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Abstract— This paper addresses the peculiar treatment
that time receives when studying control systems. For exam-
ple, why is the ability to perfectly observe time assumed im-
plicitly in virtually all control formulations? What happens
if this implicit assumption is violated? It turns out that some
basic control results fall apart when time cannot be perfectly
measured. To make this explicit, we introduce information
space concepts that permit imperfect time information to be
considered in the same way as imperfect state information.
We then argue that classical open-loop control should be
reconsidered as perfecttime-feedback control. Following this,
we introduce a notion of strongly open-loop control, which
does not require perfect time observations. We provide some
examples of these concepts and argue that many fascinating
directions for future controls research emerge.

I. I NTRODUCTION

“Until the mid 1750s, navigation at sea was an un-
solved problem due to the difficulty in calculating longi-
tudinal position. Navigators could determine their latitude
by measuring the sun’s angle at noon. However, to find
their longitude, they needed a portable time standard that
would work aboard a ship. The purpose of a chronometer
is to keep the time of a known fixed location, which can
then serve as a reference point for determining the ship’s
position. Conceptually, by comparing local high noon to
the chronometer’s time, a navigator could use the time
difference to determine the ship’s present longitude” [7].

As known to anyone who has ever been exposed to a
course on control theory, a sharp distinction is made be-
tween closed-loop and open-loop control. This distinction
is drawn between control laws that involve references to
the state of the system and control laws that are specified
only in terms of time. The idea is that time is somehow
is readily available to the controller, independent of the
state of the system. Of course, time imperfections are
often addressed in discrete-time or delayed-measurement
models; however, a rich variety of other time uncertainty
models can be imagined, rather than just quantizations or
delay.

This paper came about because the special treatment of
time seemed to the authors to be somewhat arbitrary in the
context of robotics, particularly when considering that all

information comes from sensors. As a simple example,
consider the two systems:̇x = f(x, u), u = g(t) and
ẋ = f(x), ż = 1, u = g(z). Here one typically asserts
that the first case is an open-loop controller and the second
is closed-loop. However, (modulo initial conditions) they
are mathematically the same control law and both seem
to involve some kind of feedback.

The fundamental issues concerning time are not limited
to simple mathematical technicalities. For example, in
robotics, a number of sensors, including compasses, gy-
roscopes, accelerometers, wheel-encoders, GPS antennas,
IR, sonar and laser-range finders, and cameras (just to
name a few) are employed to estimate the internal state
of the robot as well as characterize the environment in
which it is deployed. However, clocks are also routinely
employed, not just for synchronizing the executions, but
also, for example, for smoothing the pose estimates or for
establishing distances through ultrasonic range sensors.
As such, it appeared that clocks should be treated as any
other sensor because they provide measurements of an
important quantity for specifying control laws (whether
implicitly or explicitly).

Rather than establish a collection of new results, this
paper emphasizes the reconsideration of time and its role
in control theory. This may lead to exciting new avenues
for research, ultimately providing a better understanding
of how time information affects control. Furthermore,
systems can be designed that utilize minimal amounts
of time information, thereby achieving greater robustness
and affordability.

Of course, the study of time within a controls con-
text is certainly not new. For example, in [1] it was
pointed out that a temporally driven sampling strategy
(so-called Riemann sampling) could be advantageously
replaced (in some contexts) by a state-driven strategy
(Lebesgue sampling). Similarly, by allowing for time
to be controlled, dynamic-time warping has become a
standard controls tool, for example for speed regulation
in robotics [6], [9], [14]. Moreover, the view that open-
loop control is potentially problematic is also not new, as
illustrated by the fact that jitter in the clock is known to



cause instabilities. As another example, going from open-
loop control signals to corresponding closed-loop control
signals is a research topic of continued interest in optimal
control [4], [5]. Another relevant topic is asynchronous
protocols for distributed systems (e.g., [8]). All of these
research areas, although disjoint in explicit focus, share
the feature of treating time in a non-standard manner.

To formulate time uncertainty in a general way, we
extend standard machinery that was developed mainly for
state uncertainty:information spaces. The earliest ideas
are due to Kuhn in the context of sequential games
[10], and were found to be a convenient, unified way
to express state uncertainty in dynamic game theory
[2], stochastic control [3], [11], and planning algorithms
[12]. Our approach is to treat time as “just another state
variable” and consequently consider observations of time,
parameterized by an internal, continuous index set.

II. I LLUSTRATIVE EXAMPLES

A. Brittle Time Sensitivity in Linear Systems

As a first example of the reliance on perfect time
measurements, consider the standard, linear time-invariant
system

ẋ(t) = Ax(t) +Bu(t),

in which the uncontrolled system is unstable, and(A,B)
is a completely controllable pair. Using a static feedback
law for stabilizing this systemu = −Kx, yields ẋ(t) =
(A−BK)x(t), or x(t) = e(A−BK)tx0, with x(0) = x0.
Now, in the absence of uncertainty we can of course
implement this exact control law with an “open-loop”
controller

u(t) = −Ke(A−BK)tx0.

We now assume that time has to be measured, and
instead oft we observeh(t), in which h is an output
mapping. We obtain the measurement error|h(t) − t|,
which is in fact due to a bias in the clock (in that it goes
too quickly or too slowly) while it never causes “time” to
go backwards; i.e., we assume thatdh(t)/dt > 0.

Hence, the open-loop controller takes on the form
u(t) = −Ke(A−BK)h(t)x0, and subsequently

ẋ(t) = Ax(t) −BKe(A−BK)h(t)x0.

Now, consider the system

˙̃x(t) = dh(t)/dt(A−BK)x̃(t), x̃(t) = x0.

This system is globally, asymptotically stable as long as
dh(t)/dt > 0, which was assumed. The solution is

x̃(t) = e
R

t

0
(dh(s)dt)ds(A−BK)x0 = e(A−BK)(h(t)−h(0))x0.

Under the additional assumption that the initial time
measurement is correct, i.e. thath(0) = 0, we thus have
that u(t) = −Kx̃(t), which in turn implies that

ẋ(t) = Ax(t) −BKx̃(t)
˙̃x(t) = dh(t)/dt(A−BK)x̃(t).

The first of these equations is an unstable linear system,
driven by an input that will decay to zero becausex̃ will
tend to zero, and, as a result, thex-system is unstable.
The only situation in which this will not happen is when
x(t) = x̃(t), ∀t, which directly implies thatdp/dt =
1, i.e., h(t) is equal tot + c for an arbitrary constant.
However, sincẽx(0) = x(0) = x0 this means thatc = 0.
Hence, the only way in which the “open-loop” system
will remain stable is with perfect time measurements. As
an example, consider the situation depicted in Figure 1,
where

A =
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K =
[

3.5 3.2 3.8
]

.

The system starts atx(0) = (0.1, 0.1, 0.1)T . For a
measurement model of the formh(t) = t + f(t) for
some functionf , the upper plot shows the case when
f(t) = 0, and the lower shows a small disturbance of
f(t) = 0.01 sin(t).
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Fig. 1. Depicted is the evolution of a third order system. The upper
plot corresponds perfect time measurements and the lower plot shows
the evolution when the time disturbance ish(t) = t + 0.01 sin(t).
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B. A Nonlinear System with Time Robustness

In contrast to the previous time-sensitive system, con-
sider the nonlinear system defined overX = R,

ẋ =
5

∏

i=1

(ai − x),

with real constantsa1 < a2 < . . . < a5. This system
has three stable equilibrium points{a1, a3, a5} and two
unstable{a2, a4}.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

x

Trajectories with varying initial conditions

zone 1

zone 2

zone 3

Fig. 2.

We now assume that the controller consists of an
impulse of heighth. The control task is to apply this
impulse at a distinct timeτ ; i.e.,

x(τ+) = x(τ−) + h.

Under the assumption thatx(0) is significantly smaller
than a1, this controller will move the system from the
domain of attraction for the first stable equilibrium point
(Zone 1 in Figure 2) to Zone 2 given certain conditions on
τ andh. However, if the controller acts too quickly, this
will not happen. On the other hand, if it acts too slowly,
it may move the system to Zone 3 instead of Zone 2. As
such, this system is robust to incorrectly measured time
up to some level, after which the qualitative behavior of
the system changes significantly.

This is shown in Figure 3, with

a1 = 0, a2 = 0.5, a3 = 1, a4 = 1.5, a5 = 2
x(0) = −2, h = 1.7.

In the figure, three different scenarios are depicted, where
τ = 0.005 results in a system that asymptotically ap-
proachesa1, τ = 0.2 results inx→ a3, andτ = 1.1 gives
x → a5. Also depicted (with dotted lines as boundaries)

are the regions where qualitatively different behaviors are
obtained.
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The conclusion to be drawn from this example is that,
as opposed to the previous example, the controller is
robust to small errors associated with the time sensor.
However, the controller is not robust to arbitrarily large
time measurement errors. This leads to the next example.

C. Strongly Open-Loop Stabilization

Consider the system

ẋ = (1 − u)A1x+ uA2x,

in which x ∈ R
n, u ∈ R. Furthermore, assume thatẋ =

A1x is unstable anḋx = A2x is asymptotically stable.
For any fixedτ , the control law

u(t) =

{

0 if t < τ
1 if t ≥ τ

renders the controlled system asymptotically stable. This
is indeed true because the controller will switch from the
unstable to the stable subsystem at timeτ . Moreover, it
does not matter when this switch occurs, as long as it does
occur, which means that time measurements are really not
needed to implement the controller. This is an example of
stabilization using astrongly open-loopcontroller, which
is defined precisely in Section V.

These simple examples illustrate interesting phenom-
ena that should be carefully studied in increasing degrees
of generality. We hope that this would lead to a greater
understanding of control systems in general and the
particular role that time should play. To begin this quest
to improve our understanding, we introduce definitions
in the remainder of the paper that permit great modeling
flexibility in allowing time measurement uncertainty.
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III. B ASIC DEFINITIONS

The definitions in this section build on standard control
terminology and information space concepts that have pre-
viously been included into control formulations (e.g., [2]).
Some concepts and terminology are also borrowed from
robotics, particularly in the treatment of planning under
sensing uncertainty ([12], Chapter 11). Readers familiar
with various treatments of uncertainties in control systems
will observe similarities with input-output representations,
behavioral systems theory [15], quantized control systems
[13], and imperfect state information in stochastic control
[3], [11]. Throughout the coming presentation, the control
systems are particularly inspired by robotics applications.

A. Inputs, Observations, and History

Let U and Y be the input spaceand observation
space, respectively; i.e., the spaces in which the inputs
and outputs take on values. It is now conceivable that
the controllers and sensors are evolving asynchronously,
or in other ways are driven by device-specific counters,
which may be continuous. As such, we define index sets
P and S, which parameterize the inputs and outputs,
respectively. If we letP = S = N, then we would
obtain a classical discrete-time control model. However,
we prefer to letP and S both be closed intervals of
R. For convenience, supposeP = S = [0,∞). This
intuitively corresponds to having a continuous index set
that starts at zero and increases monotonically during
execution. Letũp denote a function,̃up : [0, p] → U ,
called the input history, and let ỹs denote a function,
ỹs : [0, s] → Y , called theobservation history. These
histories are considered as partial functions onP andS,
respectively, because[0, p] ⊂ P and [0, s] ⊂ S.

The histories naturally “grow” during execution. For
example, suppose during execution,ỹs is obtained, fol-
lowed byỹs′ at some later stage. We then have thats′ > s,
together with the requirement is thatỹs′(s′′) = ỹs(s

′′) for
all s′′ ∈ S.

Now, given input and output histories associated with
a particular evolution of a control system, we letη =
(ũp, ỹs) denote thehistory I-state(“I-state” is short for
“information state”). Moreover, we let thehistory I-space
be the set of all possible I-states,η, which includes any
permissibleũp and ỹs for any p, s ∈ [0,∞).

B. Interacting with a State Space

Now consider ann-dimensional state spaceX. Let x̃
denote astate trajectory, which is a time-parameterized
function into X. We now need to define a transition
function, and for this we let̃wt : [0, t] → U be a time-
parameterizedcontrol function. Let Φ denote thestate
transition function:

x̃(t′ + t) = Φ(x̃(t′), w̃t).

For example,Φ could be defined in the usual way ifX is a
differentiable manifold with an associatedcontrol system
ẋ = f(x, u), in which x ∈ X and u ∈ U . In this case,
the state transition functionΦ becomes:

x̃(t′ + t) = Φ(x̃(t′), w̃t) = x̃(t′) +

∫ t

t′
f(x̃(τ), w̃t(τ))dτ,

assuming appropriate integrability conditions.

C. The State-Time Space

However, even though the way control signals interact
with state variables above is not only well-known and
supposedly unproblematic, we need to incorporate time
more explicitly to understand the role of time in a more
direct manner. For this, consider incorporating time into
the state space definition to form thestate-time space. Let
T ⊆ R be the maximaltime intervalfor which the system
is defined. LetZ = X × T denote thestate-time space.
(Elements ofZ will be denoted asz or (x, t).)

We are comfortable with time-parameterized paths
throughX. However, what is not entirely clear is what is
the best way to parameterize paths throughZ? Consider
a pathτ : R → Z, in which R is a closed interval. For
example, imagine rigid bodies moving inR3 according to
the laws of mechanics. To show the motions of the bodies,
we could parameterizeτ in many ways, much in the
same way as varying parameters in a computer-generated
animation. We could vary the speed, play parts of it
backward, and so on. Since there are many possibilities,
we would like to chose one that is most convenient for
the coming formulations. Returning to the analogy of an
animation, we assume that animations are played forward
in “real time”. Rather than allow any arbitrary pathτ ,
this means that we require thatdτ/dr = 1 (for the case
in which Z is a differentiable manifold), in whichr ∈ R
is the path parameter.

Since time progresses forward monotonically, any path
τ could be reparameterized usingt, even thought is
a coordinate ofZ. This would be convenient, but note
that it is somewhat abusive becauset is serving both
as a coordinate ofZ and the parameter of a path,τ .
Nevertheless, we assume that all paths throughZ are
parameterized by timet and are referred to as(state-time)
trajectories. A trajectory is denoted bỹz and refers to a
mapping z̃ : [t1, t2] → Z in which t1 and t2 are the
starting and ending times, respectively.

If we let the dimension ofX be n, we usezn+1 to
denote the last component ofz, i.e., the time component.
Under the observation thaṫzn+1 = 1, it is obviously
straightforward to convert a systeṁx = f(x, u) into
ż = f ′(z, u) by simple extension. In general,Φ can be
extended in the straightforward way to obtainΦ′.
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A trajectory z̃ is called valid if there exists some
control functionw̃ such thatż = f ′(z, u) is satisfied for
all times alongz̃. Let Z̃ denote the space of all valid
trajectories.

D. Initial Conditions on the State-Time Space

Once the transition has been made from viewing time
as a universally available quantity to something that must
be measured and is in fact part of the state-time variable,
initial conditions become important. In fact, we would
like to express various initial conditions onZ; therefore,
the history I-state will be expanded to include the initial
conditions.

Let Z0 ⊆ Z denote a giveninitial condition, which
indicates the set of possible initial state-times. The ex-
panded history I-state is defined asη = (Z0, ũp, ỹs).

Three important special cases of initial conditions are:
1) Known initial space-time: Z0 is a singleton,

{(x0, t0)}, which means that the initial time ist0
and the initial state isx0. Thus, (6) considers only
trajectories for which̃z(t0) = (x0, t0).

2) Known initial time: Suppose it is known thatt0 is
the starting time. In this case,

Z0 = {(x, t) ∈ Z | t = t0}. (1)

3) Known initial state: Suppose it is known thatx0

is the starting state. In this case,

Z0 = {(x, t) ∈ Z | x = x0}. (2)

Whenever the initial time is given, we will typically have
t0 = 0.

E. Sensor Mappings

A sensor is defined in terms of a mapping fromZ
(or trajectories onZ) into Y , the observation space. A
sensor may be either: 1)instantaneous, which means that
the observation depends only on the current state-time,
2) history-based, which means that the observation may
depend on any portion of the entire state-time trajectory.

An instantaneoussensor mappingis defined ash :
Z → Y , for which we writey = h(z) or y = h(x, t).
For a history-based sensor mapping, we haveh : Z̃ → Y ,
and an observation is given asy = h(z̃).

Several simple and important sensors are now defined.
1) (Perfect Information) A perfect state-time sensor

is defined as any injective mappingh : Z → Y
because(x, t) can be recovered from any observed
y. The simplest case, of course, isY = Z andy =
h(z) = z.

2) (State-Only) A perfect state sensorcan be defined,
for example, asy = h(x, t) = x. In this case, we
may know the current state but remain uncertain
about the particular time.

3) (Clock) A perfect time sensoror (perfect)clock is
defined asy = h(x, t) = t.

4) (Chronometer) An important history-based sensor
is theperfect time odometeror (perfect)chronome-
ter, which yields the total time elapsed for a state-
time trajectory. Letz̃t,t′ denote a valid space-time
trajectory with endpointst and t′, and t < t′. The
chronometer is defined ash(z̃t,t′) = t′ − t.

F. Disturbances

In this section, we briefly illustrate how to incorporate
disturbances intoΦ and h; however, to simplify the
presentation, we will not include such disturbances in the
subsequent sections.

In the case of smooth manifolds,f can be extended to
obtainẋ = f(x, u, θ) in which θ is selected fromΘ, a set
of possible disturbances (or nature inputs). (Disturbances
in the time direction seem absurd and will therefore not
be considered.) In general, the disturbanceθ ∈ Θ can be
incorporated intoΦ to obtainx̃(t′ + t) = Φ(x̃(t′), w̃t, θ).

Another disturbance parameter can be defined, to in-
terfere with sensors. For example,y = h(z, ψ), in which
ψ ∈ Ψ and Ψ is an observation disturbance space.
Imperfect versions of previously defined sensors can be
made. For example, animperfect clock is defined as
y = h(x, t, ψ) = t + ψ andΨ = [−ǫ, ǫ], in which ǫ > 0
represents the maximum error in the time measurement.

IV. N ONDETERMINISTIC I-SPACES

In this section, we introduce aderivedI-space, which
means that history I-states are mapped into a new I-space
that provides some interpretation or aggregation of the
histories. One possibility is to mapη to a posterior pdf
p(z|η), which would lead to probabilistic I-states that are
familiar in stochastic control. Although there are many
possibilities, we exclusively consider a nondeterministic
interpretation of the histories: The smallest subset ofZ
that is consistent with a history I-stateη. A set-valued
information mapping is thus defined, and is denoted as
Z(η) ⊆ Z. The target of this mapping is anondetermin-
istic I-space, Indz = pow(Z).1

A. Relating internal parameters to time

The first step is to define the class of mappings that
relate the index setsP andS to time. It is assumed that
the particular mapping is unknown; otherwise, the precise
time could be reconstructed if the mapping is injective.
Instead we defineΩ as the set of possible mappings from
T to P . Similarly, letΛ denote a set of possible mappings

1In most contexts, most elements ofpow(Z) are unnecessary; how-
ever, it is simpler to definepow(Z) than to worry about the precise
reachable subset ofpow(Z) (which is an interesting research problem
in itself!).

5



from T to S. Although the particular mapping is not
given, we assume that the setsΩ and Λ are specified in
advance.

Many reasonable definitions are possible forΩ andΛ.
Consider definingΩ (the same possibilities exist forΛ).
One of the weakest sensible definitions is thatΩ contains
any mappingω : T → P for which ω(t) monotonically
increases. This at least ensures that a higher index implies
later time.

Another possibility is to restrictΩ to differentiable
functions and require bounded derivatives and bounded
initial error. For example, eachω ∈ Ω must satisfy
|ω(0)| ≤ c0 and|dω/dt| ≤ c1 for some positive constants
c0 and c1. This restricts the possible times to an interval
that widens as time increases. Without assuming differen-
tiability, a similar function space could be obtained using
Lipschitz constants instead of bounded derivatives.

B. The Sensorless Case

We now define the mapping from history I-states into
the nondeterministic I-space,Indz. Assume thatΩ andΛ
contain only invertible functions (otherwise, the inverses
below can be replaced by preimages to obtain slightly
more complicated definitions). First consider the sensor-
less case, in whichη = (Z0, ũp). The nondeterministic
I-state (smallest consistent subset ofZ) given η is

Z(η) =
{

(x, t) ∈ Z | ∃z̃ ∈ Z̃ and∃ω ∈ Ω such that

z̃(t1) ∈ Z0 and∀t ∈ [t1, t1 + ω−1(p)),

z̃(t1 + t) = Φ′(z̃(t1), ũp(ω(t)))
}

,
(3)

in which t1 refers to the starting time of̃z.

C. The Inputless Case

Now consider the case in whichη = (Z0, ỹs); z̃ is thus
completely predictable from any initialz ∈ Z. We have

Z(η) =
{

(x, t) ∈ Z | ∃z̃ ∈ Z̃ and∃λ ∈ Λ such that

z̃(t1) ∈ Z0 and∀t ∈ [t1, t1 + λ−1(s)],

h(z̃(t)) = ỹs(λ(t))
}

.
(4)

D. Combining Sensors and Inputs

Now consider the case in which an observation history
ỹs is also given, yieldingZ(η) = Z(Z0, ũp, ỹs). The non-
deterministic I-state in this case combines the constraints

from both (3) and (4), to obtain:

Z(η) =
{

(x, t) ∈ Z | ∃z̃ ∈ Z̃,∃ω ∈ Ω, and∃λ ∈ Λ

such thatz̃(t1) ∈ Z0 and

∀t ∈ [t1, t1 + ω−1(p)),

z̃(t1 + t) = Φ′(z̃(t1), ũ(ω(t))) and

∀t ∈ [t1, t1 + λ−1(s)], h(z̃(t)) = y(λ(t))
}

.
(5)

V. DEFINING CONTROL LAWS

A wide variety of control laws may be defined in terms
of information feedback. We could define a control law as
a mapping from the history I-space into the input space
U , but this would be difficult to manage. Therefore, we
consider control laws that map from a derived I-space
into U . In particular, we consider in this section control
laws of the formγ : I → U , in which I is a particular
derived I-space (a derived I-space means that the space
of history I-states is mapped into a new space,I; see
[12] for examples of suchinformation mappings). Many
possibilities exist; for example,I may beZ, X, T , P , or
Indz.

A. Strongly open-loop control

Consider sensorless information states of the formη =
ũp (the initial state-time could be anyz ∈ Z). Let the
derived I-spaceI = P be defined by the I-map̃up 7→ p.
A strongly open-loopcontrol law is defined asγ : P → U .

The trajectory obtained by applying̃up could be any
z̃ for which there exists anω ∈ Ω such thatz̃ : [t1, t1 +
ω−1(p)] → Z and

z̃(t1 + t) = z̃(t1) +

∫ t1+t

t1

f ′(x̃(t′), ũ(ω(t′)))dt′ (6)

for all t ∈ [0, ω−1(p)].
Now suppose there is an initial conditionZ0 ⊆ Z

so thatη = (Z0, ũp). In this case (6) is constrained to
consider only thosẽz ∈ Z for which z̃(t1) ∈ Z0. The
last example of Section II represents strongly open-loop
stabilization, even whenZ0 = Z andΩ contains all time-
monotonic functions.

B. Perfect time-feedback control

To obtain perfect time-feedback control(otherwise
classically known as “open loop” control), consider the
derived I-space,I = T , in which the exact timet can be
derived fromη. In this case, the I-map is(Z0, ũp, ỹs) 7→ t.
The most common case occurs with a perfect time sensor,
as defined in Section III-E. The control law is specified
asγ : T → U ). The most common special case is when
Z0 yields a known initial space-time(x0, 0).
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C. Imperfect time-feedback control

Now consider a derived I-spaceI = pow(T ), in which
a derived I-state is interpreted as the smallest set of times
that are consistent withη. A control law is expressed
as γ : pow(T ) → U (we could restrict the domain to
consider only reasonably behaved subsets ofT , such as
closed intervals). In terms of information requirements,
this control law lies somewhere in between strongly open-
loop control and perfect time-feedback control.

D. Other control laws

Many other laws may be considered. If it is possible
to reconstructz from η, thenperfect state-time feedback
is possible, defined asγ : Z → U . In this caseZ is
considered as a derived I-space,I = Z. Note thatperfect
state feedback, γ : X → U may also be considered, in
which case the precise times are unnecessary (a known
benefit of state-feedback control). Finally, using (5), we
can define feedback on the nondeterministic I-space,
yielding γ : Indz → U . This means that subsets ofZ
are mapped intoU .

VI. OPEN QUESTIONS AND ISSUES

Using information space concepts, we have proposed
new ways to formulate uncertainty in time measurements.
We called classical open-loop control “perfect time feed-
back” and introduced the notion of strongly open-loop
control, which is robust with respect to massive time
distortions. We provided several examples that illustrate
the associated issues.

We are fascinated by the numerous exciting questions
and issues raised by the examples and formulations de-
veloped in this paper, which is intended to open doors
to new problems, rather than close them with particular
results. Here are some points worth considering:

1) What classes of systems support strongly open-
loop stabilization? Stability might be a property
too strong to demand of an open-loop controller
with imperfect time measurements. Instead, other
interesting properties such as state containment or
invariance should also be studied.

2) Can local (small time perturbations), in contrast to
global strongly open-loop control, be characterized
in a meaningful manner? Is there a notion of ro-
bustness to time perturbations that can be used for
designing control laws for robotic systems that are
locally immune to time perturbations?

3) Is there a meaningful notion of time observers? In
other words, can we estimatet from the history I-
stateη = (Z0, ũp, ỹs)? Also, how would an open-
loop controller interact with the plant based on the
time estimate?

4) What are the relationships between history-based
sensors and histories of observations obtained from
instantaneous sensors? For example, by measuring
angular velocity and having a perfect chronometer,
we can simulate an angular odometer. If the initial
angle is given, then we can furthermore simulate
a compass. Furthermore, a variety is imperfect
versions can be made by replacing the perfect
chronometer with a weaker sensor.

5) What other ways can we relateS, P , and T? So
far, we relatedS and P to T via two mappings.
We may instead want, for example, to relateS to
P , and thenP to T . We might even want to consider
mappings that are not invertible.

6) Can useful control laws be defined overIndz? These
would choose actions based on particular subsets of
X × T .

7) Can control laws that are robust with respect to
severe time uncertainty lead to improved approaches
to distributed, asynchronous control?
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