Efficiency Bounds for Sequential Resource Allocation Auctions

Junjik Ba¢, Eyal Beigmai, Randall Berry, Michael L. Honig, and Rakesh Vohfa
*EECS Department
Northwestern University, Evanston, IL 60202
junjik@northwestern.edurberry, mi @ece.northwestern.edu
T CMS-EMS, Kellogg School of Management
Northwestern University, Evanston, IL 60208
{e-beigman, r-vohrg@northwestern.edu

Abstract—Market-based mechanisms such as auctions havethere are a number of reasons why one may want to use a
been widely considered for various network resource allocation sequential auction. For example, sequential auctions impose
problems. We consider such a mechanism motivated by dynamic much less of a computational burden on the manager than in
spectrum sharing applications. In this model multiple homo- . . .
geneous units of a given resource are to be allocated to twoMaNY gther auctions. Sequential auctions also accommodate
agents. We study asequential second price auctidar allocating SCenarios where agents can enter and leave the market at
these resource units. It is well known that such auctions can arbitrary times, and allow the manager to auction off pieces
have inefficient equilibria. For the case of two bidders, we show gof the spectrum incrementally.
that the value of the allocation obtained in the unique subgame The study of the sequential auctions is not new; see for

perfect equilibrium is at least 1 — e~ of the value of the -
efficient allocation. Furthermore, we show that this bound is example [7], [8], [9], and [10]. The rise of eBay has renewed

asymptotically tight as the number of goods increases. interest in such auctions as stylized models of the eBay market
place (see for example [11], [12]). In these papers valuations
[. INTRODUCTION are assumed to be private but bidders have unit demand.

Market-based mechanisms such as auctions provide a nduQUr case an agent is interested in consuming more than
ral approach for allocating any constrained resource amof@e unit. This makes the private information of agents multi-
various agents. Such approaches have been studied fofirgensional. To allow for tractability, we will assume that
variety of different resource allocation problems that arigéluations are common knowledge.
in communication systems such as allocating capacity on at iS well known that forn = 1 the second price auction
communication link, e.g. [1], [2] or dynamically aIIocatingiS efficient, namely, the unit is allocated to the agent who
wireless spectrum usage, e.g. [3], [4]. Our work here is motias the highest valuation. However, fer > 1, it might
vated by the second application. Specifically, we are motivatBagve inefficient equilibria [10]. In other words, considering the
by the case where apectrum manageallocates spectrum sequential second price auction as an extensive form game, the
to users on a secondary market (These types of second@fgcation of goods obtained in a subgame perfect equilibria
markets for spectrum allocation are currently being consider@fithis game may not be the allocation which maximizes the
by the FCC [5], [6]). For example, spectrum sharing could gétal utility of the agents. In the spirit of [2], [13] we attempt
achieved by allowing each user to have exclusive use ofigybound this loss in efficiency. Our main results show that the
portion of the available bandwidth. Though motivated by thigorst-case efficiency is always at ledst- e~ of the value
application, the problem we consider applies in a much mobé the efficient allocation. This bound is asymptotically tight,
general setting. asn — oo. In addition, our examples illustrate that the worst-

We consider the case where the available resource is divid&@$e efficiency occurs when the smallest marginal valuation of
into » homogeneous goods and each good is to be allocaftf agent is larger than the largest marginal valuation of the
to one of two competing agents. The agents are endow@#er agent.
with quasi-linear utilities that satisfy diminishing marginal
valuations. The mechanism we consider seguential second .
price auction In this mechanism, the goods are allocated e consider the case of 2 agents arliomogeneous goods.
sequentially in a sequence of rounds. In each round, then this setting, the sequentlal second price auction can be
two agents bid for the current unit. The unit is allocated t&'0deled as an extensive form game with a balanced binary
the highest bidder at the price of the second highest bid. TIi@Me tree. Each decision node on the game tree designates
auction is repeated until all units are allocated. an m'germedlate state of the world, where a certain quantity

For example, in a spectrum sharing application each goBH units are allocated to agent 1 and 2. Since all of the

could represent a fixed unit of bandwidth. In such a settingds are homogeneous, all the decision nodes with the same
aflocation can be unified and the game tree can be replaced
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[0,...,n] X [0,...,n]|sp +tx = kfor k = 0,1,...,n} (see round is the terminal round. In fact, if there are no restrictions
Fig. 1). A node(sg,tr) € V represents the outcome of theon the beliefs that can be attached with each agent, virtually
k-th round of the auction, in which agent 1 has been allocatady bidding strategy could be rationalized.
sk units and agent 2 has been allocatgdinits. The directed A bidding strategy issophisticatedif it maximizes an
edge from a certain node indicates who wins the current uaigent’s payoff over final or expected final outcomes. The
in the sequential auction. I§; + ¢, = k < n, each node ability to make inferences on the final outcome requires
(sk,tr) branches to either nodes, + 1,tx) or (s, tx + 1) the agent be sufficiently informed about the preferences and
depending on the bids of both agents. The auction beginssttategies of the other agent. We focus on sophisticated bidding
the root nodg(sg, tg) = (0,0). in a setting of full information, but a similar analysis could
Let u{ denote the marginal value of agentfor the I-th be made for the case where the agent is Bayesian and has
good she receives. We assume both agents have decreaisiftgmation about the distribution of the other agent’s marginal
marginal valuek i.e. ui > ... > «’. Agent I's utility for values.
allocation (s, t,) is thereforezjf;1 u]1 and that of agen? In the full information case each agent knows the number
is 37", u?. Let H be the set of observable bidding historiesf units being sold, the bidding history of the other agent (and,
A strategyo; : V x H — R* is a function mapping statesOf course, his own bidding history), and the valuations of the
of the allocation and observable histories to bids. The strategiier agent. In particular both agents know when the last unit
set of an agent is the set of all such functions. The outcortfebeing sold. The last round of the auction is identical to
path of a pair of strategieés,} and {o»} is a sequence of @ standard second price auction for thih good (the value

verticesd = {(s0,%0), ..., (5n,t,)} such thats,,; = s, + 1 for this good will of course depend on the outcomes of the
andt;,; = t;, if and only if previous rounds). Hence it is a dominant strategy for both
agents to bid the marginal value on the last round. Since the

o1((sk,tk), T'e) > o2((sk, te), i), (1) marginal values are common knowledge, both agents know

beforehand what are the allocation and payments on the last
round and therefore their terminal payoffs. Thus, we can think
o1((sk, tx), Tk) < oa((sk, k), k), (2) of the penultimate round as an auction over the right to
participate in one of two auctions in the last round. Since the
payoffs of each one of these auctions is common knowledge,
we can think of the penultimate round as a second price
auction with valuations equal to these payoffs. It is therefore
a dominant strategy in the penultimate round to bid the payoff
P15k, tr) = 02 ((sk, 1), ), A3) K)oumndparticipating in one of the two possibilities of the last
if o1((sk,tk), k) > o2((sk,tk),T'x) and pi(sg,tx) = 0 We proceed in this way inductively until we reach the root.
otherwise. The total payment of agenalong the path” is  This shows that sophisticated bidding is the only strategy that
Pi(T) = 320 pilsn, tn). survives iterative elimination of weakly dominated strategies.
This does not rule out other equilibria and in fact there exist
other Nash equilibria with higher payoffs for both agents (if
There are two basic types of bidding strategies that afsr instance they conspire against the seller). However, these
of special interest. A bidding strategy myopicif it maxi- equilibria must rely on unreliable threats and commitments.
mizes payoff over intermediate outcomes. An extreme caseWé eliminate these equilibria from consideration by focusing
myopic bidding is bidding the marginal value of the currerén subgame perfect equilibriunThis discussion is summa-
unit on each round, which we cajireedybidding. Formally, rized in the following theorem.
o1((sk tr), Tk) = ul, 1, and oa((sk,tx),Tx) = ui ,, are  Theorem 1:In a sequential auction with fully informed
the greedy strategies. As we will see in Section II-B, greedygents, sophisticated bidding is the unique subgame perfect
bidding is no longer a dominant strategy when there is mogguilibrium after iterative elimination of weakly dominated
than one unit. This does not imply that this strategy cannot Bgategies.
rationalized. In contrast it can be associated with some sort ofwe define theequilibrium pathto be the outcome produced
maximizing behavior depending on the information structuighen both agents use a sophisticated bidding strategy and the
of the extensive form game. In the case where the agents gsguential allocatiorio be the allocation at the terminal node
uninformed about the number of units on the market or thg the equilibrium path.
valuation of the other agents, it may be rational to bid the
marginal value every round under the belief that the curreBt Example
Consider an example with = 3 goods. Suppose that agent
1In_ [4] and [14] we consider the case Where'one agqnt has increasifq/ames each unit &6. Agent 2 values the first unit &t.1,
marginal values and the other agent has decreasing marginal vaules. . .
2Here we assume ties go to agent 2; this is not essential, any other i€ Second a$3.1 and the third unit at zero. Thus, the agents
breaking rule can be used. have the following marginal valuesii = ui = ul = 6,

andsi4+1 = s andtyy1 =t + 1 if and only if

whereI' is the bidding history on the path for the firgt
units?

For a given pair of strategie&y,, 02 ), the payment of agent
1at (Sk,tk) is

A. Bidding Strategies



(6,0.5] n is defined by
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We refer tol — n(n) as theworst-case efficiency los©ur
main result is the following.
' Theorem 2:When both agents have decreasing marginal
P values, then for alh,
) . ®

n)>1—e'. (5)
[18,0] [124.1] [67.2] [0.7.2] )
In other words, the worst-case efficiency is bounded by
Fig. 1. An example grapi¥ for a sequential auction with = 3 goods, € ' fOr anyn. Moreover, it can be shown that the worst-case

The final nodes are labeled with the utility of the corresponding allocatioefficiency is decreasing with, i.e.,
assuming that the marginals ané = ul = ul = 6, u? = 4.1, u3 = 3.1

and u% = 0. The solid line shows the equilibrium path of the sequential 1
second price auction. The final payoffs for both agents along this path are n1) zn@2)z--znmn)=---=1- e’ (6)
[6,0.5].

and the bound of — e~! is asymptotically tight ass — oo.
The proof relies on the intuition that the worst-case effi-
ciency in the equilibrium outcome occurs in the case when

u? = 4.1, u3 = 3.1 andu? = 0. Figure 1 shows the graphﬂhe utilities have the following form.
e

G corresponding to this example. Here, branches to the | o o . )

(right) represent the case that agent 1 (2) wins a given roundDefinition 1: Agent 1’s utilities aredominantif uj > ... >

The nodes at the bottom of the graph are labeled with tie = Ui = --. = uj,. We will also refer to this as dominant

utility received by each agent at that outcome. For exampldility profile. Agent 1's utilities areflat dominantif uj =

the final allocation(s, t) = (3,0) is given by the leftmost final --- = Up 2 Ui > > g

node on the graph. At this allocation, the total utility for agerthe efficient allocation for a dominant utility profile is to

1is18 and that for agent 2 i8. Since Agent 1 values each unitassign all units to agent 1. In the sequential auction, however,

more than agent 2, this is the efficient allocation. However, agent 2 may receive one or more units, and this induces the

we will show next, this is not the sequential allocation. efficiency loss. In fact there are examples where agent 2 may
Let us examine sophisticated bidding for this exampleeceive up ton — 1 units.

Agent 1 should assume that agent 2 will bid in every o

round until she is allocated at least one unit. Therefore, agéht EQuilibrium Path Payments

1's payment for receiving aft goods will be4.1 x 3 = 12.3 We begin the proof of theorem 2 by determining the

giving a payoff of 18 — 12.3 = 5.7. On the other hand, if payment that agent 1 makes on each unit she receives in the

agent 1 does not bid on the first unit, she knows agents2quential allocation.

will bid 3.1 on the remaining two units. Therefore, by losing Lemma 3:Suppose that agent 1 has a dominant utility

the first round she can receive two units for a total paymepiofile. If (s,¢) is the sequential allocation, then> 1 and

of 6.2 resulting in a total payoff of5.8. If she takes this agent 1 pays:2__., for each unit she receives.

reasoning even further agent 1 can abstain from obtaining the Proof: We prove Lemma 3 by induction on the number

first two units. In this case agent 2's marginal value for thef units allocated. It is immediate for = 1 since the auction

last unit drops to 0 and agent 1 gets it for free with totas then a standard second price auction. kor 1 we can

payoff 6. Thus, in this setting agent 1's payoff is maximizedhink of the root as a decision node between two alternatives:

when she is allocated only one unit. It can be shown using1) Agent 1 receives a unit and both agents participate in

backward induction that this is indeed the equilibrium path  gn auction forn — 1 units.

for this example. This path is shown in bold in Fig. 1. The 2) Agent 2 receives a unit and both agents participate in

total utility of the sequential allocatiof1, 2) is6+7.2 = 13.2, an auction forn — 1 units.

which is less than the total utility df$ obtained at the efficient ¢ o oqyilibrium path allocates the first unit to agent 2, then

outcome. Therefore, the efficiency of the sequential aUCt'Oné@ent 1 pays nothing and the lemma follows by induction.

this example ?313'%]/15: = 0,'73'ﬁ|,n,the following section We g s pecause the equilibrium path for theunit auction

turn to bounding this loss in efficiency. contains the equilibrium path for thé: — 1)-unit auction
1. A B OUND ON THE EFEICIENCY (subgame) rooted at nod®,1), and the utilities associated

. . with the sugbame have a dominant profile (i=t,> ... >

For any decreasing marginal valués; }” , and {u?} g P (i€,2...2

e ; =0yl > a2 > > ud).
let (k, n— k) denote the efficient allocation, and 1@, n—k/) "t = 2= ="n

. i , ;
denOFe the seql_JentlaI allocatioh and & are functions C_)f the  sthe quantity1/n(n) is sometimes referred to as tieice on anarchy
marginal valuations). Theorst-case efficiency(n) for given see e.g. [13].



The next lemma bounds this for a given allocationjainits
of agent1

to agent 1.
¥ Lemma 5: The maximum efficiency loss for the sequential
) x[ aIIocat|on(J,n j) assuming a flat dominant utility profile is
u
: | Zk =j k+1 . .
I Proof: Let x1,...,x, be the solution to the following
I ; .
. | | \ linear program:
I B Marginal valuations .
O | g s max G(@1, . wn) =3y (k=) @k, (11)
1 T
u2 .o n n .
e et agontz — subject to: j- > _jak =1y xk, Vr#j, (12)
by Tk = uj —u2, (13)
Fig. 2. The extremal case: Agent 1 has a constant marginal valuations and Ti,...,Tn > 0. (14)

all the marginals of agent 2 are below the marginals of agent 1. The axis for
agent 1 is from left to right and the axis for agent 2 is from right to left. From the discussion preceding Lemma 5, the maximum effi-
ciency loss for the sequential allocatidf n — j), assuming

a flat dominant utility profile, is
If the first unit is allocated to agent 1, it suffices to show

that she pays:2_, .. Agent 2 bids the difference between max ¢(?’ - 7xn)2 _ (15)
participating in an(n—1)-unit sequential auction and receiving uluui>uz >0 n(Q o,y Tk + up)
an extra unit, and participating in the same auction without the

extra un|t This difference is therefore the value of the extra First note that the "”eag program only dependsugr- u.,,
and (15) is decreasing in;. Hence we can always increase
unit, u2_,_,, which is agent 1's payment.

Under the assumptions of Lemma 3, we can write the pa§(1he efficiency loss by setting;, = 0. In addition, because
off of agent 1 for any terminal allocatiofs, t), assuming that "' ObJeCt'Ve function only depends i1, s Tny WE ST
this is the sequential allocation. Furthermore, since agent - = 751 = 010 make the largest feasible region.
utility is dominate, she can essentially choose the termin 'th this choice ofz;, the only constraints in (12), which

allocation, which gives her the highest pay-off. Her choicg®" be.bmdmg, are.those for > j.' Itis easy te Seehanal
will be the sequential allocation. This is summarized in th timality, the remaining constraints are binding. Therefore,
following corollary. e constraints (12) and (13) can be written as the following

Corollary 4: Suppose agent 1 has a dominant utility profile!near system:

Then, the allocatior(s, t) is the sequential allocation if and

; Tj+Tjr1 +Tj42+...+Tp = Uy
only if j
s Tjp1 +Tjp2+ ...+ xp = m“%
Z(ug — Up_ s+1 > Z — Uy 7’+1) (7) j L
i=1 Tj42 +...4+x, = U
Jj+2
foranyr e {1,...,n}.
B. Bounds for Flat Dominant Valuations j
Next we assume a flat dominant utility profile (i.es = Tp = ﬁu%'
Lo=ul >l >0 > ud). Ifweleto,nfufllf
fori=1,...,n—1, andbLn = u! —u? (see Fig. 2), equat|on This set of equations gives the following unique feasible
(7) can be written as solution.
n n k= j ooan—1
k ]C 1 ) ) )
X mzr ) m ®) 7 = {f“ F—n. (16)
= k=r n
for anyr € {1,. n} Hence from (15), the maximum efficiency loss is
The difference in value between the efficient allocation anfl> i u
the sequential allocatio(s, ¢) is From Lemma 5, it follows that the worst-case efficiency of
n—s n the sequential auction given that agent 1 has a flat dominant
n-uj— (5 “up + Zui) = Z (k—s) k. (9) utility profile is
= k=s+1
Likewise, we have);_, z; = ui —uZ, and so the efficiency b _ L7 = 1 17
loss can be written as ' (n) = PO Fi nlekri (" an

E
||

J

Z:Z:Hq(]C —8) -y,

ne(Yp_y ok +u)’ 10 Asn— o0, it can be easily shown that(n) — 1 —e~ 1.




C. Proof of Theorem 2

We next show that the flat dominant utility profile achieves agentl
the worst-case efficiency, namely,(n) = n(n). This com- - :
pletes the proof of Theorem 2. We do so in two steps. First
we show that for any pair of marginals for agents 1 and 2 !
there exists a pair of marginals where agent 1's marginals are
dominant over those of agent 2 with a lower efficiency in
the outcome. Then we show that changing a dominant utility
profile to a flat dominant profile can only decrease efficiency.

Step 1 For any pair of decreasing marginal values >
...>ul andu? > ... > 2, letk andn — k be the efficient = e k1) -
allocation for agents 1 and 2. After auctionihg< n) units ' ' _
amongn units, the sequential game reaches a decision ndta% 3. Marginal valuations of two agents; () is the number of goods

. . . .. .that agent 1 (2) obtains along the sequential auctibim — k) is the optimal
where either agent 1 or agent 2 obtains his efficient allocati@fipcation and(s, ¢) is the sequential allocation. The shadowed region shows
(k for agent 1 orn — k for agent 2). Since one agent meetthe efficiency loss.
his efficient allocation aftet units are assigned, the marginal

values of the remaining units for this agent must be smaller
than that for the other agent. (See Fig. 3). Up to this decisionSim”aHy, we can construct the marginal values of each

node, there is no loss in efficiency. Any efficiency loss in th&gent to get the worst-case efficiency of the sequential auction

final allocation procures in the subgame tree rooted at thisy 411 »» >~ 2. Consider the following profile of marginal
decision node. Therefore, efficiency loss of the full game trgg,es ofn goods:u! = ... = ul = 1 for agent 1 and

n

cannot be larger than the efficiency Iqss of this subgame trge. — 1 — Ipepu=1- -t tepud=1-_4 +
This shows that for any pair of marginal values >, ..., >

agent2

2 J 2 2
. et a ez...us_=1—=+4¢e,_us_. ,=0,...,u7 =0 for
1 2 2 1 1 ) 'n—j +1 70 U n—j+1 ’ » Un
>, > LI . .
Un andfgl =oe 0 = Uns there e}i'StS 28 pait, éun.and agent 2, whergj € {1,...,n}. The sequential auction ends
us,...,us satisfyinguy > ... >u, >uy > ... > u; with a

ith the allocation(j, n — j) according to Corollary 4. If agent

n. . - ) w
lower efficiency in the outcome of the sequential auction. Thl.ereceivesj goods. her payoff after the auction endsjisl.

worst-case efficiency must always correspond to a dominq—%wever if agent 1 receives— 1 goods, her payoff becomes
utility profile. ' ’

. . (i—=1)-(1—u2_.)=j—(j+1) &,_;, which is smaller than
Step 2 Suppose that agent 1 has a dominant utilit I‘Ofl|g L M e e 2 -
e ue < pp> Wl > o2 g > 2). From Corollar y4p i J In a similar way, agent 1's payoff is smaller tharif she

' ﬁ 1 i o= tial 1”— “t: = tﬁ ' y e is allocatedr # j goods. Therefore, the sequential allocation
(s,2) is the sequential allocation, then is (4,n — 7). As theey’s approach zero, the efficiency of this

s r outcome approaches

DU — ) 2D — ) (28) | s

B S U SN (R
for anyr # s. If we replace the marginals of agent 1 with the n noo=n n—Fk+1
following flat dominant marginalsl = ... = 4} = ul, then a1

J
_ _ = 1-= —_— 20
so(@ -l ) zr @ -l (19) n il (20)
L o )

This implies that for the marginalg; = ... = &, > uy 2 Minimizing (20) overj € [1,...,n] gives the worst-case

S : oL L=
- = uy, the sequential equilibriunts, ?) satisfiess < s. ogciancy for this class of valuations, i.e.,
In other words, ‘flattening’ the dominant utilities can only

decrease efficiencyl

IV. CONSTRUCTIVEEXAMPLES FOR THEBOUND

Next we construct examples to show that the bound Rf

Theorem 2 is asvmptotically tight. First consider the seauent Ete that this is the same as the expression in (17) and hence
; IS asymprotica’ly 1'9 ' 1' ! 2 1 aUeNtRroliows that these allocations give the worst-case efficiency
auction forn = 2 goods. Ifu; = uz = 1 andu; =

2 = 0, then it can be shown that the se uentia? ;rllcg):::':\tiofr?r eachn.
s (L1) N Table | shows the marginal values of two agents that give

is (1,1). Instead of getting two goods with payaff— e, e lowest efficiencyy(n), which is also shown. As can be
agent 1 is better off by just getting one good with payoﬂ’éem(n) is decreasin ;/vith im. i.e '
1. The efficiency of this auction with the marginal values & g T

above approachelﬁ—% = 3 ase; — 0. It can be shown that n)y>n2)>--->nn)>--->1- 1. (22)
this is the worst-case efficiency among all possible profiles B I - e

of marginal values for two agents and two goods. Therefords n — oo, these quantities approach the bound asymptoti-

n(2) = 3. cally.

. n—1
. . _J 1
jt =arg 12?& 1 p kE,j T (21)



n Marginals j* n(n)
2 1,1 ; 1/2+¢1,0 1| 3/4
3 1,1,1 ; 2/3+¢e1,1/2+ 2,0 1 | 13/18
4 [ 1,1,1,1;1/2+¢1;1/3+¢2,0,0 | 2 | 17/24
00 1—%

TABLE |

MARGINAL VALUES AND CORRESPONDING WORSTASE EFFICIENCY

ACHIEVED BY THE SEQUENTIAL AUCTION FOR GIVENN.

V. CONCLUSION

We have considered a sequential second price auctien of

homogeneous goods for two agents with decreasing marginal
values. This was motivated by a dynamic spectrum sharing ap-

plication, where the goods could represent units of bandwidth.

Our results show that the worst-case efficiency of subgame

perfect equilibrium is non-increasing function in total number
of goodsn and is bounded by—e~!. For the spectrum sharing
application, this suggests that that a potential direction is to
study how finely to partition the available bandwidth if it is
to be sequentially auctioned. Our results are preliminary; in
particular we have only considered two agériad assumed

full

information. Relaxing either of these assumptions are

potential directions for future work.
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