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Abstract—Market-based mechanisms such as auctions have
been widely considered for various network resource allocation
problems. We consider such a mechanism motivated by dynamic
spectrum sharing applications. In this model multiple homo-
geneous units of a given resource are to be allocated to two
agents. We study asequential second price auctionfor allocating
these resource units. It is well known that such auctions can
have inefficient equilibria. For the case of two bidders, we show
that the value of the allocation obtained in the unique subgame
perfect equilibrium is at least 1 − e−1 of the value of the
efficient allocation. Furthermore, we show that this bound is
asymptotically tight as the number of goods increases.

I. I NTRODUCTION

Market-based mechanisms such as auctions provide a natu-
ral approach for allocating any constrained resource among
various agents. Such approaches have been studied for a
variety of different resource allocation problems that arise
in communication systems such as allocating capacity on a
communication link, e.g. [1], [2] or dynamically allocating
wireless spectrum usage, e.g. [3], [4]. Our work here is moti-
vated by the second application. Specifically, we are motivated
by the case where aspectrum managerallocates spectrum
to users on a secondary market (These types of secondary
markets for spectrum allocation are currently being considered
by the FCC [5], [6]). For example, spectrum sharing could be
achieved by allowing each user to have exclusive use of a
portion of the available bandwidth. Though motivated by this
application, the problem we consider applies in a much more
general setting.

We consider the case where the available resource is divided
into n homogeneous goods and each good is to be allocated
to one of two competing agents. The agents are endowed
with quasi-linear utilities that satisfy diminishing marginal
valuations. The mechanism we consider is asequential second
price auction. In this mechanism, the goods are allocated
sequentially in a sequence ofn rounds. In each round, the
two agents bid for the current unit. The unit is allocated to
the highest bidder at the price of the second highest bid. This
auction is repeated until alln units are allocated.

For example, in a spectrum sharing application each good
could represent a fixed unit of bandwidth. In such a setting,
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there are a number of reasons why one may want to use a
sequential auction. For example, sequential auctions impose
much less of a computational burden on the manager than in
many other auctions. Sequential auctions also accommodate
scenarios where agents can enter and leave the market at
arbitrary times, and allow the manager to auction off pieces
of the spectrum incrementally.

The study of the sequential auctions is not new; see for
example [7], [8], [9], and [10]. The rise of eBay has renewed
interest in such auctions as stylized models of the eBay market
place (see for example [11], [12]). In these papers valuations
are assumed to be private but bidders have unit demand.
In our case an agent is interested in consuming more than
one unit. This makes the private information of agents multi-
dimensional. To allow for tractability, we will assume that
valuations are common knowledge.

It is well known that forn = 1 the second price auction
is efficient, namely, the unit is allocated to the agent who
has the highest valuation. However, forn > 1, it might
have inefficient equilibria [10]. In other words, considering the
sequential second price auction as an extensive form game, the
allocation of goods obtained in a subgame perfect equilibria
of this game may not be the allocation which maximizes the
total utility of the agents. In the spirit of [2], [13] we attempt
to bound this loss in efficiency. Our main results show that the
worst-case efficiency is always at least1 − e−1 of the value
of the efficient allocation. This bound is asymptotically tight,
asn →∞. In addition, our examples illustrate that the worst-
case efficiency occurs when the smallest marginal valuation of
one agent is larger than the largest marginal valuation of the
other agent.

II. T HE MODEL

We consider the case of 2 agents andn homogeneous goods.
In this setting, the sequential second price auction can be
modeled as an extensive form game with a balanced binary
game tree. Each decision node on the game tree designates
an intermediate state of the world, where a certain quantity
of units are allocated to agent 1 and 2. Since all of then
goods are homogeneous, all the decision nodes with the same
allocation can be unified and the game tree can be replaced
with a directed graphG = (V,E), whereV = {(sk, tk) ∈



[0, . . . , n] × [0, . . . , n]|sk + tk = k for k = 0, 1, . . . , n} (see
Fig. 1). A node(sk, tk) ∈ V represents the outcome of the
k-th round of the auction, in which agent 1 has been allocated
sk units and agent 2 has been allocatedtk units. The directed
edge from a certain node indicates who wins the current unit
in the sequential auction. Ifsk + tk = k < n, each node
(sk, tk) branches to either node(sk + 1, tk) or (sk, tk + 1)
depending on the bids of both agents. The auction begins at
the root node(s0, t0) = (0, 0).

Let ui
l denote the marginal value of agenti for the l-th

good she receives. We assume both agents have decreasing
marginal values1, i.e. ui

1 ≥ . . . ≥ ui
n. Agent 1’s utility for

allocation(sn, tn) is therefore
∑sn

j=1 u1
j , and that of agent2

is
∑tn

j=1 u2
j . Let H be the set of observable bidding histories.

A strategyσi : V × H → R+ is a function mapping states
of the allocation and observable histories to bids. The strategy
set of an agent is the set of all such functions. The outcome
path of a pair of strategies{σ1} and {σ2} is a sequence of
verticesδ = {(s0, t0), . . . , (sn, tn)} such thatsk+1 = sk + 1
and tk+1 = tk if and only if

σ1((sk, tk),Γk) > σ2((sk, tk),Γk), (1)

andsk+1 = sk and tk+1 = tk + 1 if and only if

σ1((sk, tk),Γk) ≤ σ2((sk, tk),Γk), (2)

where Γk is the bidding history on the path for the firstk
units.2

For a given pair of strategies,(σ1, σ2), the payment of agent
1 at (sk, tk) is

p1(sk, tk) = σ2((sk, tk),Γk), (3)

if σ1((sk, tk),Γk) > σ2((sk, tk),Γk) and p1(sk, tk) = 0
otherwise. The total payment of agenti along the pathΓ is
Pi(Γ) =

∑n−1
k=0 pi(sk, tk).

A. Bidding Strategies

There are two basic types of bidding strategies that are
of special interest. A bidding strategy ismyopic if it maxi-
mizes payoff over intermediate outcomes. An extreme case of
myopic bidding is bidding the marginal value of the current
unit on each round, which we callgreedybidding. Formally,
σ1((sk, tk),Γk) = u1

sk+1 and σ2((sk, tk),Γk) = u2
tk+1 are

the greedy strategies. As we will see in Section II-B, greedy
bidding is no longer a dominant strategy when there is more
than one unit. This does not imply that this strategy cannot be
rationalized. In contrast it can be associated with some sort of
maximizing behavior depending on the information structure
of the extensive form game. In the case where the agents are
uninformed about the number of units on the market or the
valuation of the other agents, it may be rational to bid the
marginal value every round under the belief that the current

1In [4] and [14] we consider the case where one agent has increasing
marginal values and the other agent has decreasing marginal vaules.

2Here we assume ties go to agent 2; this is not essential, any other tie
breaking rule can be used.

round is the terminal round. In fact, if there are no restrictions
on the beliefs that can be attached with each agent, virtually
any bidding strategy could be rationalized.

A bidding strategy issophisticated if it maximizes an
agent’s payoff over final or expected final outcomes. The
ability to make inferences on the final outcome requires
the agent be sufficiently informed about the preferences and
strategies of the other agent. We focus on sophisticated bidding
in a setting of full information, but a similar analysis could
be made for the case where the agent is Bayesian and has
information about the distribution of the other agent’s marginal
values.

In the full information case each agent knows the number
of units being sold, the bidding history of the other agent (and,
of course, his own bidding history), and the valuations of the
other agent. In particular both agents know when the last unit
is being sold. The last round of the auction is identical to
a standard second price auction for thenth good (the value
for this good will of course depend on the outcomes of the
previous rounds). Hence it is a dominant strategy for both
agents to bid the marginal value on the last round. Since the
marginal values are common knowledge, both agents know
beforehand what are the allocation and payments on the last
round and therefore their terminal payoffs. Thus, we can think
of the penultimate round as an auction over the right to
participate in one of two auctions in the last round. Since the
payoffs of each one of these auctions is common knowledge,
we can think of the penultimate round as a second price
auction with valuations equal to these payoffs. It is therefore
a dominant strategy in the penultimate round to bid the payoff
from participating in one of the two possibilities of the last
round.

We proceed in this way inductively until we reach the root.
This shows that sophisticated bidding is the only strategy that
survives iterative elimination of weakly dominated strategies.
This does not rule out other equilibria and in fact there exist
other Nash equilibria with higher payoffs for both agents (if
for instance they conspire against the seller). However, these
equilibria must rely on unreliable threats and commitments.
We eliminate these equilibria from consideration by focusing
on subgame perfect equilibrium. This discussion is summa-
rized in the following theorem.

Theorem 1:In a sequential auction with fully informed
agents, sophisticated bidding is the unique subgame perfect
equilibrium after iterative elimination of weakly dominated
strategies.

We define theequilibrium pathto be the outcome produced
when both agents use a sophisticated bidding strategy and the
sequential allocationto be the allocation at the terminal node
of the equilibrium path.

B. Example

Consider an example withn = 3 goods. Suppose that agent
1 values each unit at$6. Agent 2 values the first unit at$4.1,
the second at$3.1 and the third unit at zero. Thus, the agents
have the following marginal values:u1

1 = u1
2 = u1

3 = 6,



[18,0] [12,4.1] [6,7.2] [0,7.2]

[6,0.5]

Fig. 1. An example graphG for a sequential auction withn = 3 goods.
The final nodes are labeled with the utility of the corresponding allocation,
assuming that the marginals areu1

1 = u1
2 = u1

3 = 6, u2
1 = 4.1, u2

2 = 3.1
and u2

3 = 0. The solid line shows the equilibrium path of the sequential
second price auction. The final payoffs for both agents along this path are
[6, 0.5].

u2
1 = 4.1, u2

2 = 3.1 and u2
3 = 0. Figure 1 shows the graph

G corresponding to this example. Here, branches to the left
(right) represent the case that agent 1 (2) wins a given round.
The nodes at the bottom of the graph are labeled with the
utility received by each agent at that outcome. For example,
the final allocation(s, t) = (3, 0) is given by the leftmost final
node on the graph. At this allocation, the total utility for agent
1 is18 and that for agent 2 is0. Since Agent 1 values each unit
more than agent 2, this is the efficient allocation. However, as
we will show next, this is not the sequential allocation.

Let us examine sophisticated bidding for this example.
Agent 1 should assume that agent 2 will bid4.1 in every
round until she is allocated at least one unit. Therefore, agent
1’s payment for receiving all3 goods will be4.1× 3 = 12.3
giving a payoff of 18 − 12.3 = 5.7. On the other hand, if
agent 1 does not bid on the first unit, she knows agent 2
will bid 3.1 on the remaining two units. Therefore, by losing
the first round she can receive two units for a total payment
of 6.2 resulting in a total payoff of5.8. If she takes this
reasoning even further agent 1 can abstain from obtaining the
first two units. In this case agent 2’s marginal value for the
last unit drops to 0 and agent 1 gets it for free with total
payoff 6. Thus, in this setting agent 1’s payoff is maximized
when she is allocated only one unit. It can be shown using
backward induction that this is indeed the equilibrium path
for this example. This path is shown in bold in Fig. 1. The
total utility of the sequential allocation(1, 2) is 6+7.2 = 13.2,
which is less than the total utility of18 obtained at the efficient
outcome. Therefore, the efficiency of the sequential auction in
this example is13.2/18 = 0.73. In the following section we
turn to bounding this loss in efficiency.

III. A B OUND ON THE EFFICIENCY

For any decreasing marginal values{u1
i }n

i=1 and {u2
i }n

i=1,
let (k, n−k) denote the efficient allocation, and let(k′, n−k′)
denote the sequential allocation (k andk′ are functions of the
marginal valuations). Theworst-case efficiencyη(n) for given

n is defined by3

η(n) = min
{u1

i },{u2
i }

∑k′

i=1 u1
i +

∑n−k′

i=1 u2
i∑k

i=1 u1
i +

∑n−k
i=1 u2

i

. (4)

We refer to1 − η(n) as theworst-case efficiency loss. Our
main result is the following.

Theorem 2:When both agents have decreasing marginal
values, then for alln,

η(n) ≥ 1− e−1. (5)

In other words, the worst-case efficiency is bounded by1−
e−1 for any n. Moreover, it can be shown that the worst-case
efficiency is decreasing withn, i.e.,

η(1) ≥ η(2) ≥ · · · ≥ η(n) ≥ · · · ≥ 1− 1
e
, (6)

and the bound of1− e−1 is asymptotically tight asn →∞.
The proof relies on the intuition that the worst-case effi-

ciency in the equilibrium outcome occurs in the case when
the utilities have the following form.

Definition 1: Agent 1’s utilities aredominantif u1
1 ≥ . . . ≥

u1
n ≥ u2

1 ≥ . . . ≥ u2
n. We will also refer to this as adominant

utility profile. Agent 1’s utilities areflat dominant if u1
1 =

. . . = u1
n ≥ u2

1 ≥ . . . ≥ u2
n.

The efficient allocation for a dominant utility profile is to
assign all units to agent 1. In the sequential auction, however,
agent 2 may receive one or more units, and this induces the
efficiency loss. In fact there are examples where agent 2 may
receive up ton− 1 units.

A. Equilibrium Path Payments

We begin the proof of theorem 2 by determining the
payment that agent 1 makes on each unit she receives in the
sequential allocation.

Lemma 3:Suppose that agent 1 has a dominant utility
profile. If (s, t) is the sequential allocation, thens ≥ 1 and
agent 1 paysu2

n−s+1 for each unit she receives.
Proof: We prove Lemma 3 by induction on the number

of units allocated. It is immediate forn = 1 since the auction
is then a standard second price auction. Forn > 1 we can
think of the root as a decision node between two alternatives:

1) Agent 1 receives a unit and both agents participate in
an auction forn− 1 units.

2) Agent 2 receives a unit and both agents participate in
an auction forn− 1 units.

If the equilibrium path allocates the first unit to agent 2, then
agent 1 pays nothing and the lemma follows by induction.
This is because the equilibrium path for then-unit auction
contains the equilibrium path for the(n − 1)-unit auction
(subgame) rooted at node(0, 1), and the utilities associated
with the sugbame have a dominant profile (i.e.,u1

1 ≥ . . . ≥
u1

n−1 ≥ u2
2 ≥ . . . ≥ u2

n).

3The quantity1/η(n) is sometimes referred to as theprice on anarchy,
see e.g. [13].
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Fig. 2. The extremal case: Agent 1 has a constant marginal valuations and
all the marginals of agent 2 are below the marginals of agent 1. The axis for
agent 1 is from left to right and the axis for agent 2 is from right to left.

If the first unit is allocated to agent 1, it suffices to show
that she paysu2

n−s+1. Agent 2 bids the difference between
participating in an(n−1)-unit sequential auction and receiving
an extra unit, and participating in the same auction without the
extra unit. This difference is therefore the value of the extra
unit, u2

n−s+1, which is agent 1’s payment.
Under the assumptions of Lemma 3, we can write the pay-

off of agent 1 for any terminal allocation(s, t), assuming that
this is the sequential allocation. Furthermore, since agent 1’s
utility is dominate, she can essentially choose the terminal
allocation, which gives her the highest pay-off. Her choice
will be the sequential allocation. This is summarized in the
following corollary.

Corollary 4: Suppose agent 1 has a dominant utility profile.
Then, the allocation(s, t) is the sequential allocation if and
only if

s∑
i=1

(u1
i − u2

n−s+1) ≥
r∑

l=1

(u1
l − u2

n−r+1), (7)

for any r ∈ {1, . . . , n}.
B. Bounds for Flat Dominant Valuations

Next we assume a flat dominant utility profile (i.e.,u1
1 =

. . . = u1
n ≥ u2

1 ≥ . . . ≥ u2
n). If we let xi = u2

n−i − u2
n−i+1

for i = 1, . . . , n− 1, andxn = u1
1 − u2

1 (see Fig. 2), equation
(7) can be written as

s ·
n∑

k=s

xk ≥ r ·
n∑

k=r

xk (8)

for any r ∈ {1, . . . , n}.
The difference in value between the efficient allocation and

the sequential allocation(s, t) is

n · u1
1 −

(
s · u1

1 +
n−s∑
k=1

u2
k

)
=

n∑
k=s+1

(k − s) · xk. (9)

Likewise, we have
∑n

k=1 xk = u1
1−u2

n, and so the efficiency
loss can be written as∑n

k=s+1(k − s) · xk

n · (
∑n

k=1 xk + u2
n)

. (10)

The next lemma bounds this for a given allocation ofj units
to agent 1.

Lemma 5:The maximum efficiency loss for the sequential
allocation(j, n− j) assuming a flat dominant utility profile is
j
n

∑n−1
k=j

1
k+1 .

Proof: Let x1, . . . , xn be the solution to the following
linear program:

max
{xi}

φ(x1, . . . , xn) :=
∑n

k=j+1(k − j) · xk, (11)

subject to: j ·
∑n

k=j xk ≥ r ·
∑n

k=r xk, ∀r 6= j, (12)∑n
k=1 xk = u1

1 − u2
n, (13)

x1, . . . , xn ≥ 0. (14)

From the discussion preceding Lemma 5, the maximum effi-
ciency loss for the sequential allocation(j, n − j), assuming
a flat dominant utility profile, is

max
u1

1,u2
n:u1

1>u2
n≥0

φ(x1, . . . , xn)
n(
∑n

k=1 xk + u2
n)

. (15)

First note that the linear program only depends onu1
1−u2

n,
and (15) is decreasing inu2

n. Hence we can always increase
the efficiency loss by settingu2

n = 0. In addition, because
the objective function only depends onxj+1, · · · , xn, we set
x1 = · · · = xj−1 = 0 to make the largest feasible region.
With this choice ofxi, the only constraints in (12), which
can be binding, are those forr > j. It is easy to see that at
optimality, the remaining constraints are binding. Therefore,
the constraints (12) and (13) can be written as the following
linear system:

xj + xj+1 + xj+2 + . . . + xn = u1
1

xj+1 + xj+2 + . . . + xn =
j

j + 1
u1

1

xj+2 + . . . + xn =
j

j + 2
u1

1

...

xn =
j

n
u1

1.

This set of equations gives the following unique feasible
solution.

xk =

{
j

k(k+1) k = j, . . . , n− 1,
j
n k = n.

(16)

Hence from (15), the maximum efficiency loss is
j
n

∑n−1
k=j

1
k+1 .

From Lemma 5, it follows that the worst-case efficiency of
the sequential auction given that agent 1 has a flat dominant
utility profile is

η′(n) = min
j∈[1,...,n]

1− j

n

n−1∑
k=j

1
k + 1

 . (17)

As n →∞, it can be easily shown thatη′(n) → 1− e−1.



C. Proof of Theorem 2

We next show that the flat dominant utility profile achieves
the worst-case efficiency, namely,η′(n) = η(n). This com-
pletes the proof of Theorem 2. We do so in two steps. First
we show that for any pair of marginals for agents 1 and 2
there exists a pair of marginals where agent 1’s marginals are
dominant over those of agent 2 with a lower efficiency in
the outcome. Then we show that changing a dominant utility
profile to a flat dominant profile can only decrease efficiency.

Step 1: For any pair of decreasing marginal valuesu1
1 ≥

. . . ≥ u1
n andu2

1 ≥ . . . ≥ u2
n, let k andn− k be the efficient

allocation for agents 1 and 2. After auctioningl (≤ n) units
amongn units, the sequential game reaches a decision node
where either agent 1 or agent 2 obtains his efficient allocation
(k for agent 1 orn − k for agent 2). Since one agent meets
his efficient allocation afterl units are assigned, the marginal
values of the remaining units for this agent must be smaller
than that for the other agent. (See Fig. 3). Up to this decision
node, there is no loss in efficiency. Any efficiency loss in the
final allocation procures in the subgame tree rooted at this
decision node. Therefore, efficiency loss of the full game tree
cannot be larger than the efficiency loss of this subgame tree.
This shows that for any pair of marginal valuesu1

1 ≥, . . . ,≥
u1

n and u2
1 ≥, . . . ,≥ u2

n, there exists a pair̄u1
1, . . . , ū

1
n and

ū2
1, . . . , ū

2
n satisfyingū1

1 ≥ . . . ≥ ū1
n ≥ ū2

1 ≥ . . . ≥ ū2
n with a

lower efficiency in the outcome of the sequential auction. The
worst-case efficiency must always correspond to a dominant
utility profile.

Step 2: Suppose that agent 1 has a dominant utility profile
(i.e., u1

1 ≥ . . . ≥ u1
n ≥ u2

1 ≥ . . . ≥ u2
n). From Corollary 4, if

(s, t) is the sequential allocation, then
s∑

i=1

(u1
i − u2

n−s+1) ≥
r∑

l=1

(u1
l − u2

n−r+1) (18)

for any r 6= s. If we replace the marginals of agent 1 with the
following flat dominant marginals̄u1

1 = . . . = ū1
n = u1

n, then

s · (ū1
1 − u2

n−s+1) ≥ r · (ū1
1 − u2

n−r+1). (19)

This implies that for the marginals̄u1
1 = . . . = ū1

n ≥ u2
1 ≥

. . . ≥ u2
n, the sequential equilibrium(s̄, t̄) satisfiess̄ ≤ s.

In other words, ‘flattening’ the dominant utilities can only
decrease efficiency.�

IV. CONSTRUCTIVEEXAMPLES FOR THEBOUND

Next we construct examples to show that the bound of
Theorem 2 is asymptotically tight. First consider the sequential
auction forn = 2 goods. Ifu1

1 = u1
2 = 1 and u2

1 = 1
2 + ε1,

u2
2 = 0, then it can be shown that the sequential allocation

is (1,1). Instead of getting two goods with payoff1 − 2ε1,
agent 1 is better off by just getting one good with payoff
1. The efficiency of this auction with the marginal values
above approaches1+

1
2

1+1 = 3
4 as ε1 → 0. It can be shown that

this is the worst-case efficiency among all possible profiles
of marginal values for two agents and two goods. Therefore,
η(2) = 3

4 .

agent1

agent2

(k, n-k)(s, t)
n1 n2

Fig. 3. Marginal valuations of two agents.n1 (n2) is the number of goods
that agent 1 (2) obtains along the sequential auction.(k, n−k) is the optimal
allocation and(s, t) is the sequential allocation. The shadowed region shows
the efficiency loss.

Similarly, we can construct the marginal values of each
agent to get the worst-case efficiency of the sequential auction
for all n > 2. Consider the following profile of marginal
values of n goods: u1

1 = . . . = u1
n = 1 for agent 1 and

u2
1 = 1 − j

n + ε1, u
2
2 = 1 − j

n−1 + ε2, u
2
3 = 1 − j

n−2 +
ε3 . . . , u2

n−j = 1 − j
j+1 + εn−j , u

2
n−j+1 = 0, . . . , u2

n = 0 for
agent 2, wherej ∈ {1, . . . , n}. The sequential auction ends
with the allocation(j, n−j) according to Corollary 4. If agent
1 receivesj goods, her payoff after the auction ends isj · 1.
However, if agent 1 receivesj− 1 goods, her payoff becomes
(j−1) · (1−u2

n−j) = j− (j +1) ·εn−j , which is smaller than
j. In a similar way, agent 1’s payoff is smaller thanj if she
is allocatedr 6= j goods. Therefore, the sequential allocation
is (j, n− j). As theεk ’s approach zero, the efficiency of this
outcome approaches

j +
∑j

k=1 u2
k

n
=

j

n
+

n−j∑
k=1

1
n
·
(

1− j

n− k + 1

)

= 1− j

n

n−1∑
k=j

1
k + 1

. (20)

Minimizing (20) over j ∈ [1, . . . , n] gives the worst-case
efficiency for this class of valuations, i.e.,

j∗ = arg min
1≤j≤n

1− j

n

n−1∑
k=j

1
k + 1

 . (21)

Note that this is the same as the expression in (17) and hence
it follows that these allocations give the worst-case efficiency
for eachn.

Table I shows the marginal values of two agents that give
the lowest efficiencyη(n), which is also shown. As can be
seen,η(n) is decreasing with inn, i.e.,

η(1) ≥ η(2) ≥ · · · ≥ η(n) ≥ · · · ≥ 1− 1
e
. (22)

As n → ∞, these quantities approach the bound asymptoti-
cally.



n Marginals j∗ η(n)
2 1, 1 ; 1/2 + ε1, 0 1 3/4
3 1, 1, 1 ; 2/3 + ε1, 1/2 + ε2, 0 1 13/18
4 1, 1, 1, 1 ; 1/2 + ε1; 1/3 + ε2, 0, 0 2 17/24
...

...
...

...
∞ 1- 1

e

TABLE I
MARGINAL VALUES AND CORRESPONDING WORST-CASE EFFICIENCY

ACHIEVED BY THE SEQUENTIAL AUCTION FOR GIVENn.

V. CONCLUSION

We have considered a sequential second price auction ofn
homogeneous goods for two agents with decreasing marginal
values. This was motivated by a dynamic spectrum sharing ap-
plication, where the goods could represent units of bandwidth.
Our results show that the worst-case efficiency of subgame
perfect equilibrium is non-increasing function in total number
of goodsn and is bounded by1−e−1. For the spectrum sharing
application, this suggests that that a potential direction is to
study how finely to partition the available bandwidth if it is
to be sequentially auctioned. Our results are preliminary; in
particular we have only considered two agents4 and assumed
full information. Relaxing either of these assumptions are
potential directions for future work.
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