynomial order of computational
complexity.
Another critical issue is how to extend the language

measure for timed automaton, especially if the events
are observed with varying delays at different states.
Another research topic that may also be worth investi-
gating is: how to extend the GF(2) field, over which
the vector space of languages is defined (Ray 2005), to
richer fields like the set of real numbers.
Areas of future research also include applications of

the language measure in anomaly detection, model iden-
tification, model order reduction, and analysis and
synthesis of interfaces between the continuously-varying
and discrete-event spaces in the language-measure
setting. Future research for advancement of the theory
of optimal supervisory control for discrete event systems
include the following areas:

. Robustness of the control policy relative to unstruc-
tured and structured uncertainties in the plant model
including variations in the language measure
parameters (Lagoa et al. 2005)

. Control synthesis under partial observation to accom-
modate loss of observability at the supervisory level

possibly due to sensor faults or communication link
failures (Chattopadhyay and Ray 2006b)

. Construction of grammar-based measures, instead of
memory-less state-based measures (Chattopadhyay
and Ray 2005), for non-regular languages when

details of transitions in plant dynamics cannot be
captured by finitely many states
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Appendix A: Derivatives of renormalized measure

This appendix establishes bounds on the derivatives of
the renormalized measure mð�Þ for all � 2 ð0, 1Þ and
computes the limits of the derivatives as �! 0þ as an
extension of what was reported in the previous

publication (Chattopadhyay and Ray 2006a).
The main result on boundedness of the derivatives of

�ð�Þ are presented as propositions. Specifically, the
results reported in Chattopadhyay and Ray (2006a)
are combined as the next two propositions.

Proposition A.1: Let �ð�Þ, � I� ð1� �ÞP½ �
�1, where P

is a ðn� nÞ stochastic matrix and n 2 N. Then,

ðiÞ 8 k 2Nnf1g

lim
�!0þ

@k�ð�Þ

@�k
¼�k lim

�!0þ

@k� 1�ð�Þ

@�k� 1
PþP½ � I�PþP½ �

�1

ðiiÞ lim
�!0þ

@k�ð�Þ

@�k

¼

½I�PþP
��1
�P , if k¼ 1

ð�1Þkk!½I�PþP ��1

� I� I�PþP½ �
�1

� �k�1
, if k 2Nnf1g:

8>><>>:

Proof: Given in Chattopadhyay and Ray (2006a, x 3,
pp. 1111–1112 as Corollary 3 and Corollary 6). œ

The next proposition establishes bounds on the deriva-

tives of mð�Þ in an elementwise sense by computing
bounds on the induced sup-norm of the derivatives of
�ð�Þ. Recall that s has been defined to have infinity
norm equal to 1.
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Proposition A.2

�����@k�ð�Þ@�k

�����
1

	 k! 2kþ1

 
inf
�6¼0

�����I�Pþ�P
��1����

1

!k

8� 2 ½0,1�:

Proof: Given in of Chattopadhyay and Ray (2006a,
x 3, p. 1113 as Proposition 5). œ

Proposition A.3: Denoting the ith element of the kth
derivative of the measure vector as ð@k�ð�Þ=@�kÞ

��
i
, it

follows that

8k 2 f1, . . . , ng,
@k�ð�Þ

@�k
��
i
¼

@k�ð�Þ

@�k
��
j

¼)8� 2 ½0, 1�, �ð�Þ
��
i
¼ �ð�Þ

��
j
;

where n is the number of states in the plant model.

Proof: First it is noted that

�ð�Þ ¼ �
X1
k¼0

ð1� �ÞkPks 8� 2 ð0, 1�

¼ �
X1
k¼0

&kð�Þs 8� 2 ð0, 1�: ð26Þ

Since &ð�Þ is a matrix of dimension n� n, it follows
from the Cayley–Hamilton Theorem (Bapat and
Raghavan 1997) that integral powers of &ð�Þ can be
expressed as polynomials of degree n� 1 as follows:

8r 2 N, &rð�Þ ¼
Xn�1
k¼0

ck&
kð�Þ with ck 2 C: ð27Þ

Since each term in the summation on the left hand side
of equation (26) is a polynomial in � of degree n� 1, it
follows that the summation is also a polynomial in
degree n� 1 (since the summation exists due to the
sub-stochastic property of &ð�Þ). Then it follows that
each element of �ð�Þ is a polynomial of degree n. The
result then follows from continuity. œ

Proposition A.4: For any stochastic matrix P of
dimension n� n, the complexity of computing the limit-
ing matrix P is of the order of Oðn3Þ.

Proof: Since the limit limk!1 ð1=kÞ
Pk�1

j¼0 Pj ¼ P

always exists, it is possible to compute P within any
specified precision simply by computing the sumPk�1

j¼0 Pj followed by division by k, for a large
enough value of k. The procedure is summarized in
Algorithm 6.

Referring to Line 7 of Algorithm 6, it is observed that
Q½k� is a stochastic matrix for all k and hence it follows
that the algorithm is guaranteed to terminate in
ð1=epsÞ iterations, independent of n. Each iteration
involves a single matrix multiplication (P� A) and
hence algorithmic complexity is of the same order as
multiplication of two n� n matrices, i.e., 	 Oðn3Þ.
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