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A Geometric Approach with Stability
for Two-Dimensional Systems

Lorenzo Ntogramatzidis, Michael Cantoni and Ran Yang

Abstract—In this paper we consider the problem of in- computationally tractable conditions for the stabilisifpi
ternal and external stabilisation of controlled invariant and  of such subspaces are derived in terms of LMIs. Armed
output nulling subspaces via static feedback, for 2-D Fornasini- with these results, the solution of the two aforementioned

Marchesini models. A computationally tractable procedure for . . . o
the stabilisation of these subspaces is developed via linear disturbace decoupling problems with stability of the ctbse

matrix inequality (LMI) techniques. This is a preliminary  l00p is discussed.
step towards the solution of so-called disturbance decoupling
problems with stability requirements. [I. 2-D INVARIANT SUBSPACES

We begin by considering the autonomous Fornasini-
Marchesini (FM) system

The notion of controlled invariance introduced by Basile
and Marro in [1] consitutes the key tool of the so-called Xi+1j+1 = Ay j A 41, @)
geometric approach to control theory for LTI systems. Th@vhere, for alli, j, x j €R" is referred to as théocal state

most celebrated control application of this concept is thg,q wheredp, A, € R™N. The subspaceZ of R" is (Ag, Ag)-
disturbance decoupling problem, solved for the first time ariant if ’

in [1]. The disturbance decoupling problem with the extra

requirement of internal stability of the closed-loop was {Al }/ C Ix 7. )
taken into account by Wonham and Morse in [14] via the A2

introduction of(A, B) stabilizability subspaces. An improved The symbolx denotes the Cartesian product. It is easy to
solution to the same problem was suggested by Basife that # is (A1, Az)-invariant if and only if ¢ is both
and Marro in [2], relying on the concept of self-boundeda,-invariant andA-invariant.

controlled invariance to avoid eigenspace computation, SO emma 1:Let _# be anr-dimensional subspace @&"
that the maximum number of eigenvalues of the closed-loggnd letJ be a basis matrix of 7, so that_# =imJ. The

I. INTRODUCTION

can be freely placed, [11]. subspace # is (A1,A)-invariant if and only if a matrix
In the last two decades, many valuable results have begnc R2*" exists such that

achieved in the attempt to develop a geometric theory for 2-D A 7 0

systems, [3], [8], [9], [12]. In particular, in [3] a definith of [ A; ]J = [ Oner ’j]xr } X. (3)

controlled invariance was proposed for Fornasini-Maritfies
(FM) models. This definition, even though less powerfmThe following theorem is the extension for 2-D systems of a
than its 1-D counterpart, enjoys properties that are usef¥ery well-known result on the decomposition of the system
in synthesis problems. In the same paper, it is shown how fBatrix associated with invariant subspaces.

employ this notion for the solution of 2-D decoupling prob- Theorem 1:There exists an-dimensional subspacgZ C
lems of nonmeasurable and measurable disturbances with8tt that is (Aq, Ag)-invariant if and only if there exists a
stability requirements. The lack of stability in the sotuts ~ Similarity transformatioriT in R" such that

of such problems constitutes the biggest limitation in the (1,1) (1,2)
application of these techniques to real problems, pasitul TIAT = A Ai(z_z) for i=12. 4)
from the perspective of numerical implementation. On-ryxr A"

The aim of this paper is therefore to provide a characterf2roof: First notice that(As, Ag)-invariance is a coordinate-
sation of the stability of the 2-D invariants introduced 8}.[ frée concept. To see this, létbe a basis of # and Jy be
More precisely, the problem of internal and external sisdil the transformed basis in the new set of coordinates defined
tion of controlled invariant and output-nulling subspabgs PY an arbitrary similarity transformatio in R", so that

means of suitable static feedback actions is investigated, N =T J. Since 7 is (Aq,Ap)-invariant, in view of (3)
there existX; € R™*" andX; € R™" such thatA; J = J X for
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. i.e,imly = _¢.Clearly nowly=T 1= [0 } By B. Internal and External Stability of Invariant Subspaces

. ) A (n—r)xr
virtue of (5) we find fori = 1,2 By defining ||.2;|| £ SuR,z |[|X—nn||, we recall that sys-
D) A2 1) tem (1) — and therefore, with a slight abuse of nomenclature,
Ay = ATTOAT Iy _| A7 the pair(Ag, Az) — is asymptotically stable if assumimig2o||
T ARY A2 O A finite we have that|.2;|| goes to zero asgoes to infinity.
It is well-known that the paifAq, A2) is asymptotically stable
(A ) ) (21 if and only if
and im|"|,, | CimJy if and only if A~ =0. |
| defln—A1z2—PAoz1) #0 YV (z,22) € P (8)
A. Invariant Subspaces and Local-State Trajectories wheres = {(51752) eCxC ’ |¢1] <1 and|y < 1} is the
for all 6 € [0,21], here the symbagb(-) denoting the spectral
e2{iezxz |itj=kK\ radius, [5]. These conditions are not numerically tracabl
k {(I’ ) x ‘ '+ } since they should be checked at infinitely many points. For

this reason, many conditions for stability of 2-D systemgha

been proposed in the last two decades, expressed in terms

of Lyapunov equations and/or spectral radius conditions of

certain matrices, [6], [7], [4]. In this paper we are partacly

interested in simple sufficient stability conditions for FM

see [5]. If we assign the local state @, equation (1) models expressed in terms of LMis like the one presented

uniquely determines?j for all k> 0. As such, the boundary n the following lemma, which is one of the most utilised in

conditions typically associated with the FM model (1) argnalysis and synthesis problems involving FM models.

assigned by specifying the local state values over the megio | emma 3:(Kar and Sigh, 2003, [7])

o. In other words, a boundary condition for (1) is an The pair(As,Az) is asymptotically stable if two symmetric

assignment of the fornx; = % ; € R" for all (i,j) € €. positive definite matrice®, and P> exist such that:

Given a subspac#’, we denote by (%) the space of all 5 o AT

W -valued sequences. By/A -valued boundary condition we 1 _ 1

will intend x;j € # for all (i, j) € €. 0 R Ay (_F.HPZ)[ A fo ]“> 0 @
Lemma 2:Given an (Aq, Ap)-invariant subspace# for Now we show that stablllty of (l) can be “split mtq two

(1), any _#-valued boundary condition gives rise to a locaPats With respect to the invariant subspage. Consider

state such thax; € _# for all i, j. a basis adapted toZ. By (8) it turns out that system

Proof: Let us write system (1) in the new set of coordinateéG'(Z)DiS (?%’mpt"tici'%)sm(?'z? if-and only if _the two pairs
A7) and (A7, A7) are asymptotically stable.

described by the similarity transformation= [ T T ] 1 i 1]

such that iy = #. If we partition the local stateq; M this b/a5|s, /t/he global state ot can be parnuom/a/dAas
. X _ C =2y x 2, where 2y = {x ;| (i,]) € &} and 2" =

comformably withT as L_,,_], by Theorem 1 it follows that {X',1(i,]) € ¢}. Given a_#-valued boundary condition,

along with the so-calleglobal stateon ¢ as

P2 {xi.j eR" | (i,j) e ¢k},

(1) can be written as ! so'thatxi’f- =0 for (i, ]) € € (or, in other words, such that
Zg =0), we find from (7) that(’; =0 for all i, j such that
X1je1 = A(11’1> X1 +A(11’2) Ry ©) i+j >0, so that2,” =0 for all k> 0, and (6) becomes
' (1D A2 11 11
’s Ay )<:2=12+1+A2 X1 Xii1j+1 = A(l' )Xil+1,j +Aé7 >Xi’71'+1- (10)
Xi1j41 = AP )Xi”Jrl,j +AY >X|{fj+1- (1)

If (A(ll'l),A(zl’l>) is asymptotically stable, then not only does

Moreover, any given # -valued boundary condition is such the Ioca/l state;j lies on # for all i7j S_UFh thati +j > 0,
that /', = 0 for (i,j) € €. By (7) it also follows that DUt ||| goes to zero ak goes to infinity. The(Au, Az)-
X/ = 0 for all i,j such thati + j > 0, which means that |nyarla?fl>sul)(§?;elc§/¢ is said Fo beinternally stableif the
the corresponding local state lies o, i.e.,xj€ ¢ for Ppair (A;",A;"") is asymptotically stable.
all i, j such thati+ j > 0. n Lemma 4:Let # be anr-dimensional(Ar, A>)-invariant
In the new basis defined By in Lemma 2, the component subspace, and let = Kﬂ € R?™" pe such that (3) hold.
¥ ; of the local statex j represents the projection of j  Then ¢ is internally stable if and only if the paiiX;,X2)
onto the invariant subspaceZ, while the componenk{fj is asymptotically stable.
represents the canonical projection of the local stafeon  Proof: With respect to a basis @" adapted to #, (3) can
the quotient spacR"/_#. Thus, we refer to the componentpe written as
X ; of x j as theinternal component of the local state (with (11) (12)
respect to_#), and to the component/; of X as the A~ A~ Ir
’ 0 22 || 0,
(n—r)xr A (n—r)xr

I
,_ = [ o ]x (1)
externalcomponent of the local state (with respect 16). (n—r)xr



fori=1,2, so thatA(11’1> =X andA(zl’l) =X u

if a matrix F exists such that” is (A1 +B1F,A+ByF)-

Consider a nory-valued boundary condition, so thatinvariant, i.e., if and only if there exists € R2"™" such that

2o # 0, and letx’; = X,

dynamics ofx/; are given by

2,2 22
Xirjer = APXL AT
X' =%, for (i,])e .

e R for (i,j) € €. The

It follows that .2, converges to zero as goes to infinity

. . 22 22
if and only if (A(l' ),A(2 )

means that wher(i,j) evolves away from¢&y the local

statex; ; converges to_¢. The (Ar,Ap)-invariant subspace

is said to beexternally stableif the pair (A<12’2>7A(22‘2)) is

A+ By F 0OV ’ (16)

Proof: We can use the result in Lemma 5 and Bet
—Q(VTV)~=VT, whereV be a basis matrix of. For such
anF we find that (16) holds witlX = =. |
The set of matriceF such that (16) holds — often referred
to asfriends of the controlled invariant subspacgé — will

A1 +B1F lV: vV 0 X

) is asymptotically stable. This pe genoted bygs,(#). The controlled invariant subspace

¥ is said to beinternally stabilisable (resp. externally
stabilisablg if there exists arF € §5,(7') such that? is
an internally stable (resp. externally stab{&) +B;F, Ay +

asymptotically stable. By virtue of (8), it turns out thad (1 B2 F)-invariant.

is asymptotically stable if and only if anfA;, A2)-invariant
subspace# is both internally and externally stable.

Il. 2-D CONTROLLED INVARIANT SUBSPACES
Consider the Fornasini-Marchesini system

Xi11,j+1 = AXit1,j+A2Xi j+1+BrUivyj+Bauij11, (12)

here briefly denoted b¥o, where, for alli, j, % j eR" is the

local stateu; j € R™ is the input,A, € R™" and B, € R™™M

for k=1,2. The boundary conditions associated withcan

still be assigned by specifying the global state oggr
Definition 1: (Conte and Perdon, 1988, [3])

The subspace” C R" is controlled invariant foxg if

Al . Bl
Ay Y C (¥ xY¥)+im B, (13)

As in the 1-D case, a controlled invariant subspacéor 2o
is such that (12) admits a solution@&\(¥") for any ¥ -valued

Now we are interested in characterising the $gf(¥).
In view of Lemma 6,F € 35,(7) if and only if a matrix

X exists such that (16) holds. It is easily shown that any

F satisfying (16) for someX can be associated with a pair
(=,Q) satisfying (14): take for exampl@ = —FV and==
X. Conversely, given a solutiofg, Q) of (14), it is always
possible to determine aR € §5,(7") such that (16) holds
true withX = =, by taking anyF such thatQ = —FV. Thus,
no generality is lost by writing (16) wittX replaced by
== ;1 , partitioned comformably Witf{v 3 . Moreover,
the solutions of the linear equatiéh= —FV may be written
in the form

F=R-+A, a7

whereFo = —Q(V V)~V T andA is any matrix of suitable
size such that\V = 0. Thus, the only constraint thak
needs to satisfy to guarantee tHatis a friend of ¥ is

boundary condition. Whereas in the 1-D case the conversetitat kerA 2 imV. It is easy to show thaf only affects the

true as well, with this definition of controlled invariandeet

dynamics of (12) that are internal t6, while A only affects

subspace of minimal dimension containing a given sequente dynamics external t&". To see this, lef =&’ +&” € R"

satisfying (12) is not necessarily controlled invariant Ig.

be such tha€’ € ¥ and&” c kerV'. Then

However, Definition 1 enjoys good feedback properties, as Fof = —QVTV) WTE —QvTV) WTE" =R’

shown for the first time in [3], and briefly recalled in the

following two lemmas.

NE = NE +E")=NE" since &' €7 CkerA.

Lemma 5:Let 7" be a subspace @&" and letV be a basis Furthermore, sincé’ € ¥, there exists a vectay such that

matrix of . The subspacée” is controlled invariant foizg
if and only if two matrices= and Q exist such that

Aty |V 0 z+LBl]Q. (14)

Ay 0V B>

&' =Vn, and thereforepé’ = —Qn. We can write the

local state equation of the autonomous system obtained by

applying ui j = Fxj with F = R+ A to (12) in the new
set of coordinates described by the similarity transfoiomat

Proof: The proof follows from Definition 1 on noting that T = T1 T2 | such that infy = 7. This yields

(14) is another way of writing (13). |

The set of matrices andQ satisfying the linear equation

(14) can be parameterised by

[é]:wT{Al}v+HK, (15)

Ao

V 0B

N
whereW = {ov B,

}, H is a basis matrix of ka andK is

[Xi/+1ﬁj+1} _ MELD Mil’z) {Xi/+1,j ]
Xi"+1.,j+1 0 Mf"z) Xi”+l,j
(11) 4(12) / (18)
n M, M(22 . |:Xi/}j+1 ] ’
0 M X j+1

whereM; £ A +B; F. It turns out that the pai(n\/lil’n, Mél’l))

. 2,2 2,2
an arbitrary matrix of suitable size. The symhul denotes ©Only depends orp while (M{>?,M{??) only depends on

the Moore-Penrose pseudoinverseof
Lemma 6:Let ¥ be anr-dimensional subspace &".
The subspace” is controlled invariant forzg if and only

N. Therefore, we can separately chodgeand A\, so that

the first stabilises the paitM{"" M{*Y) — to stabilise

¥ internally — and the second stabilise®>? M{*?) —



to stabilise 7* externally — without affecting the internal application of the control function; j = (Fo+ /)X j, system
stabilisation achieved in the previous step. (12) can be written as

A. Internal stabilisation Xii1ji1= (A1+ BiA)Xii1j+ (Ao+ BaA)X j+1

In order to stabilise/” internally, we have to find a matrix
Fo such that the pait=1,=;) in (16) is asymptotically stable,
as shown in Lemma 4. Since the only degree of freedom hep@w findingA such that(A; +B1A, Ao+ B2 /) is asymptot-

o, . o s ically stable and\V =0.
:('I?]Z [[r;];?e choice of2, which in turn is given by (15), we Theorem 3:The controlled invariant subspadé is exter-

V 0B nally stabilisable if there exisM =MT >0, N=N' > 0,

N . .
« when the nuII_space on - IS zero, there is g _'RT > 0 ands of suitable dimensions such that
only one solution to the linear equation (15), and there

and where we have deflne&l A +BiFo. The problem is

is no possibility of modifying the internal dynamics of -M 0 (A1+B1S'Q")"
Y. 0 —(N—M) (Az—‘rBzSTQT)T <0
« whenW has non-trivial kernel, we can write (15) as A +B;STQT A+ B,S'QT -R
_ _ (21)
=1 La H with
= |=| L |+] H [K, (19) NR=1. (22)
Q L3 Hj
. _'H Proof: The condition\AV =0 can also be written as it/ C
1 1 T . . T
L awt . . kerV'. Then, consider a basis matr} of kerV ', so that
where Lz =W { }V im = kerW and K is imAT CimQ. It follows thatA" = Q Sfor some matrlxs SO0
an arbitrary matrix of sunabe Size. The problem nowthat A = STQ". The pair(A;+B1S" Q",A;+B,S" Q") is

reduces to finding & such that the paif=1,=») is asymptotically stable if there exist two symmetric positiv
asymptotically stable. In Theorem 2 an easily checkdefinite matricesM and N and a matrixS of suitable
able sufficient condition for internal stabilisability of a dimension such that

Z(r)qntrl\c/)ll:,ed invariant subspace is presented in terms M 0 (A +By SI QDI
Theorem 2:The controlled invariant subspacé is 0 - A_(N_M)T (A2+82%lQ ) | <0
internally stabilisable if there exisl =M" >0, N = A+BiS Q A +BS Q -N
N' >0 andQ of suitable dimensions such that which is equivalent to (21) along with condition (22). B
-M 0 NLI+QTH1T In or_der to solve _the inequality (21) with the constraint
0 ~(N=M) NL; +Q'H, |[<0. (20) (22), different techniques may.be employed. Here we con-
LiN+H;Q LN+H,Q N sider the so-calledsequential linear programming matrix

_ _ _ method(SLPMM) developed in [10]. To this end, we first
Given a solution(M,N,Q) of (20), a matrixK such notice that condition (22) is satisfied if and only if
that (= 1,_2) in (19) is asymptotically stable is given by N
K=QN? TracéNR)=n and {

Proof: The controlled invariant subspacg is inter- IR
nally stabilisable if and only if there exist symmetricThe problem (21-22) can then be solved with the following
positive definite matrice® and P, such that(Z1,Z2)  algorithm.

satisfy (9) in Lemma 3. Sincgj =L; +HK (i=1,2),

this is equivalent to the existence of two symmetric and Algorithm 1: (Leibfritz, 2001, [10])

} >0. (23)

positive definite matrice® andW¥ such that Step 1 Check the existence of a pdiN,R) satisfying (21)
o 0 (L1 +H1K) "W and (23). If such pair exists, denote it witN°, R?).
T
0 —(W=®) (La+HK) W <0 gen 2 Given (NK,RK), k> 0, obtain a solution(N,R)
W(L1+H1K) W(Lo+HzK) —y

together withS, to the convex optimization problem
By pre- and post-multiplying this matrix inequality by
diag{W~1,w-1 w-1} and by denotingVl = ¥~toyw-1
N=W-1 andQ=KW1, then aK such thai=1,=>) is
asymptotically stable can be obtained from the solutiomenote this solution WItHNTv RT)
(M,N,Q) of the LMI (20) with K = QN~2.

min TracéN R¢+NKR)
subject to(21),(23).

Step 3 If |TracgNFRK+NKRK) — 2. TracgN*R¥)| < v ,

B. External stabilisation stop, withv a pre-defined sufficiently small positive scalar.
Given a controlled invariant subspageand a correspond-
ing basis matrixV, let (Z,Q) be any solution of (15) and

let Fp=—-Q(V'V)"VT. We now consider the possibility . K K nkv ok K
of choosing a suitablé to stabilise’?” externally. After the a@}!{‘ﬂra" IN“+a(Nf —NO][R+a(Rf ~RY] ).

Step 4 Computea € [0,1] by solving



Step § Set NKt1 = (1 — a)NX+ aNK and RA! = (1 -

a)RK+ aR¥, then go to Step 2.

Example 1:Consider (12) with

00 0 0 3
00 0 0 5 15
AM=100 0 o|" 2 |0 o
0 0 -2505 25 0
0 0 5 0
0 0 1 1
Bi=1, 5| B=]_7 o
10 9 0

0
0
O )
0

Now

0 0 0 0
_ —5.8763 01457 —0.0031| 0
T YA +B1F)T = 07 -24 05 |0
0 0 0 |0
and
[ —0.0627 —0.0590 —0.0005| —5
_ 4.9 07 0 0
T YA+ B2Fo)T = 6.3 0.9 0 25|’
0 0 0o |3

evidentiate that the paif0,3) accounting for the external
dynamics of?" has not changed by modifying the feedback
Fo in order to stabilise the controlled invariant subspace

This system does not satisfy the sufficient condition (9 internally. Since the pair(0,3) is unstable, our goal
for stability. By denoting withg the i-th vector of the
canonical basis dR?, it is easily seen that the subspate-=

spariey, e3,e4) is controlled invariant. Henc¥, =

. . . vV 0
basis matrix for?". In this caseN = [0 v

0 .
l><3:| is a
3

Bil. .
1} is singular and
By

H=(0601000 :L]Tisabasis matrix of kew.

Let first [j =W' {21}V, which yields a matrixz = |
2
such that the paif=1,=,) does not satisfy condition (9) for

stability. As such, by taking

Fo=-QVV) VT = [ 0 —o0r

-01 O
0 -0.0895 -0.0184 0|’

1
=2

we find that the paifA; + B1 Fo, A2+ B2 Fo) is not necessarily

internally stable. By changing coordinates according ® thand

similarity transformationT = [ e e3 e | e1 | which is

adapted to¥, we find

0 0 0
—0.1632 00105 O

—1 _
T AL +B1R)T = 07 —-24 05

0 0 0|

and

0.8895 —0.0816 0O
4.9 07 O

1 o
T (A+BR)T=| 5 09 O

OO O o

0 0

o[ 3

whose structures display th€A; + B Fy, Ay + ByFo)-
invariance of ¥. In order to find anFy which inter-
nally stabilises the controlled invariant subspate let

us condider EJ = love,

[06 010001

|

T
[V ° Bl} [Al}v + HK where H =
. In this case, the LMI (20)

is feasible, which implies internal stabilisability of, and
its solution yieldK = [ —5.8697 01389 —0.0031 |. By

using (15) we find that now the paiE;,=») is asymptot-
ically stable, as it satisfies the stability condition (9)itiwV

this choice

0 -07 -01

Fo=-QV'V) v =

0 0.8627 —0.0410 00005}

now is to stabilise?” externally, by means of a feedback
matrix F = Fo+ A, whereAV = 0. In this case, Algorithm
1 provides a feasible solution to the external stabilisatio
problem. By choosing/ = 1075, after 17447 iterations of
Steps 1-3, the matricds® andR¥ for which the condition in
Step 3 is satisfied are found. With their values it is found tha
TraceN¥R¥) ~ 4.000023, and the corresponding solution is

given by S= [ —0.6244 14717], so thatA = [f’fj;‘f7 0 88}
satisfies\? = Op,. It turns out that

0 0 0 0
B _5.8763 01457 —0.0031| 9.4547
THAHBIRT=| 077 54 05 | —06245
0 0 0o | o
[_0.0627 —0.0590 —0.0005| —2.9038
B 49 07 0 |-43715
T HAABF)T=| g3 (g 0 |-31205
0 0 0 [-01225

are such that the pair accounting for the internal dynamfics o
—0.0627 —0.0590 —0.0005

0 0 0
v, ie., ( —5.8763 0145704003j, 49 07 0 )
did not changoé7afte_r2't?1e intro uctioﬁ'sbf so that the internal
stabilisation previously performed has not been affected,;
the other handy” has been externally stabilised since the
pair (0,—0.1225 is now asymptotically stable.

IV. OUTPUT-NULLING CONTROLLED INVARIANCE

In this section we turn our attention toutput-nulling
subspacesthat are a particular type of controlled invariant
subspaces for the FM modEl

Xi+1,j+1 = ArXit1j+A2X jr1+Baliva j+Baui j11, (24)
Yij = Cx,j+Duij,
wherey; j € RP is the output vector and the matric€sand
D are of suitable dimensions.
The subspace?” C R" is an output-nulling controlled
invariant subspace fax if

Ay
Ay

C

By
"//g(“//x“//xop>+im[le, (25)
D



see [12]. An output-nulling controlled invariant subspace solvability of this problem for 2-D systems without statyili

is such that for any?-valued boundary condition, there was first given in [3] in terms of the inclusion of certain

exists an input function such that the corresponding smiuti subspaces involving™, and the feedback matrix solving

of (24) is in&(¥') and the corresponding output is zero forthe decoupling problem is any output-nulling friend 6f.

alli, j such thai+ j > 0. Such input can always be expresseddowever, the application of the control law; = F x j does

as a static state feedback. The following lemma summarizest guarantee asymptotic stability of the closed loop. By

the most important properties of output-nulling subspaceadding to this sufficient condition the further conditiorath

see [12]. ¥* be internally and externally stabilisable, we obtain a set
Lemma 7:Let V be a basis matrix of the-dimensional of sufficient conditions for the solvability of the disturize

subspace/” of R". The following statements are equivalent:decoupling with asymptotic stability of the closed loop.

« the subspac¢ is output-nulling forZ. In fact, by applying the techniques presented here, in the
. A matrix E e R™*N exists such that case where?™* is internally and externally stabilisable an
A+ By F vV 0 oAutpuEngllrg 1‘Br|e|r:1dF can be f_ou|r|1d su;):lh that the pair
A+BF | ¥=| 0 V | X, (26) (A1+B1F A+ ByF) is asymptotically stable.
C+DF 0 O V. CONCLUSIONS
whereX ¢ R2rxr, The problem of internal and external stabilisation of

controlled invariant and output-nulling subspaces hasbee
The set of output-nulling controlled invariant subspacegonSidered and solved for the first time for two-dimensional

of = is denoted with the symbot/(Z), and any matrixF systems. This enables many results on the geometric ap-

such that (26) holds is referred to asautput-nulling friend Proach for 2-D systems that have appeared so far in the
of ¥. As in the 1-D case, the set (%) is closed under Ilte_rature_to be improved by addmg_s_tablllty requwement_s
subspace addition, and the largest output-nulling sutespa-gh's obviously extends the applicability of these resutis i

of = is denoted by¥*. The subspac&* can be computed real situations, where due to large bounded frames where
in finite terms as then— 1)-th term of the monotonically the 2-D signals involved are defined and/or for numerical

non-increasing subspace of the recurrence efficiency of the algorithms em_ployed stability may be a
. necessary and reasonable requirement.
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