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Abstract

Stability analysis of linear systems with time-varying delay is inves-
tigated. In order to highlight the relations between the variation of the
delay and the states, redundant equations are introduced to construct a
new modeling of the delay system. New types of Lyapunov Krasovskii
functionals are then proposed allowing to reduce the conservatism of the
stability criterion. Delay dependent stability conditions are then formu-
lated in terms of linear matrix inequalities (LMI). Finally, an example
shows the effectiveness of the proposed methodology.

1 INTRODUCTION

During the last decades, stability of linear time delay systems have attracted
a lot of attention [[{], [}, [[4, [[7, [{] and references therein. Numerous
tools for estimating the stability of linear time delay systems have been success-
fully exploited. The first classical technique relies on the study of the roots of
the associated characteristic equation, a quasipolynomial in s and e~"*. Even
very effective in practice [@], these approaches reveal themselves quite compli-
cated when uncommensurate delays, robustness issues or time varying delays
are considered. The stability of time-delay systems can be also studied in an
Input-Output framework [], [, H, [l and [{]. In this case, methods aim
at embed the delay as an uncertain operator and hence transform the original
delay system into a linear system submitted to a perturbation. Then, the use of
classical robustness tools like Small Gain theorem, IQC or Quadratic Separation
approach allow then to develop effective criteria [P, ], [1J], [L6] and [{]. In
this framework, the source of induced conservatism is clear and generally comes
from the choice of the interconnection (often related to the choice of a model
transformation) and the choice of the uncertainty set which covers the delay
operator.

Another very popular approach relies on the use of a Lyapunov-Krasovskii
functional. Indeed, for a linear time delay system, some general functional
can be found [E] but is very difficult to handle. That is the reason why more
simple and thus more conservative Lyapunov-Krasovskii functional have been
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proposed. Generally, all these approach have to tackle with two main diffi-
culties. The first one is the choice of the model transformation. The second
problem lies on the bound of some cross terms which appear in the derivative of
the Lyapunov functional. The present paper brings a contribution to the first
issue using an augmented model of time-varying delay systems. This method
is closely related to the technique proposed by [E] in a robustness framework.
In this latter paper, an extended state variable is constructed to deal with the
stability of a linear uncertain system. This modelling allows then to develop a
parameter-dependent Lyapunov function. For time delay systems, it was shown
that introducing redundant differential equations shifted in time allows to build
conditions that improve results (see [[l]] for independent of delay criteria and
[f] for delay dependent criteria). In [[L1], an augmented Lyapunov functional is
proposed and is based on the use of the state variable and its derivative and
shows interesting results especially for robustness issues. In this paper, using
the derivative operator, a different method is proposed to consider augmented
time-varying delay systems and then to provide new delay dependent stability
criteria.

The paper is organized as follows. In section 2, a first result is derived from a
Lyapunov-Krasovskii functional developed in [IE] for delay dependent stability
analysis. This section aims at exhibiting another formulation of the analysis
problem for time-varying delay systems. Then, in section 3 we expose the two
main results of this paper: the use of the system derivative and an additional
term for the Lyapunov-Krasovskii functional. Finally, the following section 4 is
devoted to a numerical experiment that illustrate the proposed approach.

Notations: For two symmetric matrices, A and B, A > (>) B means that
A — B is (semi-) positive definite. A7 denotes the transpose of A. 1, and Omxn
denote respectively the identity matrix of size n and null matrix of size m x n.
If the context allows it, the dimensions of these matrices are often omitted. For
a given matrix B € R™*" such that rank(B) = r, we define B+ € R™("=") the
right orthogonal complement of B by BB+ = 0.

2 A first result on stability

Consider the following linear time delay system:

#(t) = Az(t) + Aga(t — h(t)), Yt >0, )
{ 2(t) = 6(1), Wt € [—hum, 0], (1)

where z(t) € R" is the state vector, A, Aq € R"*" are known constant matrices
and ¢ is the initial condition. The delay, h(t), is assumed to be a time-varying
continuous function that satisfies

0 < h(t) < hp (2)

where h,, > 0 may be arbitrarily large if delay independent conditions are
looked for. Furthermore, we also assume that a bound on the derivative of h(t)
is provided : .

h(t)] < d, 3)

The aim of this section is to derive some conditions on h,,, the upperbound
which ensure the stability of (ﬂ) for a given value d by using a Lyapunov-



Krasovskii framework. The next theorem gives the following delay dependent
result for system (f]).

Theorem 1 Given scalars hy,, > 0 and d > 0, system (E) is asymptotically
stable for any time-varying delay h(t) satisfying (ﬁ) and (ﬁ) if there exists nxXn
matrices P > 0, Q; > 0, i = {1,2} and R > 0 such that the following LMI
holds:

St'Tst <o (4)
where
S=[-1 A A; 0] and (5)
[ hnR P 0 0
P T #+R 0
I'= 1 1 (6)
0 ER U ER
| 0 0 #R V |
with

= Q1+Qz2— h_tnRv
-(1-d)Q1 - 7#R
—ﬁR—Qz-

S+t is an right orthogonal complement of S.

< @ N
|

Proof 1 Define the following Lyapunov-Krasovskii functional candidate:
0
V() = af (0)Pz(0)+ [ zf(0)Q1x:(0)do
—h(t)
0
+ [ 2T (0)Qa(0)d0 (7)
—hm
t ot
+ [ [T (s)Ri(s)dsdb
B 6

t—hm

Remark that since P, Q1, Q2, R are positive definite, we can conclude that
for some € > 0, the Lyapunov-Krasovskii functional condition V (xt) > eH:vt H
is satisfied /@/ The derivative along the trajectories of (ﬂ) leads to

V() = 22T(t)Pi(t) + 27 (t)Qux(t)
—(1 = h()z" (t = h(t)Qua(t — h(t)
2T ()Qax(t) — 2T (t — hin)Qax(t — hyy) (8)

thomaT ()R (t) — f &7 (0) Ri:(6)df.
h

t—

m

As noted in [@] the derivative offt h fe (s)Ri(s)dsdf is often esti-
mated as by, a7 ( ft Ok (0)Rz(0)d0 and the term — ft o t) 7(0)Ri(0)do



is ignored, which may lead to considerable conservatism. Hence, the last term
of (E) can be separated in two parts:

- f i (0)Ri(0)d9 = — [ &T(0)Rz(0)do
o e )

Using the Jensen’s inequality /E/, /@) can be bounded as follow:

- ti]}’l(t)ﬂbT((?)Rir(@)d@— f iT (0)Ri:(0)do
t—hm,

with

Therefore, we get V(x;) < T (4)E(t) with T defined as (B) and

i(t)
§(t) = I(tx_(tfz(t)) . (10)
x(t — hu)

Furthermore, using the extended variable £(t), system (ﬂ) can be rewritten
as S& = 0 with S defined as (H} The original system (ﬂ) is asymptotically
stable if for all € such that S& = 0, the inequality ETTE < 0 holds. Using Finsler
lemma /@], this is equivalent to SL'rst < 0, where St is a right orthogonal
complement of S, which concludes the proof.

Note that Condition (f) can be rewritten as

ATP £ PA+ Q1+ Qs PAy 0
ATP ~(1-d)@Q: 0
0 0 —Q2
-1 0 2o -1 o 1"
=l 1 -1 [ 0 R} 1 -1 (11)
0 1 0 1
[ AT AT 17"
+hm | AT TR AT | <O
0 0

Thus, according to this latter expression, we can conclude that if the LMI (@)
is feasible for a given h,,, > 0, then it is feasible also for all delays less than the
prescribed upperbound h,,.

Remark 1 Instead of using an orthogonal complement of S, Finsler lemma also
states that condition S+ TSt < 0 is equivalent to the ezistence of some X €



RN such that the LMIT + XS + STXT < 0 holds. Creating such additional
variable X is useless for the considered case: it only increases the number of
variables and constraints in the LMI problem without reducing conservatism of
the approach. But as demonstrated in /@], /@/ and many others, such additional
“slack variables”are of major interest for robust analysis purpose.

Remark 2 Note that delay-dependent results for fast varying delay (i.e. prov-
ing stability whatever the positive bound d) are a special case of the theorem
E. Fizing Q1 = 0 renders the conditions independent on d and therefore gives
conditions for possibly fast varying delays.

3 Main results

3.1 An augmented state for modelling the delayed systems

As it has been noted, Theorem El is not a new result but a new formulation
of existing equivalent results with fewer decision variables. Here, we aim at
developing further the methodology used in the previous section to derive less
conservative results. The key idea is that since the delay-dependent criterion
proposed depends also on the derivative of the delay, we should highlight the
relation between h(t) and states variables. One way is to consider an extended
state z = [#7 T]T as it has been proposed in [ in a robustness context.

Differentiating the system ([If), we get:

#(t) = Ai(t) + (1 — h(t))Agi(t — h(t)). (12)

Introducing derivative of system () should provide more information on the
system and hence improve results. Consider the artificially augmented system

(1) = Az(t) + Agz(t — h(t)) (13)
B(t) = Ai(t) + (1 — h(t)) Aai(t — h(t))

with accordingly defined initial conditions. Introducing the augmented state
_ | =)

2(t) = [ i) ] (14)
and specifying the relationship between the two components of z(¢) with the
equality [1 0]z(t) = [0 1]z(t), we have the new augmented system

Ei(t) = Az(t) + Aqz(t — h(t)), (15)

where

(16)
Aq 0
Ag=1| 0 (1—h(t)Aq
0 0

Finally, we obtain a descriptor linear time delay and time varying system,
which may be more difficult to handle. Applying methodology developped in



Section P to ([[§), the stability would be guaranteed only for a fixed h(t) since this
term appears in Ag. A common idea consists in embedding the time varying
parameters h and h into an uncertain set, described by a polytopic set and
employing quadratic stability framework (see B and [f]).

Theorem 2 Define matrices A, B and O3 as (@4) and ([B4). Given scalars
hm >0 and d > 0, the linear system (1) is asymptotically stable for any time-
varying delay h(t) satisfying (3) and if there exists 2n x 2n matrices P > 0,
Q; >0, j={1,2} and R > 0 such that the following LMI holds for i = {1,2}:
. AT

AD — LB o) R

0 . <0 (17)

RO, -i-R

where A®) (@gi)) for i = 1,2 are the two vertices of A(h) € R (©,(h)
R2n5n respectively), replacing the term h(t) by d;. d;, i = {1,2} corresponding
to the bounds of h(t): dy = d and dy = —d.

Proof 2 We now consider the following Lyapunov-Krasovskii functional asso-
ciated with the augmented state vector z(t):

V(z) = 2L (0)Pz/(0) + j: : 21 (0)Q12:(0)do
h(t
+ f 21(0)Q22:(0)d0o (18)

— P

+ f #T(s)Rz(s)dsdb.
t—h

S o

m

Using the same idea developed in the proof of Theorem E, the deriwative of
(£8) is such that V(z) < (#)TT(h)y(t) where

A(t)
v = | o ey |- (19)
2(t — hm)
[ hwR P 0 0 ]
. P T ~R 0
I(h) = ) " ) (20)
0 AR U iR
|0 0 =R V |
with
T = Qi+Q2— 7R,
U = —(1-h(t)Q: - =R,
V = —AR-Q

So, the system (1) is asymptotically stable if for all ¢ such that S(h)p =0
with . o
Shy=[ -E A Aq 0], (21)



the inequality 1 (t)"T'(R)1(t) < 0 holds. Using Finsler lemma [[9], this is equiv-
alent to

S ()T (h)S*(h) < 0 (22)
where S*(h) is a right orthogonal complement of S(h) given by
[ A Ay 0 0 07
AA AAq (1—-h)Ag 0 O
1 0 0 00
1y | A Ag 0 0 0
57 () = 0 1 0 0 0 (23)
0 0 1 0 0
0 0 0 10
| O 0 0 0 1]
Carrying out algebraic calculus of (@) with @), condition @) 15 derived:
) 1 ) )
A(h) = —B + hm©3 (h)RO2(h) < 0 (24)
where : . .
A(h) = ©1 PO,(h) + O3 (h) PO,
Q1 0 }
+ 035 { ; ©
Lo —1-Reu |7
0 (25)
@T Q? :| ) ,
R 0
B=67 [ 0 R } Os.
and
o 1 0 00O
T lAa A 000
[ A Ag 0 0 0
200 =1 42 44, (1-iyas 0 0 ]
(1 0 0 0 0]
| A Ag 0 0 O
=10 1 00 0]
I 0 0 1 00 | (26)
1 0 00O
o, — A A; 0 0 O
710 0 010’
| 0 0 0 0 1 |
0o 1 0 -1 0
o 0 1 0 -1
=11 1 0 0 o0
A Ay -1 0 0

Since matriz R is positive definite and using schur complement, condi-
tion @ s equivalent to

A(h) - =B o (hR
1

RO, () “igp <0 (27)

R



At this stage, assume that h(t) 18 not precisely known but varies between a
lower and upper bound, h(t) € [dy,ds). Since this uncertain parameter appears
linearly in @), the uncertain set can be described by a polytope /ﬂ/ The vertices
of this set can be calculated by setting the parameter to either lower or upper
limit. The inequality @) can then be rewritten as follow:

E?:l a; A — ﬁB Z?:l O‘i@g)TR
RZ?:I al@g) _hLR

m

<0 (28)

where a;(t) € [0, 1], Zle ai(t) =1 and AW (@éi)), i =1,2 are the two vertices
of the uncertain matriz A(h) (©2(h) respectively) for h(t) € [dy,ds]. Consider-
ing the quadratic stability framework [g], condition (12§) is equivalent to

i 1 ()"

A()_(EB @21 R <0,i=1,2. (29)

RO, -i-R

Thus, the inequality @) has to be verified only on its vertices ) Fi-

nally, the asymptotic stability of system ) is guaranteed if the two LMI )

are feasible at the same time. For any initial conditions, the whole state z(t)

converges asymptotically to zero. Its components x(t) converge as well. The
original system (E) s asymptotically stable.

Remark 3 In the same way that in Section @ for Theorem E, if condition )
holds for h,, then it still holds for h(t) < hp,.

3.2 A new Lyapunov functional

The proposed new functional is based on the extension of a classical Lyapunov-
Krasovskii functional (). In order to take into account the variable (), let
introduce a new term for the Lyapunov-Krasovskii functional.

0

V(z) =28 (0)Pz(0)+ [ 21(0)Qz(0)db
t t o t tt (30)
+ [ [2T(s)Rz(s)dsdd + [ [ [&T(0)Wi(0)dbduds
t—h,, 0 t—hm, s u

Then, we can propose the following result.

Theorem 3 Given scalars hy, > 0, d > 0, the linear system (1) is asymptoti-
cally stable for any time-varying delay h(t) satisfying ) and (3) if there exists
2n x 2n matrices P >0, @ >0, R > 0, an X n matrix W > 0 and a matriz
X € R™4n gych that the following LMI holds for i = {1,2,3,4}:

r TR £Te ETW
Roys  —LR 0 <0
WE,0)¢ 0 W (31)

= A(i) +Xs(i) +S(i)TXT

where A Qéi) and S fori = 1,2,3,4 are the vertices of matrices A(h, h) €
R7"XTn - ©3(h) € R™*2" and S(h,h) € R**™ respectively, replacing the terms



h by 0 and hy, and h(t) by d and —d. A, S, € and O3 are defined as ([33) and

B3) and 1)

Proof 3 First, let define the two matrices E1 = [1, 0,] and Es = [0, 1,].
Consider the Lyapunov-Krasovskii functional (@) Let us derive this quantity:

V< 25T)Pz(t) + 27 (1)Qz(t)
—(1 = h()z"(t = h(£))Q=(t — h(1))
+hm 2T (H)QRE(t)
—[2(t) = 2(t = RO 575y [2(t) — 2(t = A(t))] (32)
+ e s TETW By
—[h(®)B12(t) — Br(2(t) — 2(t = M) w272
[h(t)E1Z(t) — By (2(t) — 2(t — h(t)))].

The last term of the inequality is not linear with respect to h(t). Introducing
the following signals

1) —
allow to transform the right hand side of into

V< 25T)Pz(t) + 27 (1)Qz(t)
—(1 = h(t)z"(t = h(t))"Q=(t — h(t))

hu T (O RE(E) — h(£)T (1) R (1) 34
i T ETW Ey s — 267 (t) BT Qa0 (t)
Defining two extended vectors:
(1) (t)
N L )
60 = | =t =h) | and iy = | 7 (35)
01(¢) 5a(t)
da(t)
In equation @ ) can be expressed as
Q P 0 0 0
P T 0 0 0
v<ell o 0 —(1-h)Q 0 0 £ (36)
0 O 0 —hR 0
0 O 0 0 —2ETWE;

with T = hy, R + %EgWEQ Then, specifying expressions of signals & and &
the following inequality is deduced.

V <oT (ONTMN(t) (37)



where M is the matriz of the inequality @ ) and

@1 02n. 02n 02n Xn
@2 @3(h) 02n 02n><n
N = 02,-. xn 12n 02 02n 9
02n>< n 02n 12 02n
O2nxn 0O2n 02 12,

with 14
1 0 - d
61_[/1 Ad]’ @2—[,42 AAJ’
0 0 (38)
Os(h) = [ (1—h)Aa 0 ] '
So, we get the inequality @) under the constraint S = 0 with
1 -1 0 —hl 0 0 0
. A A -1 0 —hl O 0
SR I 0 1 0 -1 0 (39)
A? AA; 1-h)As 0 -1 0 -1

Using Finsler’s lemma /@], equation ) is equivalent to the following

vV <yt (t) [A(h, h)+ XS(h,h) + ST (h,h)XT
(40)
T sTe§<h>T93<h>s] (1)

with . ) )
A(h,h) =NTMN — 70l (h)To3(h)E

& :[ O2n 1on 020 Onxon ] (41)

X eR™™X4 s g decision variable.

Then, applying twice the Schur’s complement, expression ) of Theoremﬂ
is obtained. Since h and h appear linearly in and using stmilar arguments
as in the proof of Theorem E, if the condition (31) is satisfied then the system

) is asymptotically stable. As previously, since the whole state z converges
asymptotically to zero, its first component x converges as well.

4 Numerical example
Consider the following system,

i(t) = [ 2 } o(t) + [ B ]x(t—h(t)). (42)

For this academic example, many results were obtained in the literature.
For various d, the maximal allowable delay, h,,, is computed. To demonstrate
the effectiveness of our criterion, results are compared against those obtained
in [H], [ﬂ], [@], [@], } and [@] All these papers, except the last one, use the
Lyapunov theory in order to derive some stability analysis criteria for time de-
lay systems. In [@], the stability problem is solved by a classical robust control



Table 1: The maximal allowable delays h,, for system ([)

d | o Jor o2 ]os os ]| 1 |11 ] 12]13] va]

Fridman et al (2002) [E 4.472 | 3.604 | 3.033 | 2.008 | 1.364 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999

Fridman et al (2006) [E 1.632 | 1.632 | 1.632 | 1.632 | 1.632 | 1.632 | 1.632 | 1.632 | 1.632 | 1.632
Wu et al (2004) [@] 4.472 | 3.604 | 3.033 | 2.008 | 1.364 - - - - -
Kao et al (2005) [[L2] 4.472 | 3.604 | 3.033 | 2.008 | 1.364 | 0.999 - - - -

He et al (2007) ] 4.472 | 3.605 | 3.039 | 2.043 | 1.492 | 1.345 | 1.345 | 1.345 | 1.345 | 1.345

He et al (2007) ] 4.472 | 3.605 | 3.039 | 2.043 | 1.492 | 1.345 | 1.345 | 1.345 | 1.345 | 1.345

Theorem 4.472 | 3.605 | 3.039 | 2.043 | 1.590 | 1.345 | 1.345 | 1.345 | 1.345 | 1.345
Theorem 4.472 | 3.670 | 3.209 | 2.514 | 2.181 | 2.034 | 1.728 | 1.502 | 1.377 | -
Theorem 5,120 | 4,081 | 3,448 | 2,528 | 2,152 | 1,991 | 1,575 | 1,271 | 1,108 | -

approach: the IQC framework. The results are shown in Table EI

The numerical experiments show that Theorem [l gives similar results to
[E] That seems logical since the same Lyapunov functlonal is used. Results
for d > 1 and Vd are computed with Theorem [I] and choosing @1 = 0 in (). [f]
gives a rate-independent criterion which may be interesting (in certain cases as
in example (42)) when d is unknown. On the other hand, as no informations
are taken into account about h(t), this could be conservative especially for small
delay variations.

Then, considering the augmented system (B) composed by the original sys-
tem () and its derivative, Theoremﬂ improves the maximal allowable delays.
Indeed, using the same Lyapunov-Krasovskii functional, conservatism is reduced
thanks to the derivation of @) As expected, this operation provides more in-
formation on the system and thus improves the stability analysis criterion.

Furthermore, Theorem E which consider an additional term () improves
again the upperbound. This result suggests that the new proposed Lyapunov-
Krasovskii functional ) is suitable for time varying delay system stability
analysis, reducing conservatism. However, in example @) for |h| > 0.8, The-
orem E provides slightly better results than Theorem B. Nevertheless, this differ-
ence could be compensate by adding to the functional (B0|) the term ftt_ I 2T Qoz
and applying the separation of the integral in the third term as ([J).

5 CONCLUSION

In this paper, the problem of the delay dependent stability analysis of a time
varying delay system has been studied by means of a new Lyapunov-Krasovskii
functional. The first criterion is based on an existing Lyapunov-Krasovskii func-
tional [E] (see Theorem EI) Based on this first result, and using an augmented
state, new types of Lyapunov-Krasovskii functional are introduced which em-
phasizes the relation between i and signals © and . The resulting criteria are
then expressed in terms of a convex optimization problem with LMI constraints,
allowing for the use of efficient solvers. Finally, a numerical example shows that
these methods reduced conservatism and improved the maximal allowable delay.
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