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Abstract— A distributed swarm aggregation algorithm is
developed for a team of multiple kinematic agents. Each agent
is assigned with a control law which is the sum of two elements:
a repulsive potential field, which is responsible for the collision
avoidance objective, and an attractive potential field, that drives
the agents to a configuration where they are close to each
other and forces the agents that are initially located within
the sensing radius of an agent to remain within this area for
all time. In this way, the connectivity properties of the initially
formed communication graph are rendered invariant for the
trajectories of the closed loop system. It is shown that agents
converge to a configuration where each agent is located at a
bounded distance from each of its neighbors. The results are
also extended to the case of nonholonomic kinematic agents
and to the dynamic edge addition case, for which we derive a
better bound in the swarm size than in the static case.

I. I NTRODUCTION

Distributed multi-agent control is a field that has re-
cently gained increasing attention, due to the need for
autonomous control of more than one mobile agent in the
same workspace. The main variations of the approaches so
far lie in the specifications that the control design should
impose on the multi-agent team. These among others include
formation stabilization [1],[2], flocking behavior [4], [12],[8]
and swarm navigation with collision avoidance [2], [3].

The objective of this paper is distributed swarm aggrega-
tion with collision avoidance. Each agent is assigned with
a control which is the sum of two elements: a repulsive
potential, responsible for the collision avoidance objective,
and an attractive potential, that drives the agents close to
each other and also forces the agents that are initially located
within the sensing zone of an agent to remain within this
zone for all time. Hence the control design renders the
set of edges of the initially formed communication graph
positively invariant for the trajectories of the closed loop
system. In this way, if the communication graph, which
is formed based on the initial displacement between the
agents, is connected, then it remains connected for all time.
Connectivity preserving algorithms for multi-agent systems
with linear motion models were recently presented in [5],[7].

This model was also used in [3] where the authors used
a potential field, consisting of the sum of a repulsive and an
attractive term. The innovation of our approach is the fact
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that the control design is distributed. The collision avoid-
ance objective is guaranteed through the use of repulsive
potentials that disappear whenever agents are outside the
sensing zone of one another, respecting the agents’ limited
sensing capabilities. We also provide a control law that
renders the connectivity properties of the initially formed
communication graph invariant for the trajectories of the
closed loop system, and treat the dynamic edge addition case
as well. In the latter case, it is shown that the resulting
swarm size is smaller than that of the static graph case
treated previously. Finally, the results hold for the case of
nonholonomic (unicycle type) robots as well.

II. SYSTEM AND PROBLEM DEFINITION

The system consists ofN (point) agents operating in the
same workspaceW ⊂ R2. We denote the position of agent
i by qi ∈ W . The configuration space is spanned byq =
[qT

1 , . . . , qT
N ]T . The motion of each agent is described by:

q̇i = ui, i ∈ N = [1, . . . , N ] (1)

whereui ∈ R2 denotes the velocity (control input) ofi.
For the objective of swarm aggregation, each agenti is

assigned to a specific subsetNi of the rest of the team, called
agenti’s communication set, that includes the agents with
which it can communicate in order to achieve the desired
aggregation objective. Inter-agent communication can be
encoded in terms of acommunication graph, G = {V, E},
which is an undirected graph consisting of a set of vertices
V = {1, ..., N} indexed by the team members, and a set
of edges,E = {(i, j) ∈ V × V |i ∈ Nj}, containing
pairs of agents that represent inter-agent communication
specifications. The definition of the setNi is provided later.

Moreover, it is required that the agents do not collide with
each other, in the sense that they are never found at the same
point in the workspace. The collision avoidance procedure is
distributed. Each agent has to have only local knowledge of
the agents that are very close ateach time instant. Since agent
i can sense agents located at a distance no larger thand, we
assume that for the collision avoidance objective, agenti has
knowledge of the positions of agents located at a distance
no larger than a radiusd1, where0 < d1 ≤ d, at each time
instant. The subset ofN including the agents that are located
at a distance no larger than a radiusd1 from agenti is de-
noted byMi. HenceMi = {j ∈ N , j 6= i : ‖qi − qj‖ ≤ d1}.
While Mi contains the agents located at a distance no larger
thand1 from i at each time instant, the communication set
Ni is defined in a slightly different manner in relation with
the proposed control design. Specifically, it will be shown



that the controller forces the agents that are initially located
within the sensing zone of an agent to remain within this
area for all time. In this way, no edges are lost and if the
communication graph is initially connected, then it remains
connected for all time. Thus,Ni is defined as the set that
agenti can sense when located at its initial position,qi(0):

Ni = {j ∈ N , j 6= i : ‖qi(0)− qj(0)‖ < d} . (2)

Let G = (V, E) denote the initially formed communication
graph under the ruling (2). Hence an edge between agents
i, j exists whenever they are initially located within distance
d from each other, i.e.(i, j) ∈ E ⇔ j ∈ Ni if and only
if ‖qi (0)− qj (0)‖ < d. By showing that for all pairs of
agents(i, j) s.t.‖qi (0)− qj (0)‖ < d the proposed controller
guarantees that‖qi (t)− qj (t)‖ < d for all t > 0, the
edges are guaranteed to remain invariant (i.e. agentsi, j
remain within distanced from one another) and hence the
communication graph itself, remains invariant throughout the
closed loop system evolution. This result is stated and proved
in Lemma 3 of the paper. The case of dynamic edge addition
will be considered in Section VI. On the other hand,Mi

may change over time at time instances when an agentj 6= i
enters or leaves the set{q : ‖qi − q‖ ≤ d1}. The (distributed)
control law is of the formui = ui (qi, qj) , j ∈ Ni ∪Mi.

III. C ONTROL STRATEGY

We first define a repulsive potential fieldVij : R2 → R+ to
deal with the collision avoidance objective between agentsi
andj ∈ Mi. Vij is required to have the following properties:
(1) Vij is a function of the square norm of the distance
of i, j, i.e. Vij = Vij(βij), where βij = ||qi − qj ||2,
(2) Vij → ∞ wheneverβij → 0, (3) it is everywhere
continuously differentiable, (4)∂Vij

∂qi
= 0 and Vij = 0

wheneverβij > d2
1, and (5) the partial derivativeρij

∆=
∂Vij

∂βij
satisfiesρij < 0 for 0 < βij < d2

1 and ρij = 0
for βij ≥ d2

1. It is easily seen that ifVij satisfies these
requirements, theni needs only knowledge of the states of
agents withinMi at each time instant to fulfil the collision
avoidance objective. The fourth requirement also guarantees
that

∑
j∈Mi

∂Vij

∂qi
=

∑
j 6=i

∂Vij

∂qi
. The gradient with respect toq and

the partial derivative ofVij with respect toqi are computed
by ∇Vij = 2ρijDijq and ∂Vij

∂qi
= 2ρij (Dij)i q where the

matricesDij ,(Dij)i, for i < j are given byDij = D̃ij ⊗ I2,

where
(
D̃ij

)
ii

=
(
D̃ij

)
jj

= 1,
(
D̃ij

)
ij

=
(
D̃ij

)
ji

=

−1 and
(
D̃ij

)
kl

= 0 for k, l 6= i, j, and (Dij)i =[
O1×(i−1) 1 O1×(j−i−1) −1 O1×(N−j)

]⊗I2 . The
definition of Dij , (Dij)i for i > j is straightforward.This
definition of Vij guarantees that the potential field has the
following symmetry property:ρij = ρji,∀i, j ∈ N , i 6= j.

For the purpose of aggregation, we define an attractive
potential Wij : R2 → R+ between agentsi and j ∈ Ni,
which is required to have the following properties: (1)Wij

is a function of the square norm of the distance betweeni, j,
i.e.Wij = Wij

(
‖qi − qj‖2

)
= Wij (βij), (2)Wij is defined

on βij ∈ [0, d2), (3) Wij → ∞ wheneverβij → d2, (4) it

is C1 for βij ∈ [0, d2) and (5) the termpij
∆= ∂Wij

∂βij
satisfies

pij > 0 for 0 ≤ βij < d2. FunctionWij is hence defined to
ensure that the agents that are located at a distance no larger
than d from agenti at time t = 0, remain within agenti’s
sensing zone for allt > 0. We also have∇Wij = 2pijDijq

and∂Wij

∂qi
= 2pij (Dij)i q wherepij

∆= ∂Wij

∂βij
and the matrices

Dij ,(Dij)i were defined previously. The following symmetry
property holds in this case as well:pij = pji, ∀j ∈ Ni.

The proposed controller for agenti is given as the sum of
the negative gradients of the two potentials in theqi direction:

ui = −
∑

j∈Ni

∂Wij

∂qi
−

∑

j∈Mi

∂Vij

∂qi
(3)

The control law can also be written asui =
−2

∑
j∈Ni

pij (qi − qj) − 2
∑

j∈Mi

ρij (qi − qj). Since (3) re-

quires knowledge only of the states of agents belonging
to Ni

⋃
Mi, it respects the agents’ limited sensing specifi-

cations. It is hence clearly adistributed control law. This
control also guarantees the following for the closed loop
system: (i) since the repulsive potential tends to infinity
whenever two agents collide, its negative gradient, imposed
on the motion of each agent, guarantees collision avoidance
and (ii) for the same reasons, each agentj initially located
at a distance less thand from i, will never leave the sensing
zone ofi. These are proven explicitly in the next section.

IV. STABILITY ANALYSIS

The functionV =
∑
i

(
∑

j∈Ni

Wij +
∑
j 6=i

Vij) is used as a

candidate Lyapunov function for the multi-agent system.
Differentiating V we get V̇ = (∇V )T · q̇. We also have∑
i

∑
j∈Ni

∇Wij = 2
∑
i

∑
j∈Ni

pijDijq = 4 (P ⊗ I2) q where

theN×N matrixP can shown to be given byPii =
∑

j∈Ni

pij ,

Pij = −pij for j ∈ Ni, i 6= j, and Pij = 0 for j /∈ Ni.
We can also compute

∑
i

∑
j 6=i

∇Vij = 2
∑
i

∑
j 6=i

ρijDijq =

2 (R1 ⊗ I2) q where matrixR1 can be computed by(R1)ii =∑
j 6=i

ρij +
∑
j 6=i

ρji and (R1)ij − ρij − ρji, for i 6= j. We

hence get∇V = 4 (P ⊗ I2) q + 2 (R1 ⊗ I2) q. The time
derivative of the stack vector of the agents’positions can be
shown to be given byq̇ = −2 (P ⊗ I2) q − 2 (R⊗ I2) q,
where the matrixR is given by Rii =

∑
j 6=i

ρij and

Rij = −ρij , for i 6= j. Hence q̇ = −2 (P ⊗ I2) q −
2 (R⊗ I2) q. Using now ρij = ρji we get R1 = 2R so
that V̇ = (∇V )T · q̇ = − (4 (P ⊗ I2) q + 2 (R1 ⊗ I2) q)T ·
· (2 (P ⊗ I2) q + 2 (R⊗ I2) q)

R1=2R⇒
⇒ V̇ = −8 ‖((P ⊗ I2) q + (R⊗ I2) q)‖2 ≤ 0 (4)

We now state the first result of this paper:
Theorem 1:Assume that the swarm (1) evolves under the

control law (3). Then the system reaches a configuration in
which u = 0, i.e. ui = 0 for all i ∈ N .



Proof: The level sets ofV are compact and invariant wrt
the relative positions of adjacent agents. Specifically, the set
Ωc = {q : V (q) ≤ c} for c > 0 is closed by continuity ofV .

We haveV ≤ c ⇒ Wij ≤ c ⇒ ‖qi − qj‖ ≤
√

W−1
ij (c),

∀(i, j) ∈ E. LaSalle’s principle and (4) guarantee that
the system converges to the largest invariant subset of the
set S = {q : ((P + R)⊗ I2) q = 0}. Since u = q̇ =
−2 (P ⊗ I2) q − 2 (R⊗ I2) q, we haveu = 0. ♦

The next Lemma guarantees collision avoidance:
Lemma 2:Consider the system (1) driven by the control

(3) and starting from a feasible set of initial conditions
I (q) = {q| ‖qi − qj‖ > 0, ∀i, j ∈ N , i 6= j}. Then I (q) is
invariant for the trajectories of the closed loop system.
Proof: For every initial conditionq(0) ∈ I(q), the time
derivative ofV remains non-positive for allt ≥ 0, by virtue
of (4). HenceV (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0. Since
V →∞ when‖qi − qj‖ → 0 for at least one pairi, j ∈ N ,
we conclude thatq(t) ∈ I (q), for all t ≥ 0. ♦

The next result states that the proposed control forces
agents that are initially located within distanced from each
other to remain within this distance for all time. Hence the
definition of Ni is rendered meaningful since each agenti
does not have to violate its sensing constraints in order to
sense agents withinNi as the closed loop system evolves.
Thus, the control law guarantees that an agentj initially
located at a distance less thand from i, will never leave the
sensing zone ofi. This is proved in the following:

Lemma 3:Consider the system (1) driven by the control
(3). The setJ (q) = {q| ‖qi − qj‖ < d, ∀ (i, j) ∈ E} is
invariant for the trajectories of the closed loop system.
Proof: Since V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0 and
V →∞ when‖qi − qj‖ → d for at least one pair(i, j) ∈ E,
we conclude thatq(t) ∈ J (q), for all t ≥ 0. ♦

Based on the fact that all agents initially located within
distanced from each other remain within this distance for
all time, the setNi is static. Hence no new edges are created
even when an agent not initially located within the sensing
zone of another, enters inside it at some time instantt > 0.
The case of dynamic edge addition, i.e. adding new edges to
the communication graph each time a new agent enters the
sensing zone of another, is treated in Section VI. In essence,
starting fromJ (q)∪I(q), the communication graph remains
invariant (no edges are lost) and collisions are avoided.

In the sequel, we derive bounds on the swarm dis-
persion. We first show that the “swarm center”̄q

∆=
1
N

N∑
i=1

qi remains constant, i.e.̄q(t) = q̄(0) for all t ≥

0. This is proven by the fact thaṫ̄q = 1
N

N∑
i=1

q̇i =

− 2
N

N∑
i=1

(
∑

j∈Mi

ρij (qi − qj) +
∑

j∈Ni

pij (qi − qj)) = 0. Since

q̄ is constant, we assume without loss of generality that it is
the origin of the coordinate system, i.e.q̄ = 0.

Moreover, at an equilibrium point we haveu =
0, by virtue of Theorem 1. Considering the function
Φ = 1

2

∑
i

qT
i qi and taking its time derivative we have

Φ = 1
2

∑
i

qT
i qi ⇒ Φ̇ =

∑
i

qT
i q̇i = 0. Thus, Φ̇ =

−2
∑
i

(
qT
i

(
∑

j∈Mi

ρij (qi − qj) +
∑

j∈Ni

pij (qi − qj)

))
=

−∑
i

(
∑

j∈Mi

ρij ‖qi − qj‖2 +
∑

j∈Ni

pij ‖qi − qj‖2
)

= 0 and

hence at an equilibrium position:
∑

i

∑

j∈Ni

pij ‖qi − qj‖2 =
∑

i

∑

j∈Mi

|ρij | ‖qi − qj‖2 (5)

since ρij ≤ 0,∀j ∈ Mi. The last equation allows us to
derive bounds on the swarm size. These are based on the
bounds on the designed potentials. The attractive potential
is chosen so thatpij ≥ a where a > 0. We then have∑
i

∑
j∈Ni

pij ‖qi − qj‖2 ≥ a
∑
i

∑
j∈Ni

‖qi − qj‖2. The repulsive

potential is chosen so that|ρij | ≤ ρ
βij

where ρ > 0.

Then,
∑
i

∑
j∈Mi

|ρij | ‖qi − qj‖2 ≤ ρ
∑
i

|Mi| where |Mi| is

the cardinality ofMi. Eq. (5) yields
∑
i

∑
j∈Ni

‖qi − qj‖2 =
∑
i

∑
j∈Ni

βij ≤ ρ
a

∑
i

|Mi|. The right hand side is maximized

whenever each agent is found at a distance less thand1

from all others, i.e. the repulsive potential is active for
all pairs i, j ∈ N . We then have

∑
i

|Mi| ≤ N (N − 1).

For each pair of agents that form an edge, we then have:
βij ≤ ρ

aN (N − 1) , ∀ (i, j) ∈ E. We then have:
Theorem 4:Assume that the swarm (1) evolves under

the control law (3) and the initially formed communica-
tion graph is connected. Denote byβmax the maximum
distance between two members of the group, i.e.βmax =
max
i,j∈N

‖qi − qj‖2. Under the preceding assumptions, the fol-

lowing bound holds at steady state:βmax ≤ ρ
aN (N − 1)2.

Proof: Since the graph is connected, the maximum length of
a path connecting any two vertices isN − 1. The result now
follows from the fact thatβij ≤ ρ

aN (N − 1) , ∀ (i, j) ∈ E.♦
V. THE CASE OF NONHOLONOMIC KINEMATIC

UNICYCLE-TYPE AGENTS

In this section, the extension of the proposed framework
to the nonholonomic unicycle case is presented. We con-
sider N nonholonomic agents operating inW ⊂ R2. Let
qi = [xi, yi]T ∈ R2 denote the position of agenti. The
configuration space is spanned byq = [qT

1 , . . . , qT
N ]T . Each

agent has a specific orientationθi wrt the global coordinate
frame. The orientation vector of the agents is given by
θ = [θ1 . . . θN ]T . The configuration of each agent is given by
pi =

[
qi θi

] ∈ R2 × (−π, π]. The motion of the agents
is described by the following nonholonomic kinematics:

ẋi = ui cos θi, ẏi = ui sin θi, θ̇i = ωi, i ∈ N = [1, . . . , N ]
(6)

whereui, ωi denote the translational and rotational velocity
of agent i, respectively. Similarly to the previous case,
the control law is of the formui = ui (pi, pj) , ωi =
ωi (pi, pj) , j ∈ Ni ∪ Mi, i ∈ N . We consider again the



function V =
∑
i

(
∑

j∈Ni

Wij +
∑
j 6=i

Vij

)
as a candidate

Lyapunov function. Since the proposed control law will be
discontinuous we use the extension of LaSalle’s Principle
for nonsmooth systems of [10] for the time derivative of the
candidate Lyapunov function. SinceV is smooth we have
∂V = {∇V }, where∂V is the generalized gradientof V
[10], and is given by∇V = 4 (P ⊗ I2) q + 2 (R1 ⊗ I2) q =
4 ((P ⊗ I2) q + (R⊗ I2) q). We defineP + R

∆= F . We
denote the stack vectorq = [x, y]T into the coefficients
that correspond to thex, y directions of the agents, and(a)i

denotes thei-th element of a vectora. The following holds:
Theorem 5:Assume that (6) evolves under

ui = −sgn {fxi cos θi + fyi sin θi} ·
(
f2

xi + f2
yi

)
(7)

ωi = − (θi − arctan 2 (fyi, fxi)) (8)

where(Fx)i = fxi, (Fy)i = fyi. Then the system reaches
the equilibrium points of the single integrator case, i.e. a
configuration in which((P ⊗ I2) + (R⊗ I2)) q = 0.
Proof: The generalized time derivative ofV is calculated by
˙̃
V ⊂ ∑

i∈N

{4K [ui] ((Fx)i cos θi + (Fy)i sin θi)}, where we

used Theorem 1.3 in [9] to calculate the inclusions of the Fil-
ippov setK[.] in the previous analysis. SinceK [sgn(x)] x =
{|x|}([9],Theorem 1.7), the choice (7),(8) results iñ̇V =
−∑

i

{
4 |fxi cos θi + fyi sin θi|

(
f2

xi + f2
yi

)1/2
}
≤ 0, so that

the generalized derivative ofV reduces to a singleton. By the
nonsmooth version of LaSalle’s Invariance principle [10], the
agents converge to the largest invariant subset of the setS =
{(fxi = fyi = 0) ∨ (fxi cos θi + fyi sin θi = 0) , ∀i ∈ N}.
However, for eachi ∈ N , we have|ωi| = π

2 whenever
fxi cos θi + fyi sin θi = 0, due to (8). In particular [11],
this choice of angular velocity renders the surface
fxi cos θi + fyi sin θi = 0 repulsive for agenti, whenever
i is not located at the desired equilibrium, namely when
fxi = fyi = 0. Hence the largest invariant setE contained
in S is S ⊃ E = {fxi = fyi = 0, ∀i ∈ N} which is
equivalent to the equilibria of the single integrator case:
((P ⊗ I2) + (R⊗ I2)) q = 0.♦

Hence the control (7),(8) forces the nonholonomic team
to behave exactly the same as in the single integrator case.

VI. T HE CASE OFDYNAMIC GRAPHS

The previous sections involved the case where the com-
munication graph considered was static, i.e. no new edges
were added whenever an agent, not initially located within
the sensing zone of another, entered its sensing zone. We now
consider creation of new edges whenever an agent enters the
sensing zone of another. This naturally leads to a smaller
swarm size and corresponds to a more realistic formulation
of the problem in hand. The results of this section can also
be applied to the nonholonomic case.

We consider two types of communication sets for each
agent i at each time instant. The first corresponds to the
sensing zone ofi, i.e. to the agents thati senses at each time
instant: Ni (t) = {j ∈ N, j 6= i : ‖qi (t)− qj (t)‖ < d}. In

order to add new communication links, we assume that a new
edge is created whenever a new agent enters a subset of the
sensing zone ofi at some time instant. Specifically, we define
the set:N∗

i (t) = {j ∈ N, j 6= i : ‖qi (t)− qj (t)‖ ≤ d− ε},
where 0 < ε << d. Thus, N∗

i (t) ⊆ Ni(t). We assume
that the communication graph is initially formed based on
Ni(0),i.e. E (0) = {(i, j) : j ∈ Ni (0)}. The set of edges
is updated as:E (t) = E (t−) ∪ E∗ (t), where E∗ (t) =
{(i, j) : ((i, j) /∈ E (t−)) ∧ (j ∈ N∗

i (t))}. Thus, a new edge
is added when an agentj, that didn’t form an edge withi,
enters at some timet the setN∗

i (t) which is a subset ofi’s
sensing zone. By designing the control in such a way to force
agents that come to a distanced−ε between them, to remain
within distanced for all time afterwards, this definition of
edge addition becomes meaningful since each agent has to
sense only agents within its sensing zone at each time instant.

The main difference with the the static graph case is the
definition of the aggregation potential betweeni and j. We
denote this potential in the dynamic graph case byW d

ij and
recalling the definition ofWij in the static case,W d

ij is
defined as:W d

ij (βij) = Wij (βij), for (i, j) ∈ E (t) and
W d

ij (βij) = W̃ij (βij), for (i, j) /∈ E (t). Hence when two
agents form an edge, their aggregation potential is identical
to the the static case. Whenever an agentj forms a new
edge withi, the functionW d

ij switches fromW̃ij to Wij .
The function W̃ij is defined so that the switch toWij

is held in a sufficiently smooth manner. This is encoded
in the following properties: (1)W̃ij (βij) = Wij (βij),
for ‖qi (t)− qj (t)‖ ≤ d− ε, (2) W̃ij (βij) = W̃ij(d2) =
cnst, for ‖qi (t)− qj (t)‖ > d, (3) Wij

(
(d− ε)2

)
=

W̃ij

(
(d− ε)2

)
and ∂Wij

∂βij

(
(d− ε)2

)
= ∂W̃ij

∂βij

(
(d− ε)2

)
,

(4) W̃ij is everywhereC1, and (5) ∂W̃ij

∂βij
> 0 for d − ε <

‖qi (t)− qj (t)‖ < d. The control law is now:

ui = −
∑

(i,j)∈E

∂Wij

∂qi
−

∑

(i,j)/∈E

∂W̃ij

∂qi
−

∑

j∈Mi

∂Vij

∂qi
(9)

This definition of W d
ij allows i to neglect agents outside

its sensing zone. Moreover,Vij is the same as in the static
graph case. The overall system is a hybrid system in which
discrete transitions occur each time a new edge is added,
i.e. each time two agents not forming an edge before come
to a distance closer thand − ε from one another. Conver-
gence is checked using the common Lyapunov function tool
from hybrid stability theory [6]. In particular, the function
V =

∑
i

∑
j 6=i

(
W d

ij + Vij

)
serves as a validcommon Lyapunov

functionfor the underlying hybrid system. Using the analysis
of the single integrator case, it is easy to show that at time
spaces where no new edges are added, the time derivative of
V is given by V̇ = −8

∥∥((
P d ⊗ I2

)
q + (R⊗ I2) q

)∥∥2 ≤
0, where theP d matrix is defined asP d

ii =
∑
j 6=i

pd
ij and

P d
ij = −pd

ij , for i 6= j, with pd
ij = ∂Wij

∂βij
,for (i, j) ∈ E

and pd
ij = ∂W̃ij

∂βij
, for (i, j) /∈ E. At times when new

edge are added, the common Lyapunov function and the



control laws of all agents are continuously differentiable
while the values ofV , its time derivative, and the values
of the control laws remainconstant. Hence V serves as
a common Lyapunov function and since no Zeno behavior
occurs whenever the system enters a new discrete state, i.e.
once an edge is added it is never deleted, we quote the
LaSalle’s Principle for Hybrid Systems [6] to show that
the system converges to the largest invariant subset of the
set S =

{
q :

((
P d + R

)⊗ I2

)
q = 0

}
. Thus, the results of

Theorem 1 and Lemma 2 hold in this case as well. The
counterpart of Lemma 3 in the dynamic graph case involves
the fact that once an agentj enters the setN∗

i (t) for the
first time, it is forced to remain within the sensing zone of
i, encoded by the setNi(t), for all future times. Thus, the
definition of edges in the dynamic graph case is meaningful
since it respects the sensing capabilities of all agents. The
following counterpart of Lemma 3 holds:

Lemma 6:Consider the system (1) driven by the control
law (9). Then, all agent pairs that come into distance less
or equal tod − ε for the first time, remain within distance
strictly less thand for all future times.
Proof: Since V (q(t)) ≤ V (q(0)) < ∞ for all t ≥ 0 and
V →∞ when‖qi − qj‖ → d for at least one pair of agents
(i, j) that either (i) have formed an edge att = 0, or (ii)
have formed an edge at some timeτ ,0 ≤ τ ≤ t we conclude
that all pairs of agents that did not initially form an edge and
come to a distance less thand− ε for the first time, remain
within distance strictly less thand for all future times.♦

The fact that agents that initially formed edges remain
within distance strictly less thand from each other is proven
in Lemma 3. These two Lemmas guarantee that the definition
of edges in the dynamic graph case respects the limited
sensing capabilities of all agents, since each agent has to
sense only agents within its sensing zone in order to fulfill
the communication link imposed by the existence of edges.

Having now established a framework that allows for
addition of edges in communication graph while maintaining
connectivity, we can follow the analysis of the static case to
show that similar bounds for the swarm size can be derived
in this case as well. In particular, the system now reaches a
configuration where equation

((
P d + R

)⊗ I2

)
q = 0 holds.

Following the analysis of the static graph case, an equation
similar to (5) is derived in the dynamic graph case as well:

∑

i

∑

j 6=i

pd
ij ‖qi − qj‖2 =

∑

i

∑

j∈Mi

|ρij | ‖qi − qj‖2 (10)

An improved result on the bound of the swarm size
with respect to the static graph case can be obtained in
the dynamic graph case. In particular, using the notation
‖qi − qj‖2 = βij , the last equation can be rewritten

as
∑
i

(
∑

j∈Mi

pd
ijβij +

∑
j /∈Mi

pd
ijβij

)
=

∑
i

∑
j∈Mi

|ρij |βij ⇒
∑
i

∑
j /∈Mi

pd
ijβij =

∑
i

∑
j∈Mi

(|ρij | − pd
ij

)
βij . Assuming that

the repulsion term satisfies the bound|ρij | ≤ ρ
βij

and noting thatpd
ij ≥ 0 for all i, j ∈ N , we get

∑
i

∑
j∈Mi

(|ρij | − pd
ij

)
βij ≤

∑
i

∑
j∈Mi

|ρij |βij ≤ ρ
∑
i

|Mi|, so

that
∑
i

∑
j /∈Mi

pd
ijβij ≤ ρ

∑
i

|Mi|. We now denote byE(∞)

the set of edges that have been formed at steady state.
Using the boundpij > a on the attractive term for the
agents that have formed an edge the left hand side of the
previous inequality can be shown to by bounded as follows:∑
i

∑
j /∈Mi

pd
ijβij ≥

∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1. The last two bounds

suggest that
∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1 ≤ ρ

∑
i

|Mi| at steady state.

We will now show that an appropriate choice ofd1 forces
all agents that have formed an edge to be at a distance not
larger thand1 at steady state, i.e.‖qi − qj‖ ≤ d1, for all
(i, j) ∈ E(∞). This is proved by showing that the inequality∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1 ≤ ρ

∑
i

|Mi| is not viable even in the

worst case scenario. Thus, let us assume that at least one
pair that has formed an edge at steady state is at a distance
larger thand1 from one another, i.e.‖qk − ql‖ > d1 for
some (k, l) ∈ E(∞). This implies thatk /∈ Ml and vice
verca. In that case

∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1 ≤ ρ

∑
i

|Mi| yields

∑
i

∑
j:(i,j)∈E(∞)

j /∈Mi

ad2
1 = 2ad2

1 ≤
∑
i

∑
j /∈Mi

pd
ijβij ≤ ρ

∑
i

|Mi| =

ρ {(N − 1) (N − 2) + 2 (N − 2)} = ρ
(
N2 −N − 2

) ⇒
d2
1 ≤

ρ(N2−N−2)
2ad2

1
. The last inequality is rendered impossible

by choosingd2
1 >

ρ(N2−N−2)
2a . In this case, we havej ∈ Mi

for all pairs of agents that form an edge at steady state, and
hence an ultimate bound is:βij ≤ d2

1, ∀ (i, j) ∈ E (∞). This
equation provides the means to provide a better bound of
the swarm size, as will be shown in the sequel. We first
note that d1 can be chosen by the following inequality:
ρ(N2−N−2)

2a < d2
1 < ρN(N−1)

a . The last inequality is viable

since the inequality
ρ(N2−N−2)

2a < ρN(N−1)
a is equivalent

to N2 − N + 2 > 0 which holds for all N > 0. The
following Theorem, which is the counterpart of Theorem 4 in
the dynamic graph case, shows that a better bound is derived
in the dynamic graph case:

Theorem 7:Assume that the swarm (1) evolves under
the control law (9) and the initially formed communica-
tion graph is connected. Denote byβd

max the maximum
distance between two members of the group, i.e.βd

max =
max
i,j∈N

‖qi − qj‖2. Assume that the parameterd1 satisfies

ρ(N2−N−2)
2a < d2

1 < ρN(N−1)
a . Under the preceding as-

sumptions, the following bound holds at steady state:βd
max ≤

d2
1 (N − 1). We moreover haveβd

max < βmax whereβmax =
ρ
aN (N − 1)2 is the swarm size corresponding to the static
graph case of Theorem 4.

Proof: Since the graph is connected, the maximum length
of a path connecting two arbitrary vertices isN−1. Equation
βij ≤ d2

1,∀ (i, j) ∈ E (∞) now yieldsβd
max ≤ d2

1 (N − 1).



Now sinced1 satisfies the bounds assumed, we haveβd
max ≤

d2
1 (N − 1) < ρN(N−1)2

a = βmax ⇒ βd
max < βmax. ♦

This result shows that allowing edges to be added in a
dynamic fashion, leads to an improved (i.e. smaller) swarm
size. This derivation is not surprising, since the addition of
new communication links increases the attractive potential
and hence leads to a tighter swarm size.

VII. S IMULATIONS

The derived results are now supported through a series of
computer simulations.

The first simulation of Figure 1 involves a swarm of
nine single integrator agents navigating under the proposed
control in both the static and dynamic edge addition cases.
In both cases the agents have the same initial conditions
and controller parameters. The first graph shows the agents’
initial positions. In the first case on the left they navigate
under (3) while in the second case on the right under (9).
As seen in Figure 1 the latter control law leads to a tighter
final swarm size, something also shown in the comparison
of the final swarm sizes of the two case in Figure 2. This
Figure shows the evolution of the swarm size in both cases
from time 1000 and onwards. It can be shown that apart from
the reduce of the swarm size, the convergence rate is also
increased in the case of the dynamic edge addition. This is
witnessed by the significantly smaller swarm size the team
has attained at time 1000 in the second case.
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Fig. 1. Evolution in time of the swarm under the control law (3), for the
static communication graph case, on the left, and the control law (9), for the
dynamic graph case, on the right. The communication graph is connected
in both cases. The second control law leads to a tighter swarm size.

The second simulation in Figure 3 involves evolution of a
swarm of six unicycles navigating under (7,8). The first graph
shows the initial positions of the six agents while the second
one the evolution of their trajectories. Swarm aggregation is
eventually achieved, since the communication graph that is
formed based on theinitial relative positions of the agents,
is connected. The same values of controller parameters as in
the first simulation have been retained in the simulation of
Figure 3 as well.
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Fig. 2. Evolution of the swarm size for the two simulations of Figure 1.
The dynamic graph formulation leads to a smaller swarm size.
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Fig. 3. Evolution in time of the nonholonomic swarm under the control
laws (7,8). The communication graph is connected.

VIII. C ONCLUSIONS

A distributed control strategy for connectivity preserving
swarm aggregation with collision avoidance was presented.
In the case of dynamic edge addition, an improved bound
on the swarm size was derived. The results were extended
to deal with the case of nonholonomic agents as well.
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