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Scalable Distributed Kalman Filtering for Mass-Spring Systems

Toivo Henningsson and Anders Rantzer

Abstract— This paper considers Kalman Filtering for mass-
spring systems. The aim is a scalable distributed implementa-
tion where nodes communicate in a sparse pattern and the state
estimate for each node is available locally and usable for control.
The focus is on translation invariant systems, to make use
of the powerful results available based on Fourier Transform
methods. In this case it is known that Kalman Filters will
have a coupling that asymptotically falls off exponentially with
distance. Examples are shown where the Kalman Filter gains
can be truncated very narrowly with small performance loss
even though the coupling falls off more slowly. A step towards
spatially varying systems is taken in analyzing a system with
periodically placed sensors, and it is shown that the original
design is insensitive to this spatial variation.

I. INTRODUCTION

Control and estimation problems for mass-spring systems

appear in a number of different applications, such as control

of oscillations in mechanical structures and electromechani-

cal oscillations in the power grid. The systems typically have

many lightly damped modes of oscillation. Estimates of the

local state — in particular local velocity, are necessary for

effective control and damping.

The inherently networked nature of most mass-spring sys-

tems allows for distributed control and estimation with sparse

communication, which is key to keep down implementation

complexity. Each node needs only communicate with a few

neighbors, independent of system size. In contrast, a standard

Kalman Filter requires communication between all nodes.

Previous work in sensor networks is applicable to systems

with arbitrary topology but is focused mainly on distributed

estimation of a global set of states, see for instance [7], [1].

A distributed LQG problem on general graphs with localized

states and information propagation delays is solved in [6], but

the estimator in general has to keep an estimate of the global

state in every node. Localized couplings in the plant will

often lead to optimal controllers with couplings that decay

with distance, see [2], [5]. For an LMI approach to distributed

control, see [3] and references therein.

The modal transformation is a powerful tool for analysis

and synthesis for mass-spring systems. It decouples the sys-

tem dynamics into second order systems representing eigen-

modes; it does not decouple measurements and controls in

the same way unless e.g. the system is translation invariant.

Although other methods may be needed for systems with less

symmetry, modal techniques are too powerful to be neglected

since they allow exact representations and solutions in many

cases that would otherwise be unmanageable.

Previous work with synthesis in the Fourier domain has

shown that controllers and estimators, when transformed

back to nodal variables, have couplings that asymptotically
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Fig. 1. Example mass-spring system and corresponding graph.

fall off exponentially with distance. Thus spatial truncation is

a theoretically attractive approximation, see [2]. This paper

investigates translation invariant Kalman Filtering and spatial

truncation for mass-spring systems with the aim to illustrate

actual behavior and to highlight interesting properties.

The model of a mass-spring system is introduced in section

II and transformed to the modal domain in section III.

Kalman Filters for each mode are investigated in section IV.

Section V treats the spatial form of the (optimal) Kalman

Filter and the effects of sparse approximation. Section VI

covers a case where modes become coupled by restricting

the number of sensors. Conclusions are given in section VII.

II. MASS-SPRING SYSTEMS

By a mass-spring system we mean a system with dynamics

Mz̈ + Dż + Kz = f (1)

where M > 0 and D,K ≥ 0 are symmetric mass, damp-

ing, and stiffness matrices (often sparse), z is a vector of

displacements and f is the externally applied forces. The

entries of z and f correspond to nodes in a graph of the

system, with nodes connected that have nonzero coupling

elements in M,D or K, see Fig. 1.

The system can be assigned an energy function

V = 1

2
żT Mż + 1

2
zT Kz

where the terms correspond to kinetic and potential energy.

This energy function is positive definite except for possible

rigid body modes for which Kz = 0. The time derivative is

V̇ = −żT Dż + fT ż

which shows that damping is entirely dependent on D and f .

To introduce damping through f , an estimate of ż is needed.

We will be interested in the case when ||D|| is small.

A. Translation Invariant Systems

This paper is essentially concerned with systems where

the nodes can be labeled with the elements of Zn — the
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Fig. 2. Graph of a cycle, with nodes labeled from Zn. Neighbors are
nodes with labels that differ by one (modulo n). The cycle is invariant with
respect to translation (rotation).

integers modulo n, and the system looks the same when the

nodes are shifted cyclically, see Fig. 2.

Let x ∈ R
n contain one scalar for each node (such as a

state, input or output). An operator (matrix) A acting on x
is translation invariant if A looks the same no matter what

node is chosen as number 0. This property is equivalent to

that A is circulant (see [4]), i.e. the columns of A are shifts

of the same vector a ∈ R
n:

A =










a0 a−1 a−2 . . . a1

a1 a0 a−1 . . . a2

a2 a1 a0 . . . a3

...
...

...
...

a−1 a−2 a−3 . . . a0










where a−k = an−k. A then acts as a periodic spatial convo-

lution with a as impulse response or convolution kernel. Iff

A is symmetric then a is symmetric: a−j = aj for all j.

B. Modeling Assumptions

Assume that the symmetric M,D and K matrices are

circulant. Let the applied force f in (1) be

f = u + Mwp

where u is the control input and wp is unknown process

noise. The gain M on wp is not essential (any translation

invariant gain can be used), but will make the presentation

cleaner. Position sensors at each node give the measurements

y = z + wm (2)

where wm is measurement noise. The noises wp and wm

are for simplicity assumed Gaussian, independent identically

distributed (i.i.d.) in space, and white noise in time for all

frequencies of interest, with incremental variance σ2
p and σ2

m.

Example 1 (Finite Element Method (FEM) Model):

Beginning with the wave equation on a homogeneous string

mz̈ − d
∂2ż

∂x2
− k

∂2z

∂x2
= f

applying a Galerkin discretization with piecewise linear finite

elements (see [8], the example in ch. 18, sec. 2, p. 476

contains essentially the same discretization), and choosing

appropriate scaling factors we arrive at the model matrices

M = 1

2
circ

[
1 4 1

]
, D = δK, K = 1

2
circ

[
−1 2 −1

]

where δ is a damping parameter and A = circ[a−1 a0 a1]
is tridiagonal circulant matrix with values a−1, a0, a1. Each

node is coupled only to its immediate neighbors.

III. MODAL TRANSFORMATION

To proceed, we shall exploit that M,D and K can be

diagonalized by a common unitary matrix S. Any circulant

matrix A ∈ R
n×n acting on some x ∈ R

n can be trans-

formed into a diagonal matrix D = S∗AS by the Discrete

Fourier Transform y = S∗x, with S = S(n) given by

Sjk(n) = 1
√

n
ei 2πkj

n = 1
√

n
eiκ(k)j . (3)

The modal operator D is completely described by its diago-

nal diag(D) = d =
√

nS∗a.

The columns of S make up an orthonormal basis of

eigenvectors or modes of A. They can be indexed by the

spatial frequency κ in (3) that determines how fast the mode

shape changes as the position j increases:

κ = 2πk/n, k ∈ Z, |κ| ≤ π

where the spatial Nyquist Frequency at κ = π is the highest

that can be represented across the nodes.

A. Model Transformation

The system will now be decoupled by transformation to

modal coordinates. The transformation z′ = S∗z applied to

the nodal dynamics (1) yield the decoupled modal dynamics

M ′z̈′ + D′ż′ + K ′z′ = f ′ (4)

where M ′ = S∗MS > 0,D′ = S∗DS ≥ 0, and K ′ =
S∗KS ≥ 0 are modal mass, damping and stiffness matrices

that are diagonal, and the applied modal forces are

f ′ = u′ + M ′w′
p = S∗u + M ′S∗wp

where w′
p is the modal process noise. The nodal measure-

ments (2) are transformed by y′ = S∗y into the modal

y′ = z′ + w′
m

where w′
m = S∗wm is the modal measurement noise. The

modal noises w′
p and w′

m have the same distributions as wp

and wm since these are i.i.d. Gaussian and S is unitary.

Multiplying by (M ′)−1, the modal dynamics (4) become

z̈′ + Γż′ + Λz′ = (M ′)−1u′ + w′
p

where Γ = (M ′)−1D′ and Λ = (M ′)−1K ′ are diagonal.

B. State Space Form

Dropping the primes for readability and introducing the

state variable x =
(
zT vT

)T
=
(
zT żT

)T
the modal

system can be written in state space form as

ẋ =

(
0 I
−Λ −Γ

)

︸ ︷︷ ︸

A

x +

(
0
I

)

︸︷︷︸

B

(M−1u + wp),

y =
(
I 0

)

︸ ︷︷ ︸

C

x + wm.

(5)
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Fig. 3. Frequency response of the operators m, k and ω =
p

k/m as
a function of spatial frequency κ. The linear fit ωp of |κ| versus ω shows
that ω is quite linear in |κ| and thus the wave speed is rather constant.

The modes are uncoupled, so with x ∈ R
2 and u, y, wp

and wm scalar each mode can be considered separately as

ẋ =

(
0 1
−λ −γ

)

︸ ︷︷ ︸

A

x +

(
0
1

)

︸︷︷︸

B

(m−1u + wp),

y =
(
1 0

)

︸ ︷︷ ︸

C

x + wm

(6)

keeping in mind that the parameter triple (m, γ, λ) will vary

over the modes. Kalman Filter design for the entire system

reduces to design for a parametrized family of low-order

systems, as remarked in [2]. The same goes for controlla-

bility/observability analysis, controller design, performance

evaluation etc. With a large number of similar modes it might

suffice to do all calculations for a representative subset, if one

accounts for the minor added uncertainty.

The resonance frequency ω = λ1/2 and the damping γ are

the essential parameters that differentiate the modes. We may

expect that a mode’s resonance frequency ω is an increasing

function of |κ|, which is the situation for the wave equation

where ω = c|κ| and c is the wave speed.

Example 2 (Modal operators): The modal form of the

FEM model operators can be found by letting them act on a

mode xj = eiκjx0 with spatial frequency κ. We get

m = 2 + cos(κ), k = 1 − cos(κ), d = δ
(
1 − cos(κ)

)
.

Fig. 3 shows m, k and ω = λ1/2 as a function of κ. Also

shown is the best linear fit ωp of |κ| versus ω, to compare

with the wave equation. We see that m drops and k rises for

increasing |κ|, and that ω is quite linear with |κ|.
IV. KALMAN FILTERING

We will investigate Kalman Filtering one mode at a time.

The filter estimates the state x through the filter dynamics

˙̂x = Ax̂ + Bm−1u + L(y − Cx̂) (7)

where x̂ is the state estimate, L the filter gain, and A,B,C
are as in (6). The filter is designed by letting

L = PCT R−1
m (8)

where the covariance matrix of the estimation error

P =

(
pzz pzv

pzv pvv

)

satisfies the Riccati equation

AP + PAT + Rp − PCT R−1
m CP = 0 (9)

where Rp = Bσ2
pBT , and Rm = σ2

m. Note that in this case

L =
(
lz lv

)T
= PCT σ−2

m = σ−2
m

(
pzz pzv

)T
.

Let x̃ = x − x̂ be the estimation error. From (6) and (7)

˙̃x = (A − LC)x̃ + Bwp − LCwm

which is a linear filter fed with noise wp and wm. The error

covariance P can be found from the Lyapunov Equation

(A − LC)P + P (A − LC)T + Rp + LRmLT = 0 (10)

for arbitrary L. P will be minimal with L according to the

Riccati solution; smaller L will not attenuate x̃ fast enough

and larger L will feed too much measurement noise into x̃.

A. Modal State Estimation

We look at the Kalman Filter for zero damping γ; this

should be the hardest case since the system is only nominally

stable and no modes are damped well enough to be neglected.

Only the parameter λ = ω2 will distinguish the modes.

The Riccati equation (9) can be solved analytically, giving

pzz

σ2
m

=

√

2
pzv

σ2
m

pzv

σ2
m

=
λ2

0
√

λ2 + λ2
0 + λ

λ0 = ω2
0 =

σp

σm

pvv

σ2
m

=
√

λ2 + λ2
0

pzz

σ2
m

(11)

where the scaling parameter λ0 describes the balance be-

tween process and measurement noise intensity. It gives

the break frequency between slow modes where process

noise dominates and fast modes where measurement noise

dominates, and the filter convergence rate for slow modes.

Fig. 4 shows P with the choice ω0 = 0.2, with coordinate

scales normalized so that pzz(ω = 0) = pvv(ω = 0) = 1.

The appearance of the plot only depends on ω0, which sets

the frequency scale. Filter behavior is qualitatively different

for modes below and above ω0. When ω ≪ ω0, P and

therefore L are almost constant; the covariance tends to

P (ω = 0) =
√

2σpσm

(

ω−1
0

1√
2

1√
2

ω0

)

and the filter characteristic polynomial tends to s2+
√

2ω0s+
ω2

0 with time constant T =
√

2/ω0 and damping ζ = 1/
√

2.

Apparently the value of ω is unimportant as long as it is

much slower than the filter.

When ω > ω0, pzz and pzv which correspond to lz and

lv fall off, while pvv rises. The covariance tends to

P (ω ≫ ω0) = σpσm

(

ω−1 ω2

0

2ω2

ω2

0

2ω2 ω

)

and the characteristic polynomial tends to s2 +
ω2

0

ω s + ω2

with time constant T = 2ω/ω2
0 ≫ ω−1

0 and damping
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Fig. 4. Normalized Kalman Filter estimation error covariances as a function
of modal resonance frequency ω, with break frequency ω0 = 0.2. The filter

gains lz = σ−2
m pzz , lv = σ−2

m pzv are proportional to the two lower curves.

ζ = ω2
0/(2ω2) ≪ 1. For these modes the filter convergence

is much slower than the process dynamics. The filter gain

L and displacement error pzz fall off since it is hard for

a white noise force to excite a high frequency mode. The

covariance pzv drops since the states are estimated over many

cycles. The velocity error pvv rises since large differences in

velocity amplitude are only observable as small differences

in displacement. With δ > 0 damping would eventually force

all pjk down for large enough ω since it limits the excitation.

If ω is monotonic in |κ| as we expect, the filter gains

lz and lv are spatial low pass filters with cutoff at around

κ0 = κ(ω = ω0), e.g. κ0 = ω0/c for the wave equation.

V. SPATIAL REALIZATION

Once a Kalman Filter is designed in the modal domain,

it can be realized in the nodal domain through inverse

transformation. The nodal realizations will not be sparse in

general, but the coupling between nodes will fall off rapidly

with distance allowing good sparse approximations.

A. Exact Realization

The modal filter dynamics (7) for all modes are

˙̂x′ = A′x̂′ + B′(M ′)−1u′ + L′(y′ − C ′x̂′)

with A,B and C according to (5), L = (Lz Lv)T the collec-

tion of modal filter gains (Lz, Lv diagonal) and the primes

put back for clarity. The corresponding nodal dynamics are

˙̂x =

(
0 I

−K̃ −D̃

)

︸ ︷︷ ︸

A

x̂ +

(
0
I

)

︸︷︷︸

B

M−1u +

(
Lz

Lv

)

︸ ︷︷ ︸

L

(

y −
(
I 0

)

︸ ︷︷ ︸

C

x̂
)

where K̃ = M−1K and D̃ = M−1D are symmetric and

circulant, Lz = SL′
zS

∗ and Lv = SL′
vS

∗ are spatial filter

gains (convolutions), x̂ =
(
ẑT v̂T

)T
is the vector of nodal

state estimates and y the nodal measurements. Lz and Lv

are convolutions that feed the measurement error from each

node to its neighborhood.

The matrices M−1 and L are not sparse, but if the problem

data M−1 fades exponentially with distance then L will
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Fig. 5. Normalized spatial realization of Lz , Lv , M−1 with κ0 = 0.15π.
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Fig. 6. Normalized spatial |lz |, |lv | and |m−1|. The dashed line shows that

the filter coefficients fall off exponentially approximately as e−κ1|j|, κ1 =

0.78κ0; however there is an interval of quicker falloff in the beginning.

decay exponentially with distance at least asymptotically as

shown in [2], and should be amenable to spatial truncation.

Example 3 (Spatial realization of L and M−1): Figs. 5

and 6 show the convolution kernels of Lz, Lv and M−1 for

the FEM model with ω0 = 0.2 and κ0 ≈ 0.15π, normalized

so that the largest element is 1. All three kernels do in fact

decay exponentially in space, so a narrow truncation should

suffice to come close to optimal performance.

B. Spatial Truncation

Let Nr be the space of symmetric convolution kernels with

support only on indices |j| ≤ r (mod n). A convolution

kernel a can be approximated by a kernel b ∈ Nr by setting

all elements with index |j| > r (mod n) to zero. This spatial

truncation is an orthogonal projection onto Nr.

The effect of spatial truncation as seen from the modal

domain is to truncate the cosine series expansion of the

frequency response a′ after r + 1 terms, which might be

acceptable if a′ varies only slowly over the modes.

C. Truncation of Filter Gains

To implement an observer with sparse matrices, Lz, Lv,
and M−1 must be approximated. For brevity we will not

consider the approximation of M−1. The potentially most
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important influence of errors in Lz and Lv is to perturb the

modal observer dynamics with characteristic polynomial

det
(
sI − (A − LC)

)
= s2 + (γ + lz)s + (λ + lv + γlz).

The gain lv is important for low ω but is dominated by λ
when ω is high since it can be seen from (11) that nominally

lv/λ ≤ λ2
0/(2λ2). The gain lz provides damping and is

needed as long as γ is small — it should never become

negative since the filter dynamics could be destabilized. As

can be seen from (10) the other effect of changes in L is the

change of the measurement noise injection LRmLT .

Example 4 (Spatial truncation): Fig. 7 shows modal op-

timal lz and lv together with N ′
2 and higher order approxi-

mations (N ′
5 and N ′

9 respectively). Fig. 8 compares the filter

error covariances for optimal L and truncation to N ′
2.

Although Fig. 7 shows that lz and lv can be well approxi-

mated with modest nodal support, Fig. 8 shows that already

with the narrow N ′
2 truncation performance is very close to

optimal in this case. The most apparent deviations are a small

deterioration for low frequencies caused by error in lv , and

a small bump around ω = 1 where a value of lz of about

half the optimal degrades damping.

With this insight into the sensitivities on lv and lz , they

could be adjusted for improved performance. Too much

damping is generally better than too little. We note however

that already simple spatial truncation works very well.

While truncation changes the total error covariance only

modestly, the source of error can shift so that some estimates

are mostly sensitive to process noise wp and others to

measurement noise wm. The design is scalable in that the

same gains with the same sparse structure for each node

works just as well independent of the number of nodes n.

VI. SYSTEMS WITH PARTIAL SENSING

Kalman Filtering for systems with sensors placed only

periodically on the nodes will now be investigated. Let

n = mq with m, q positive integers and let the restriction

(downsampling) operator R ∈ R
m×n be such that (Rx)j =

xqj (mod n). The restriction operator corresponds to periodic

downsampling of a signal from R
n to R

m. The prolongation

operator RT injects sampled values back to the original grid.

Let S∗
m = S(m)∗ according to (3) be the modal transform

on R
m. The modal restriction operator R′ is given by R′ =

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

 

 

 

 

 

p

ω

pzz

pzv

pvv

Fig. 8. Normalized estimation error covariance comparison for optimal and
spatially truncated Kalman Filter with 2 nearest neighbors kept in the filter
gain. The covariances for the truncated filter lie slightly above the optimal.

. . .

0
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2

3n − 3

n − 2

n − 1

Fig. 9. Graph of periodic string with partial sensing. In this example
sensors are placed on every other node, colored white in the figure.

S∗
mRS, and has the effect of aliasing together modes into

groups of q. Values for aliased modes are added together and

scaled by R′, and the averages injected back by (R′)T .

A. Kalman Filter Structure

Let there be sensors only once every q nodes, as in Fig.

9. In the modal domain the dynamics are the same as in (5)

while the measurements take the form

yR = Ry = R
(
I 0

)
x + wm

where the (modal) restriction operator R downsamples the

measurements to yR ∈ R
m, and wm is now in R

m.

The aliasing introduced by R means that only the sum

of displacements can be measured for each group of aliased

modes. Since the groups have no coupling between them

filters can be designed independently for each. When two

aliased modes have the same resonance ω there is a loss of

observability, and the filter has to rely on Γ for damping.

Example 5 (Partial sensing): Consider the FEM model

with position sensors every q = 2 nodes. The modes alias

in pairs (κ, κmax − κ) and there is a loss of observability at

κ = κmax/2 corresponding to a standing wave with zeros at

all sensors. The unobservable mode has ω = ωns = 0.707.

To ensure stability and limit the filter time constant for

unobservable and close to unobservable modes we make the

physical damping be ζ = 0.01 at ωns by an appropriate

choice of δ. The measurement noise intensity σ2
m is halved

to give a fair comparison with halved number of sensors.
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Fig. 11. Normalized translation invariant spatial realization of lz , lv with
sensors on every other node. The slowly decaying oscillatory component
of lv is expressed mostly on odd shifts j corresponding to nodes without
sensors.

Fig. 10 shows estimation error covariances for partial sens-

ing, with full and truncated filter gains. The cross covariances

between coupled modes are not shown but are generally

small except for ω close to ωns. The damping causes the

covariances to go down for high frequencies. The only

significant difference with partial sensor placement is the

small but sharp bumps around ωns where the unobservable

mode contributes a big estimation error.

Fig. 11 shows the spatial realization of the optimal filter

gains (which can be made convolutions acting on the virtual

measurement errors RT (yR − Rz)). The bumps in Fig. 10

result in slowly decaying components in the nodal filter

gains. This is hardly noticeable in lz but very visible in lv ,

which seemingly should be hard to truncate. If ω0 is high we

see from Fig. 10 that the sharp components will be closer

to the break point in P and therefore stronger, with greater

risk to cause trouble.

Let us compare the estimation errors for full and trun-

cated filter gains in Fig. 10. The truncation leads to small

approximation errors, the most noticeable are the same as

in Fig. 8. The slowly decaying spatial component of lv that

was truncated appears insignificant compared to λ. Behavior

around the bumps is unaffected, since the observer loop is

broken. The results when using truncated l:s from the fully

sensed case are virtually indistinguishable from Fig. 10.

VII. CONCLUSION

This paper investigates distributed Kalman Filtering for

mass-spring systems on periodic grids. The Kalman Filter

for an undamped system is derived analytically and it is

argued that actual filter performance is mildly sensitive

to perturbations in filter gain. Performance comparison for

optimal filters and filters with spatially truncated filter gains

shows that the difference can be small even with narrow

truncation. The design is scalable in that the same results are

achieved with the same sparse gains in the nodes independent

of the size of the system.

A system with only periodically placed sensors is also

investigated. The example shows that close to optimal filter

performance can be achieved through narrow spatial trunca-

tion even though the optimal filter gains do not fall off rapidly

with distance in this case; indeed truncating the filter gains

for the system with full sensing which do fall off rapidly

works just as well.

A number of points deserve greater clarification: How are

the observability problems caused by missing sensors best

quantified? How should the Kalman Filter (in-)sensitivity to

perturbation in filter gains be described? How is uncertainty

in the process model best handled?

With the properties exhibited here in mind, some direc-

tions for further investigation are indicated:

• What are the implications of a non-diagonal measure-

ment structure on the modal state estimation problem?

• How can we generalize to less regular systems?

• Is there a distributed design procedure for approximate

distributed Kalman Filters of this kind?
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