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Abstract—A distributed swarm aggregation algorithm is that the control design is distributed. The collision avoid-
developed for a team of multiple kinematic agents. Each agent ance objective is guaranteed through the use of repulsive
is assigned with a control law which is the sum of two elements: potentials that disappear whenever agents are outside the

a repulsive potential field, which is responsible for the collision . f th ting th ts' limited
avoidance objective, and an attractive potential field, that drives sensing zone or one another, respecting the agents imite

the agents to a configuration where they are close to each Sensing capabilities. We also provide a control law that
other and forces the agents that are initially located within renders the connectivity properties of the initially formed
the sensing radius of an agent to remain within this area for communication graph invariant for the trajectories of the
all time. In this way, the connectivity properties of the initially closed loop system, and treat the dynamic edge addition case
formed communication graph are rendered invariant for the ' L .
trajectories of the closed loop system. It is shown that agents as well. .In the latter case, it is shown that.the resulting
converge to a configuration where each agent is located at a Swarm size is smaller than that of the static graph case

bounded distance from each of its neighbors. The results are treated previously. Finally, the results hold for the case of
also extended to the case of nonholonomic kinematic agents nonholonomic (unicycle type) robots as well.

and to the dynamic edge addition case, for which we derive a

better bound in the swarm size than in the static case. II. SYSTEM AND PROBLEM DEFINITION

The system consists @¥ (point) agents operating in the
. INTRODUCTION same workspac&’ c R2. We denote the position of agent
i by ¢; € W. The configuration space is spanned py=

Distributed multi-agent control is a field that has re g : _ :
,qx]* . The motion of each agent is described by:

cently gained increasing attention, due to the need f&?ip’"'
autonomous control of more than one mobile agent in the G =uj,i €N =I1,...,N] Q)
same workspace. The main variations of the approaches so
far lie in the specifications that the control design shoul#hereu; € R* denotes the velocity (control input) of
impose on the multi-agent team. These among others includeFor the objective of swarm aggregation, each ageist
formation stabilization [1],[2], flocking behavior [4], [12],[8] aSsigned to a specific subs€t of the rest of the team, called
and swarm navigation with collision avoidance [2], [3]. ~ @genti’s communication setthat includes the agents with
The objective of this paper is distributed swarm aggregd¥hich it can communicate in order to ach|eye _the desired
tion with collision avoidance. Each agent is assigned witRggregation objective. Inter-agent communication can be
a control which is the sum of two elements: a repulsivéncoded in terms of aommunication graphG: = {V, E},
potential, responsible for the collision avoidance objectivé/hich is an undirected graph consisting of a set of vertices
and an attractive potential, that drives the agents close to = {1,-, IV} indexed by the team members, and a set
each other and also forces the agents that are initially locat8fi €dg9es, £ = {(i,j) € V x V]i € N;}, containing
within the sensing zone of an agent to remain within thi®ars of agents that represent inter-agent communication
zone for all time. Hence the control design renders thgPecifications. The definition of the s is provided later.
set of edges of the initially formed communication graph Moreover, itis required that the agents do not collide with
positively invariant for the trajectories of the closed loogf@ch other, in the sense that they are never found at the same
system. In this way, if the communication graph, whictPoIntin the workspace. The collision avoidance procedure is
is formed based on the initial displacement between tH#istributed. Each agent has to have only local knowledge of
agents, is connected, then it remains connected for all tim&€ agents that are very closeeath time instaniSince agent
Connectivity preserving algorithms for multi-agent systemé &n sense agents located at a distance no largerihae
with linear motion models were recently presented in [5],[7]2SSume that for the collision avoidance objective, agémis
This model was also used in [3] where the authors usefiowledge of the positions of agents located at a distance

a potential field, consisting of the sum of a repulsive and aR® larger than a radiug;, where0 < d, < d, ateach time
attractive term. The innovation of our approach is the fadpStant The subset afV including the agents that are located
at a distance no larger than a radiisfrom agent: is de-
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Electrical Engineering, Royal Institute of Technology,Stockholm, SwedekVhile 1/; contains the agents located at a distance no larger
{dimos@ee.kth.se }. Kostas Kyriakopoulos is with the Control than g, from ¢ at each time instantthe communication set
Systems Lab, Department of Mechanical Engineering, National Technlc% is defined i lightly diff . lati ith
University of Athens, Greecgkkyria@mail.ntua.gr . This work i 1S defined In a slightly different manner in relation wit
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that the controller forces the agents that are initially locatedn 3;; € [0,d?), (3) W;; — oo wheneverg;; — d?, (4) it
within the sensing zone of an agent to remain within thigs 1 for Bi; € [0,d?) and (5) the ternp;; 2 Wi; gatisfies

area for all time. In this way, no edges are lost and if th&j > 0 for 0 < f3;; < d2. FunctionV;; is her?gg defined to

communication graph is initially connected, then it remaingngre that the agents that are located at a distance no larger
connected for all time. Thusy; is defined as the set that \y41 4 from agenti at time ¢ = 0, remain within agent’s

agenti can sense when located at its initial positigp(0): sensing zone for all > 0. We also haveVW;; = 2p;; D;jq

Ni={jeN.j#i: a0 —q0)<d. @ and Bg‘;f = 2pij (Dyj), g Wherep;; = %‘g’;{ and the matrices

N . D;;,(D;j); were defined previously. The following symmetry
Let G = (V, E) denote the initially formed communication I}?troperty holds in this case as well; = pj;, Vj € N..

graph under the ruling (2). Hence an edge between age SThe proposed controller for agents given as the sum of

1, j exists whenever they are initially located within distance[)he negative gradients of the two potentials inghéirection:
d from each other, i.e(i,j) € E < j € N; if and only

if {|g; (0) —¢; (0)|| < d. By showing that for all pairs of B Z oW Z oVij
agents(4, j) s.t.||g; (0) — ¢; (0)|| < d the proposed controller 0q; = 0q;
guarantees thafig; (t) —g; (¢)|| < d for all ¢ > 0, the '
edges are guaranteed to remain invariant (i.e. agenpts The control law can also be written as; =
remain within distancel from one another) and hence the—2 > pi; (¢ — ;) — 2 > pi;j (¢ — g;)- Since (3) re-
icati - ins invari JEN; JEM;

c?)mrr:julnlcatlontgraph |t|s;et_lf, re_rrnha_uns |nv|<'t:1_r|antt tthré)uggout th ires knowledge only of the states of agents belonging
pose oop353ﬁhem evolu |1(')r? IS re?‘é IS sta edan gg_)t\_' N; U M;, it respects the agents’ limited sensing specifi-
|n.” ebmma 9d edpap(;r. i N c?/Teg %;]namt'ﬁ € ﬁel% %htions. It is hence clearly distributed control law. This

Wil b€ considered n ection VI. ©n the ofher hant - .,nir0) a1s0 guarantees the following for the closed loop
may change over time at time instances when an agent

) o system: (i) since the repulsive potential tends to infinity
enters or Iea_\ves the sfy : [lg; —gl| < da}. The (distributed) whenever two agents collide, its negative gradient, imposed
control law is of the formu, = u; (¢;,¢;),7 € N; U M.

on the motion of each agent, guarantees collision avoidance
1. CONTROL STRATEGY and (ii) for the same reasons, each aggmitially located

We first define a repulsive potential fiel§l; : R*? — R to ata dlstgnce less thahfrom i, WI". never leave the sensing
zone ofi. These are proven explicitly in the next section.

deal with the collision avoidance objective between agénts
andj € M;. V;; is required to have the following properties:
(1) Vi; is a function of the square norm of the distance . .

Of i, i€ Viy = Viy(f), where 5 = [l — [, The functionV = S3( 5% Wi+ 537;,) is used as a
(2) Vij — oo whenever;; _’Woj (3) it is everywhere (angidate Lyapunov function for tjh;g multi-agent system.
continuously differentiable, (4)7;+ = 0 and Vi; = 0  pifferentiating V we getV = (VV)” - 4. We also have
wheneverg;; > d2, and (5) the partial derivative;; = Y. > VWi, = 23 3 pi;Dijq = 4(P® 1) q where

op,, satisfiesp;; < 0 for 0 < fi; < di andp;; = 0 yha N« N matrix P can shown to be given b§,; — > pijs
JEN,

®3)

JEN;

IV. STABILITY ANALYSIS

for 3;; > d3. It is easily seen that if/;; satisfies these ‘ ‘ . JEN;
requirements, then needs only knowledge of the states offi; = —pi; for j € Ny, i # j, and P;; = 0 for j ¢ N;.
agents within}/; at each time instant to fulfil the collision We can also computé_ ;_VV%J' =2 ; pijDijq =
. . . . e =
;]votldancgv?jbjﬁcnveé‘zjheTfr?urth :fqutlreThent aIsotguar:z;nteng1 © I) ¢ where matrixi; can be computed bR )i =
at > .k =2 5, The gradient with respect tpan > pij + X s and (Ri)yy — pij — pyin for i # j. We

JEM; . JFE . i f
the partial derivative o/, g\‘//nh respect tay; are computed ﬁénce gejt;%v — 4(P® 1) q+ 2 (R ®L)q The time
by VVij = 2pi;Dijq and Tt = 2pi; (Dij); ¢ where the  goative of the stack vector of the agents’positions can be
matricesD;, (D), for i < j are given byD;; = Di; ® I, shown to be given byj = —2(P® I,)q — 2(R® L) q,
D D D D 3 = where the matrixR is given by R; = 3 p; and
=

where (Dij)” = Dij)u =1, <Dz‘j)” = (Dij
1 27 R

K J ji i
—1 and <D11> = 0 for k,l 7£ 1,7, and (D”)2 = RU = —Pijs for 4 7é 7 Henceq = —2(P®12)q —
[ Oneiy) 1 klOl ooy —1 Oixney L. The 2(R®Iy)q. Using nowp;; = p;; we getR; = 2R so
X (i— X (j—i— X (N—j . . T ~. T

definition of D;;, (D;;); for i > j is straightforward.This thatV = (VV)" - ¢=—(4 (i @:92{?2)‘1‘*‘2@1 ®1l2)q)" -
definition of V;; guarantees that the potential field has the(2(P ® L) g+ 2(R® L) q) =
following symmetry propertyp;; = p;i, Vi, j € N,i # j. . 9

For the purpose of aggregation, we define an attractive =V=-_8(PeL)¢+(RL)q| <0 (4
potential W;; : R? — R, between agents and j € Ni,  \we now state the first result of this paper:
which is required to have the following properties: (1}; Theorem 1:Assume that the swarm (1) evolves under the
is a function of the square norm of the distance betwegn ool law (3). Then the system reaches a configuration in
l.e. Wi = Wi; (Ilqi — gl ) = Wi; (Bij), (2) Wi is defined  which w = 0, i.e.u; = 0 for all i € A.



Proof: The level sets off’ are compact and invariant writ @ = 13 ¢7¢; = & = Y ¢f¢; = 0. Thus, & =
the relative positions of adjacent agents. Specifically, the set ( i ( i

Q. ={q:V(q) <c}forec>0is closed by continuity o¥. _22 ,Z pij (@ — q;) + .Z pij (a4 —
We haveV < ¢ = Wi; < ¢ = [lgi—gll < /W;" (o), i JEM; JEN;

z]

V(i,j) € E. LaSalle’s principle and (4) guarantee that 2 2
i i i i 11Qi — Q4 = 0 and
the system converges to the largest invariant subset of the Z Z Pig la: = aI"+ 2 pislla: = 5]

JEN;
setS = {¢:((P+R)®1I:)q=0}. Sinceu = ¢ = hence at an equilibrium position:
—2(P®I3)q—2(R®I3)q, we haveu = 0. & ) 9
The next Lemma guarantees collision avoidance: SN piillai =gl =Y lpillla —a1* (5)
Lemma 2:Consider the system (1) driven by the control ¢ 7€M i JEM;
(3) and starting from a feasible set of initial COﬂdItIOI"ISsmce pi; < 0,Yj € M;. The last equation allows us to
Z(q) = {dlllg; —qjl > 0,Vi,j € N,i # j}. ThenZ (q) is  derive bounds on the swarm size. These are based on the

invariant for the trajectories of the closed loop system.  hounds on the designed potentials. The attractive potential
SVOOfi For fevery initial cond|t|onq(0f) EHI(Q), tt>he time s chosen so thap;; > a wherea > 0. We then have
erivative of V' remains non-positive for al > 0, by virtue % _ ;
; pijlla = gll” = a2 20 llai — s I°. The repulsive
of (4). HenceV(q(t)) < V(q(0)) < oo for all t > 0. Since i jen, ’ ! i jEN. !
V — oo when||g; — ¢;|| — 0 for at least one pait,j € A/, Potential is chosen so thd% < 4 wherep > 0.
we conclude thay(t) € Z (¢), forall t > 0. $ Then, >~ > |pijlllg — quQ < p> |M;| where |M;]| is
The next result states that the proposed control forces i JEM; i )
agents that are initially located within distanédrom each the cardinality ofAf;. Eq. (5) yields}_ EJ:V lgi —q;lI” =
R ; T jEN,
other to remain within this distance for all time. Hence th? S By <t Z |M;,]. The right hand side is maximized
definition of V; is rendered meaningful since each agéent 5 ;cx,
does not have to violate its sensing constraints in order whenever each agent is found at a distance less than
sense agents withitV; as the closed loop system evolvesfrom all others, i.e. the repulsive potential is active for
Thus, the control law guarantees that an aggnnitially — all pairsi,j € N. We then haveZ|M\ < N(N-1).

located at a distance less thdrdrom z, will never leave the For each palr of agents that form an edge, we then have:
sensing zone of. This is proved in the following: F —1), Y (i,j) € E. We then have:

Lemma 3: Consider the system (1) driven by the contro Theorem 4:Assume that the swarm (1) evolves under
(3). The setJ(q) = {qlllgi —qsll <d,V(i,j) € E} IS the control law (3) and the initially formed communica-
invariant for the trajectories of the closed loop system.  ;ion graph is connected. Denote by.. the maximum
Proof: Since V(q(t)) < V(q(0)) < oo forall ¢ > 0 and  gistance between two members of the group, g =

V' — ocowhenllg; —g;]| — d for atleastone paifi, j) € £, 45 |14, — ¢;]°. Under the preceding assumptions, the fol-
we conclude thay(t) € J (¢), for all ¢ > 0. $ i,JEN )

Based on the fact that all agents initially located withifowing bound holds at steady stafé.x < £V (V —1)".

distanced from each other remain within this distance forProof. Since the graph is connected, the maximum length of
all time, the setV; is static. Hence no new edges are created path connecting any two verticesi5— 1. The result now
even when an agent not initially located within the sensingpllows from the fact thats;; < 2N (N — 1),V (i, ) € E.$
zone of another, enters inside it at some time instant0.
The case of dynamic edge addition, i.e. adding new edges to
the communication graph each time a new agent enters the
sensing zone of another, is treated in Section VI. In essence,In this section, the extension of the proposed framework
starting from.7 (¢) UZ(¢), the communication graph remainsto the nonholonomic unicycle case is presented. We con-
invariant (no edges are lost) and collisions are avoided. sider N nonholonomic agents operating ¥ C R2. Let

In the sequel, we derive bounds on the swarm dis; = [z;,5;]7 € R? denote the position of agerit The

V. THE CASE OF NONHOLONOMIC KINEMATIC
UNICYCLE-TYPE AGENTS

persion. We first show that the “swarm centef” 2 configuration space is spanned by= [¢] ,...,q¢%]". Each

N . . t has a specific orientatiédn wrt the global coordinate
+ ; &t) = q > agen . . o
Ni; ¢i remains constant, i.e(t) q(0) for all ¢ > frame. The orientation vector of the agents is given by

0=10... QN]T. The configuration of each agent is given by
pi=|[a 06| €R?*x (—m, ). The motion of the agents
is described by the following nonholonomic kinematics:

N
0. This is proven by the fact thaf = % > ¢ =
=1

25T pylai— )+ iy - 3)) = 0. Since

i=1 jEM; ) oSO 1 = ws Sin@s. 0: = w. i —M.....N
g is constant, we assume W|thout loss of generality that it is Fi = i c080;, gi = uisin0;, 0; = wi, i €N =L, (]6)

the origin of the coordinate system, i= 0. whereu;,w; denote the translational and rotational velocity

Moreover, at an equilibrium point we have = , . S .
: S . of agenti, respectively. Similarly to the previous case,
0, by virtue of Theorem 1. Considering the function :
the control law is of the formu; = wu; (pi,p;),wi =

T L e : .
d = 2;% g; and taking its time derivative we havewi (0ip;).j € NiU M, i € N. We consider again the



. . order to add new communication links, we assume that a new
function V- = 27: JGEJ:V Wig + jz;é, Vij | as a candidate edge is created whenever a new agent enters a subset of the
Lyapunov function. Since the proposéd control law will besensing zone afat some time instant. Specifically, we define
discontinuous we use the extension of LaSalle’s Principlhe set:N; (t) ={j € N,j#i:|q (t) —q¢; ®)|| <d—e},
for nonsmooth systems of [10] for the time derivative of thevhere 0 < ¢ << d. Thus, Nj(¢t) C N;(t). We assume
candidate Lyapunov function. Sindé is smooth we have that the communication graph is initially formed based on
oV = {VV}, wheredV is the generalized gradienof V' N;(0),i.e. E(0) = {(4,7) : j € N; (0)}. The set of edges
[10], and is given bWV =4 (P ® I5)q+2(R; ® I;) g = is updated asE (t) = E(t7) U E*(t), where E* (t) =
4(P®L)g+ (R®L)q). We defineP + R 2 F. We {(i.4) : ((i,j) € E(t7)) A (j € N7 (t))}. Thus, a new edge
denote the stack vectay = [z,y]” into the coefficients S @dded when an agepf that didn’t form an edge with,
that correspond to the, y directions of the agents, arfd); ~ €nters at some timethe setV; (¢) which is a subset of's

denotes the-th element of a vectos. The following holds: sensing zone. By designing the control in such a way to force
Theorem 5:Assume that (6) evolves under agents that come to a distan¢e ¢ between them, to remain

within distanced for all time afterwards, this definition of
u; = —sgn{faicos0; + fyisin;} - (f2; + fi) () edge addition becomes meaningful since each agent has to
w; = — (0; — arctan 2 (fyi, fai)) (8) sense only ag_ents within i_ts sensing zone at each time i_nstant.
The main difference with the the static graph case is the
where (Fx); = fui, (Fy); = [yi- Then the system reachesdefinition of the aggregation potential betweieand j. We
the equilibrium points of the single integrator case, i.e. @enote this potential in the dynamic graph casewég and
configuration in which((P ® I2) + (R ® I3)) ¢ = 0. recalling the definition ofi¥;; in the static caselV is
Eroof: The generalized time derivative &f is calculated by Jefined asWi (B;) = Wi; (Bij), for (i,5) € E(t) and
V C 3 {4K [ui] (Fz); cos0; + (Fy);sin6;)}, where we Wi (6,;) = W;; (8;5), for (i,5) ¢ E (t). Hence when two
used Theorem 1.3 in [9] to calculate the inclusions of the Fi@9ents form an edge, their aggregation potential is identical
ippov setK.] in the previous analysis. Sindé [sgn(z)] = = to the t_he static case. Whenev_er an aggrforms a new
. =~ edge withi, the functionW¢ switches fromWV;; to W;;.
{|z|}([9],Theorem 1.7), the choice (7),(8) results in = R U J J
. 9 2172 The function W;; is defined so that the switch t@V;;
_;{4”“' cos 0; + fyisin 0| (f7; + f7,) }S O,sothat o pold in a sufficiently smooth manner. This is encoded
the generalized derivative &f reduces to a singleton. By the in the following properties: (1)Wij (Bij) = Wi (Big),
nonsmooth version of LaSalle’s Invariance principle [10], théor ||g; (t) — q; (t)|| <d — &, (2) Wi; (Bij) = Wi;(d?) =
agents converge to the largest invariant subset of th§ set ., st for | ¢, (¢) —q¢ ) > d B) Wy ((d—e)’
{(foi = fyi = 0) V (faicosb; + fyisinf; = 0),Vi € N}, - 9 oW 9 OV 9
However, for eachi € N, we havelw;| = = whenever Wi ((d*é‘) ) and 5 ((dﬂ?) ) = 5., ((d*é‘) )
f,;.i cos b; —|— fyising; =0, due tO.(8). In particular [11], (4) Wij is everywhereC!, and (5) %‘g/u > 0ford—e
this choice of angular velc_JC|ty renders the surfaccﬂqi (t) — q; (t)]| < d. The control law is now:
fricosO; + fyisin@; = 0 repulsive for agent, whenever _
i is not located at the desired equilibrium, namely when Z oWi; Z oWi; Z oVi;
fzi = fyi = 0. Hence the largest invariant sét contained ¢ Jq; < dq; aq;
in Sis S > B = {fu=f,;=0Vie N} which is (L)gE
equivalent to the equilibria of the single integrator caseThis definition of W;j allows i to neglect agents outside
(P®Il)+ (R®I1))q=0.5 its sensing zone. Moreovey;; is the same as in the static
Hence the control (7),(8) forces the nonholonomic teargraph case. The overall system is a hybrid system in which
to behave exactly the same as in the single integrator caseiscrete transitions occur each time a new edge is added,
i.e. each time two agents not forming an edge before come
to a distance closer thath— ¢ from one another. Conver-
The previous sections involved the case where the corgence is checked using the common Lyapunov function tool
munication graph considered was static, i.e. no new edgggm hybrid stability theory [6]. In particular, the function

were added whenever an agent, not initially located withify — >y (Wid’ + Vij) serves as a validommon Lyapunov
the sensing zone of another, entered its sensing zone. We now 7 jZ

consider creation of new edges whenever an agent enters fHactionfor the underlying hybrid system. Using the analysis
sensing zone of another. This naturally leads to a small@f the single integrator case, it is easy to show that at time
swarm size and corresponds to a more realistic formulaticiPaces where no new edges are added, the time de2r|vat|ve of
of the problem in hand. The results of this section can als is given byV = —8||((P?®@ ;) ¢ + (R® I2) q)||” <

be applied to the nonholonomic case. 0, where theP? matrix is defined asPj = %;_pfj and
VE]

9)

(i,9)€E jEM;

V1. THE CASE OFDYNAMIC GRAPHS

We consider two types of communication sets for each , d ) L g oW, Ay
agenti at each time instantThe first corresponds to the ?Jij = —pij, ford # j, with pf; = g for (i) € E
sensing zone of, i.e. to the agents thatsenses at each time and p,‘jj = %‘g; for (i,j) ¢ E. At times when new

instant: N; (t) = {j € N,j#i:|la;(t)—q; (t)]| <d}. In edge are added, the common Lyapunov function and the



control laws of all agents are continuously differentiabled> > (Ipi;| — ) 85 <3 3 il Biy < p 3 |Mil, s0
while the values ofV, its time derivative, and the values ¢ 7€M p i JEM; @
of the control laws remairconstant Hence V' serves as thatZ > pijﬂij = pZ|M’i|' We now denote by(co)

a common Lyapunov function and since no Zeno behavighe sef of edges that have been formed at steady state.

occurs whenever the system enters a new discrete state, (8ing the boundp;; > a on the attractive term for the

once an edge is added it is never deleted, we quote tBgents that have formed an edge the left hand side of the

LaSalle’s Principle for Hybrid Systems [6] to show thatprevious inequality can be shown to by bounded as follows:

the system converges to the largest invariant subset of the $ pLBiy > 3 ad?. The last two bounds

setS = {q: ((P?+ R) ® I) ¢ = 0}. Thus, the results of 7 j¢u, i j;(i,,%i}ﬂ(oo)

Theorem 1 and Lemma 2 hold in this case as well. The T

counterpart of Lemma 3 in the dynamic graph case involvex ' 998St thag: " ng(w) adi < PXZ_: |M;| at steady state.

the fact that once an agerjitenters the sefV;(t) for the . e, _ _

first time, it is forced to remain within the sensing zone ofVe will now show that an appropriate choice @f forces

i, encoded by the se¥; (), for all future times. Thus, the all agents that have formed an edge to be at a distance not

definition of edges in the dynamic graph case is meaningfirger thand, at steady state, i.glq; — ¢;[| < di, for all

since it respects the sensing capabilities of all agents. TheJ) € £(co). This is proved by showing that the inequality

following counterpart of Lemma 3 holds: > X ad? < p3|M;|is not viable even in the
Lemma 6: Consider the system (1) driven by the control v ieM; '

law (9). Then, all agent pairs that come into distance lesgorst case scenario. Thus, let us assume that at least one

or equal tod — ¢ for the first time, remain within distance pair that has formed an edge at steady state is at a distance

strictly less thand for all future times. larger thand; from one another, i.ellgx — q/ > d; for

Proof: Since V(q(t)) < V(q(0)) < oo for all t > 0 and some(k,l) € E(co). This implies thatk ¢ M; and vice

V — oo when||g; — ¢;|| — d for at least one pair of agents verca. In that case_ > adi < p3°|M;| yields

(i,7) that either (i) have formed an edge fat= 0, or (i) ‘ jz(i’jﬁf(oo)

have formed an edge at some tim@® < r < ¢ we conclude 3 ad?=2ad2 <Y Y 43, < S |M;| =
. . L. - 1 1 = _ pz] 1) = P i [

that all pairs of agents that did not initially form an edge and: 5:(i,5) € E(o0) i j¢M; i

come to a distance less thdn- ¢ for the first time, remain IEM;

— 2 _ _
within distance strictly less thad for all future times.< p{(NPZNE)i(]\]I\Z;) 2)+2(N=2)} = p(N?-N-2) =

The fact that agents that initially formed edges remair; < T @ The last inequality is rendered impossible
within distance strictly less thadéfrom each other is proven .o p(N?-N-2) . ) ’
in Lemma 3. These two Lemmas guarantee that the definiti($r¥ choosing; > 2a - In this case, we havge M,

of edges in the dynamic graph case respects the limit (C)jer all pairs of agents that form an edge at steady state, and

: o . nce an ultimate bound i8;; < d3,V (i, j) € E (c0). This
sensing capabilities of all agents, since each agent has auation provides the means to provide a better bound of
sense only agents within its sensing zone in order to fulfi

the communication link imposed by the existence of edge e swarm size, as will be shown in the §equ.el. We.f|rst
. . Tiote thatd; can be chosen by the following inequality:

Having now established a framework that allows for,(n2_y_2) o pN(N—1) , s

addition of edges in communication graph while maintaining 2« < 41 <~ The last inequality is viable

connectivity, we can follow the analysis of the static case teince the inequalityo(N —N-2) < eNINZD s equivalent

show that similar bounds for the swarm size can be derivad N2 — N + 2 > 0 which holds for all N > 0. The

in this case as well. In particular, the system now reachesfallowing Theorem, which is the counterpart of Theorem 4 in

configuration where equatiof{ P? + R) @ I5) ¢ = 0 holds. the dynamic graph case, shows that a better bound is derived

Following the analysis of the static graph case, an equation the dynamic graph case:

similar to (5) is derived in the dynamic graph case as well:

Theorem 7:Assume that the swarm (1) evolves under
d 2 2 the control law (9) and the initially formed communica-
d 10— g |? = il g — g 10) . ,
Zzp” la: = 451 Z Z lpaslllas = sl (20) tion graph is connected. Denote I3, the maximum
distance between two members of the group, B&.. =
An improved result on the bound of the swarm sizema;\(/||qi—qj||2. Assume that the parametel; satisfies
with respect to the static graph case can be obtained jj S
. . . . P(N?-N-2) d2 PNIN=1)  nder th di
the dynamic graph case. In particular, using the notatiom =3, — < ¢1 < —,— . Under ine preceding as-
d? (N — 1). We moreover havg? . < Bmax WhereSBn.x =
as > | X B+ X phBi | = X X leilBy = EN(N - 1)% is the swarm size corresponding to the static
¢ \JEM: JEMi ¢ JeM; graph case of Theorem 4.

S5 pd B = 32> (lpijl — pd) Bij. Assuming that
i jEM; 7 i jEMi( ’ ]) ’ Proof: Since the graph is connected, the maximum length

the repulsion term satisfies the bourgi;| < -  ofa path connecting two arbitrary verticesNs- 1. Equation
and noting thatpf, > 0 for all i,j € N, we get §;; <di,V(i,j) € E(cc) now yieldsgg, < d? (N —1).

max —

i i i jeM,




Now sinced; satisfies the bounds assumed, we hafe, <
2
d% (N - 1) < % = ﬂmax = ﬂglax < ﬁmax- <>

This result shows that allowing edges to be added in a =

dynamic fashion, leads to an improved (i.e. smaller) swarm ™

size. This derivation is not surprising, since the addition of ..
new communication links increases the attractive potential -

and hence leads to a tighter swarm size.

VIlI. SIMULATIONS

The derived results are now supported through a series 6. 2.

computer simulations.

0004

100 2000 3000 4000 000 6000 7000 8000 lo00 2000 3000 400 5000 6000 7000 8000

Swarm Size in the Static Graph Case Swarm Size in the Dynamic Graph Case

Evolution of the swarm size for the two simulations of Figure 1.

The dynamic graph formulation leads to a smaller swarm size.

The first simulation of Figure 1 involves a swarm of

nine single integrator agents navigating under the proposed -« ’ w4

control in both the static and dynamic edge addition cases. o 2:

In both cases the agents have the same initial conditions . . 5 j r
and controller parameters. The first graph shows the agents’-« . /(/ﬂ /
initial positions. In the first case on the left they navigate \ &,/”
under (3) while in the second case on the right under (9). .. o SN

As seen in Figure 1 the latter control law leads to a tighter
final swarm size, something also shown in the comparison

of the final swarm sizes of the two case in Figure 2. Thisig. 3.

2
005 004 003 002 001 0

001 o0z 003 004

Initial Conditions

S65 o6r 063 06s o1 o 061 00z 063 oo
Evolution in Time

Evolution in time of the nonholonomic swarm under the control

Figure shows the evolution of the swarm size in both caséds (7.8). The communication graph is connected.
from time 1000 and onwards. It can be shown that apart from
the reduce of the swarm size, the convergence rate is also
increased in the case of the dynamic edge addition. This is

witnessed by the significantly smaller swarm size the team A distributed control strategy for connectivity preserving
swarm aggregation with collision avoidance was presented.

In the case of dynamic edge addition, an improved bound
on the swarm size was derived. The results were extended
to deal with the case of nonholonomic agents as well.

has attained at time 1000 in the second case.

o

002 0 ooz oos 006
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004 00: 2 002 006 008 D0z o 002 001 006

g 502 [
Evolution in time in the static graph case Evolution in Time in the dynamic graph case

Fig. 1.

(1]
(2]

(3]

(4]

(5]

(6]

Evolution in time of the swarm under the control law (3), for the 47]

static communication graph case, on the left, and the control law (9), for th
dynamic graph case, on the right. The communication graph is connected

in both cases. The second control law leads to a tighter swarm size.

The second simulation in Figure 3 involves evolution of a
swarm of six unicycles navigating under (7,8). The first graph[

(8]

shows the initial positions of the six agents while the second
one the evolution of their trajectories. Swarm aggregation is
eventually achieved, since the communication graph that [ilso]
formed based on thmitial relative positions of the agents, [11]

is connected. The same values of controller parameters a:
the first simulation have been retained in the simulation c;

Figure 3 as well.
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