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Abstract— In this paper, we consider minimum cost lossless
source coding for multiple multicast sessions. Each session
comprises a set of correlated sources whose information is
demanded by a set of sink nodes. We propose a distributed end-
to-end algorithm which operates over given multicast trees, and
a back-pressure algorithm which optimizes routing and coding
over the whole network. Unlike other existing algorithms, the
source rates need not be centrally coordinated; the sinks control
transmission rates across the sources. With random network
coding, the proposed approach yields completely distributed
and optimal algorithms for intra-session network coding. We
prove the convergence of our proposed algorithms. Some
practical considerations are also discussed. Experimental results
are provided to complement our theoretical analysis.

I. INTRODUCTION

In wireless networks such as sensor networks, information

sources may be correlated. Independent data compression

and transmission, without considering such correlations, is

not an optimal strategy in terms of efficient use of the

wireless spectrum. Higher efficiency can be obtained by

using distributed lossless source coding techniques [1]. Net-

work coding, a generalization of routing to allow nodes to

perform algebraic operations on packets, is another technique

that can significantly improve network performance [2]. In

this paper, we consider, for a distributed network scenario,

joint optimization of source coding, rate allocation, multicast

network coding, and scheduling.

Some aspects of this problem are considered in a number

of related works. In [3], joint optimization of Slepian-Wolf

coding and routing is considered. For the multicast case, the

approach involves finding a minimum cost Steiner tree. The

scenario of multi-sink is considered in [4], where a sub-

optimal distributed scheme is proposed which also requires

information exchange between sources. An algorithm to find

the minimum cost subgraph for joint source coding and net-

work coding is proposed in [5], for the case of two sources.

In [6], a practical lossless source coding scheme is proposed

for a network with a single sink. Even though Slepian-Wolf

coding is distributed, the optimization problems in [3]–[5]

still require coordination among the sources to guarantee that

the source rates lie in the Slepian-Wolf region. Moreover, the

designs in [3] need central controllers to solve the routing

problem. Therefore, the algorithms in [3]–[5] cannot be fully

distributed.
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In [7], dynamic algorithms for intra-session network cod-

ing and scheduling, for both correlated and uncorrelated

sources, are proposed based on back-pressure. The algo-

rithms are concerned only with rate stabilization, without

consideration of costs. Interestingly, our proposed session

scheduling policy for cost optimization is similar to the

reverse back-pressure policy for correlated sources in [7]

though they are obtained differently. The policy in [7] is

obtained by intuition, whereas our policy is obtained from

the utility maximization framework, providing a principled

derivation.

Motivated by the utility optimization framework developed

for TCP congestion control, see, e.g., [8], we consider the

problem of minimizing an aggregate cost measure defined

in terms of the flow rates at the links, with the source rates

being constrained within the Slepian-Wolf region. Solved

in a centralized way, our problem is a convex optimiza-

tion problem with a polynomial time solution. However,

since centralized solutions are less desirable in practice, we

develop and analyze a distributed algorithm. Unlike other

approaches from the literature [3]–[6], our approach admits

a fully distributed implementation for both the case with

given multicast trees and the case without given multicast

trees. As in [8], our algorithms can be interpreted as dis-

tributed primal-dual algorithms over the network to minimize

the total cost. Both algorithms use primal-dual subgradient

algorithms. More importantly, our algorithms remove the

source coordination requirement in the previous work [3]–

[5]. With random network coding [9], all our algorithms can

be implemented in a fully distributed manner. Our proposed

algorithms can be readily extended to multicasting without

network coding.

II. PRELIMINARIES

A. Network Model

Consider a network, denoted by a graph G = (N ,L),
with a set N of nodes and a set L of directed links. We

denote a link either by a single index l or by the directed

pair (i, j) of nodes it connects. A set of multicast sessions M
is transmitted through the network. Each session m ∈ M is

associated with a set Sm ⊂ N of sources and a set of Tm ⊂
N of sinks. In session m, each source s ∈ Sm multicasts

xms bits to all the sinks in Tm. By flow conservation,
∑

j:(i,j)∈L

g
mst
i,j −

∑

j:(j,i)∈L

g
mst
j,i = σ

ms
i , ∀i ∈ N ,

(1)

where σms
i = xms if i = s, σms

i = −xms if i = t, σms
i =

0 otherwise, and gmst
i,j is the flow rate on link (i, j) from

source s ∈ Sm to sink t ∈ Tm in session m.
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Fig. 1. The butterfly network.

We consider a wireless network model which subsumes

wireline networks as a special case. We assume a static

topology where each link l ∈ L has a fixed capacity cl

bits per second when it is active. Each link l ∈ L is

associated with a cost function βl(·), which is a strictly

convex, monotonically increasing function of the total flow

on each link (the case of linear cost function is solved in

[10]). Such cost functions arise naturally when the cost is,

e.g., latency or congestion. We adopt the primary interference

model as in [11] without considering broadcast advantage.

Under this model, any feasible schedule corresponds to a

matching of G. Let E denote the set of all matchings, indexed

by e. We represent a matching e as an |L|-dimensional rate

vector, r
e with re

l = cl if l ∈ e, and re
l = 0 otherwise. The

feasible rate region Π at the link layer is then defined as the

convex hull of all the matching rate vectors or equivalently

Π ,

{

r : r =
∑

e∈E

aer
e
, ae ≥ 0,

∑

e∈E

ae = 1

}

. (2)

B. Network Coding

Each node is allowed to perform algebraic operations on

received packets in network coding. It has been shown that

the ability of the network to transfer information can be

significantly improved [2]. The butterfly example in Fig. 1

shows benefit of using network coding. In this paper, we

simply assume that coding is done only across packets of

the same session. With this setting, we define fm
i,j as the

physical flow of session m on link (i, j). By the flow sharing

property of network coding and capacity constraints, we have

the following two constraints

g
mst
i,j ≤ f

m
i,j , ∀(i, j) ∈ L, m ∈ M, s ∈ Sm, t ∈ Tm, (3)

∑

m∈M

f
m
i,j ≤ ri,j , ∀(i, j) ∈ L, (4)

where ri,j belongs to a rate vector within Π in (2).

To ensure fully distributed cross-layer design, we use

distributed random network coding [9], where for each node

the data on outgoing links are random linear combination of

the data on incoming links.

C. Lossless Source Coding

We consider multiterminal lossless source coding [1],

where data cannot be distorted in the compression pro-

cess. Data of correlated sources are compressed and jointly

decoded at sinks. An important scenario for multiterminal

source coding is distributed source coding, where correlated

sources compress data separately without communicating

each other. For the case of n sources, let X = {X1, . . . ,Xn}
be the set of sources. Slepian-Wolf coding is a technique for

distributed lossless source coding. The achievable rate region

for distributed lossless source coding is defined by [1]
∑

Xi∈S

Ri ≥ H(S|X\S), ∀S ⊆ X , (5)

where Ri denotes the data rate of Xi. It is shown in [9] that

in general networks, (5) still holds by using random network

coding. Recent advance in practical source code designs has

shown that (5) is achievable [12] by using error correcting

codes such as low-density parity-check codes.

III. DISTRIBUTED END-END CONTROL ALGORITHM

WITH GIVEN MULTICAST TREES

In this section, a set of multicast trees is given for each

source in every session. We only consider a single multicast

tree for each source as it can be obtained by using protocols

such as distance vector multicast routing protocol [13]. To

simplify notation, we consider the case where overlapping

links of different trees of a session have disjoint sets of

downstream destinations, thus allowing coding to occur on

all overlapping links.

Let Tms denote the multicast tree for source s in session

m. Each tree Tms contains a set Lms ⊆ L of links, which

defines a |L| × 1 vector ξms whose l-th entry is given by

ξ
ms
l =

{

1, if l ∈ T ms,
0, otherwise.

(6)

We apply intra-session network coding. Similar to (3) and

(4), we have the following two constraints

ξ
ms
l x

ms ≤ f
m
l , ∀l ∈ L, m ∈ M, s ∈ Sm, (7)

∑

m

f
m
l ≤ rl, ∀l ∈ L. (8)

where rl ∈ Π, and (7) is due to the assumption that over-

lapping links of different trees of a session have disjoint sets

of downstream destinations. For the case without network

coding, (7) and (8) become
∑

m ξms
l xms ≤ rl and the

solution is modified accordingly.

A. Problem Formulation

The basic problem is to minimize the total network cost

subject to the source rates being in the Slepian-Wolf region

(5) and the rate constraints (7)-(8). Thus, we need to solve

the following optimization problem12

min
xms,fm

l
,rl

∑

l∈L

βl

(

∑

m∈M

f
m
l

)

subject to ξ
ms
l x

ms ≤ f
m
l , ∀l ∈ L, m ∈ M, s ∈ Sm

∑

m∈M

f
m
l ≤ rl, ∀l ∈ L, r ∈ Π

∑

s∈S

x
ms ≥ H(S|Sm\S), ∀S ⊆ Sm, m ∈ M.

(9)

Note that we also have a constraint xms ≥ 0 but we assume

it implicitly in the following for simplicity. (9) can be readily

1Note that in (9) we assume the separation of source coding and channel
coding, which is suboptimal in general. Thus our algorithms in this paper
are optimal only for separate source coding and channel coding.

2In practice, due to the use of finite block length codes and the oscillation
of the subgradient algorithm, H(S|Sm\S) in (9) should be replaced by
H(S|Sm\S) + ǫ, where ǫ > 0. In the following, for brevity, we solve (9).
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transformed into a convex optimization problem and solved

in polynomial time with a central controller. However, a

distributed algorithm is preferred in practice. Note that we

always assume that (9) is feasible in this section. How to

deal with infeasible source rates can be found in [10].

B. Distributed Algorithm

Note that the last set of constraints in (9) makes all

the source rates coupled. Even though distributed source

coding can be applied independently at each source, solving

(9) directly still needs the coordination of sources such

that the source rates lie in the Slepian-Wolf region. For

this reason, the algorithms in [3], [5] cannot be fully dis-

tributed, and the algorithm in [4] is suboptimal and requires

explicit information exchange between sources. We solve

these problems by a distributed receiver-driven source coding

algorithm. To recover the source rates, we employ a primal-

dual subgradient algorithm.

Instead of solving (9), we consider an equivalent problem

by replacing the last constraint in (9) with the following

constraints
∑

s∈S

y
mst ≥ H(S|Sm\S), ∀S ⊆ Sm, m ∈ M, t ∈ Tm,

y
mst ≤ x

ms
, ∀l ∈ L, m ∈ M, s ∈ Sm, t ∈ Tm,

(10)

where ymst is the new variable introduced at each sink t ∈
Tm corresponding to xms.

The Lagrangian dual function obtained by relaxing the

first, the second constraints in (9) and the last constraints in

(10) can be decomposed into four subproblems3

φ1(q)=min
y

∑

m,s,t

q
ms
t y

mst
, s.t.

∑

s∈S

y
mst ≥ H(S|Sm\S), (11)

φ2(p, q)=min
x

∑

m,s

x
ms

(

∑

l

p
ms
l ξ

ms
l −

∑

t

q
ms
t

)

, (12)

φ3(p, λ)=min
f

∑

l

βl

(

∑

m

f
m
l

)

−
∑

l,m

(

∑

s

p
ms
l − λl

)

f
m
l ,(13)

φ4(λ)=max
r

∑

l

λlrl, subject to r ∈ Π. (14)

where pm
l is the Lagrange multiplier introduced at link l

for session m, λl is the Lagrange multiplier introduced at

link l, and qms
t is the Lagrange multiplier introduced at

sink t for source s in session m. The first subproblem is

minimum cost virtual lossless source coding [3] at each

sink. The second subproblem is rate allocation. The third

one is the joint network coding and session scheduling.

The fourth one is the link scheduling, which does not

exist in wireline networks. Thus, by dual decomposition,

the flow optimization problem decomposes into separate

“local” optimization problems of application, transport, and

network/data link layers, respectively. The four subproblems

interact through Lagrange multipliers p, q, λ. We first solve

the dual subproblems (11)-(14) by assuming fixed dual

variables p, λ, and q.

3In (9), we actually replace maxs{ξms
l xms} ≤ fm

l with |Sm| con-
straints ξms

l xms ≤ fm
l , ∀s ∈ Sm, and introduce |Sm| multipliers pms

l
at each link. When |Sm| is large, we can instead approximate maxi(xi)
with (

∑

i xn
i )1/n for large n.

Source coding: We can further decompose (11) into |Tm|
virtual minimum cost lossless source coding problems4 for
each sink in session m. Let Nm = |Sm| denote the number
of sources in session m. For sink t ∈ Tm, we need to solve

min
y

∑

s

q
ms
t y

mst
, subject to

∑

s∈S

y
mst ≥ H(S|Sm\S). (15)

Due to the duality between Slepian-Wolf and multiple ac-

cess channels, following the approach in [14], it can be easily

shown that the region defined by the constraint in (15) is a

contra-polymatroid [14]. From Lemma 3.3 in [14], greedy

algorithm solves (15) optimally. Let π∗ be any permutation

of Sm such that q
mπ∗(1)
t ≤ q

mπ∗(2)
t ≤ · · · ≤ q

mπ∗(Nm)
t . The

solution of (15) is given by

y
mπ∗(1)t =H (π∗(1)) ,

y
mπ∗(2)t =H (π∗(2)|π∗(1)) ,

(16)

... (17)

y
mπ∗(Nm)t =H (π∗(Nm)|π∗(Nm − 1), . . . , π∗(1)) .

Note that [3] also gives a similar solution to (15).

Rate allocation: If we solve (12) directly as in [15], the

solution to (12) is either zero or unbounded as the objective

function in (12) is not strictly convex in xms. The source rate

cannot be recovered. We thus apply the primal subgradient

algorithm to resolve this problem. Let xms(τ) and xms(τ+1)
denote the source rates at time τ and τ + 1 respectively. In

the primal subgradient algorithm, we update xms by using a

primal subgradient algorithm as

x
ms(τ+1) =

[

x
ms(τ) − ǫτ

(

∑

l

p
ms
l ξ

ms
l −

∑

t

q
ms
t

)]+

, (18)

where ǫτ is a positive scalar stepsize, and [·]+ denotes

the projection onto R
+. Source rate is adjusted not only

according to the aggregate dual variables
∑

l p
ms
l ξms

l over

the multicast tree Tms but also according to the aggregate

dual variables
∑

t qms
t due to virtual source coding, which

are fed back from the sinks in session m.

The source rates are guaranteed to lie inside the Slepian-

Wolf region through dual variable qms
t without the coordi-

nation of sources. Each source compresses data according

to rate xms(τ + 1) in (18) by using Slepian-Wolf coding

or randomized linear network coding. This rate allocation

mechanism is an end-to-end control mechanism.

Session scheduling and network coding: For each link l,

let m∗

l be the multicast session, which has the maximum

aggregate link dual variables, i.e., m∗

l = arg maxm

∑

s pms
l ,

and define wl =
∑

s p
m∗

l s

l . The optimal solution of (13) can

be obtained as

f
m
l =

{

f∗
l , if m = m∗

l ,
0, otherwise,

(19)

where f∗

l is the maximizer of

max
f

(wl − λl) f − βl (f) . (20)

To see why (19) is correct, if we transmit packets at rate f ′

for a non-minimum congestion price session m′, we can shift

the rate f ′ from m′ to m∗

l to make the objective function of

4We call it virtual source coding problem as we do not perform source
coding at sinks.
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(20) smaller. As βl(·) is strictly convex and monotonically

increasing, the optimal solution of (20) is obtained as

f
∗
l =

{

β′−1
l (wl − λl) if wl > λl,

0 if wl ≤ λl.
(21)

For each link l, a random linear combination of packets from

all the sources in session m∗

l is sent at the rate of f∗

l .

Link scheduling: From (2), Π is a polyhedron. The ob-

jective function
∑

l λlrl in (14) is also linear. It is known

that the maximum of (14) is attained at an extreme point of

Π, which corresponds to a matching on graph G. Therefore,

(14) reduces to finding a maximum weighted matching in G.

Distributed approximation algorithm for maximum weighted

matching in [16] can be applied to solve (14) distributedly,

which achieves a factor of 2 approximation. In the following,

we assume that (14) is solved optimally.

Dual variable update: After solving the dual subproblems

(11)-(13), we update the dual variables using subgradient

method. Let p(τ), λ(τ), and q(τ) denote the dual variables

p, λ, and q at time τ . By the subgradient method, each link l

updates its dual variable p with respect to source s in session

m according to

p
ms
l (τ + 1) = [pms

l (τ) + γτ (ξms
l x

ms (τ) − f
m
l (τ))]+ , (22)

and updates its dual variable λ as

λl(τ + 1) =

[

λl(τ) + γτ

(

∑

m

f
m
l (τ) − rl(τ)

)]+

, (23)

and each sink t updates its dual variable with respect to

source s in session m according to

q
ms
t (τ + 1) =

[

q
ms
t (τ) + γτ

(

y
mst(τ) − x

ms(τ)
)]+

, (24)

where γτ is a positive scalar stepsize. Note that (22)-(24)

are distributed and can be implemented by individual links

using only local information.

By assuming perfect scheduling or solving (14) optimally,

we have the following theorem.

Theorem: The primal-dual subgradient algorithm (16)-

(24) converges to the optimal solution of (10) with dimin-

ishing stepsize.

Please refer to technical report [10] for the proof. For

a constant stepsize, the primal-dual subgradient method

converges within any given small neighborhood around the

optimum, by choosing sufficiently small constant stepsize.

IV. DISTRIBUTED BACK-PRESSURE ALGORITHM

WITHOUT GIVEN MULTICAST TREES

Our distributed algorithm in this section is based on back-

pressure policy. Back-pressure rate control algorithm is a

kind of hop-by-hop rate control algorithm.

A. Distributed Algorithm

As in Section III, we minimize the total cost of the

network. But in this section, we consider the rate constraints

(1)-(4) and the lossless source coding constraint (5). Even

though distributed lossless source coding can be applied

independently at each source, solving this problem directly

still needs the coordination of sources due to the constraint

(5). Similar to (9), we first transform this problem into an

equivalent problem, which can be solved distributedly. We

consider the following problem

min
x,y,g,f,r

∑

(i,j)∈L

βi,j

(

∑

m∈M

f
m
i,j

)

subject to
∑

j:(i,j)∈L

g
mst
i,j −

∑

j:(j,i)∈L

g
mst
j,i = η

mst
i , ∀i ∈ N ,

∑

s∈Sm

g
mst
i,j ≤ f

m
i,j , ∀(i, j) ∈ L, m ∈ M, t ∈ Tm,

∑

m∈M

f
m
i,j ≤ ri,j , ∀(i, j) ∈ L, r ∈ Π

∑

s∈S

y
mst ≥ H(S|Sm\S), ∀S ⊆ Sm, m ∈M, t ∈Tm,

(25)

where

η
mst
i =







xms, if i = s

−ymst, if i = t
0, otherwise,

(26)

and ymst is the new variable introduced at each sink t ∈
Tm corresponding to xms. Due to the flow conservation

constraint, any feasible solution of (25) satisfies ymst = xms.

Therefore, (25) solves the problem optimally.

The dual problem to (25) by relaxing only the first and

the third constraints in (25) can be decomposed into four

subproblems

φ1(p)=min
y

−
∑

m,s,t

p
mst
t y

mst
, s.t.

∑

s∈S

y
mst ≥H(S|Sm\S), (27)

φ2(p)=min
x

∑

m,s

x
ms

(

∑

t

p
mst
s

)

, (28)

φ3(p, λ)=max
g,f,r

∑

i,m,s,t

p
mst
i





∑

j:(i,j)∈L

g
mst
i,j −

∑

j:(j,i)∈L

g
mst
j,i



 (29)

−
∑

i,j

βi,j

(

∑

m∈M

f
m
i,j

)

−
∑

i,j

λi,j

∑

m

f
m
i,j ,

subject to
∑

s

g
mst
i,j ≤ f

m
i,j ,

φ4(λ)=max
r

∑

i,j

λi,jri,j , subject to r ∈ Π, (30)

where pmst
i is the Lagrange multiplier introduced at node i

for source s and sink t in session m, and λi,j is the Lagrange

multiplier introduced at link (i, j). Note that if pmst
t > 0 in

(27), φ1(p) is unbounded. Thus, we must have pmst
t ≤ 0.

The four subproblems interact through dual variables p, λ.

We first solve the dual subproblems (27)-(30) by assuming

fixed dual variables p, λ.

Source coding: The source coding problem (27) can be

solved as in Section III. We omit here for brevity.

Rate allocation: As the objective function in (25) is not

strictly convex in xms, similar to Section III, we also use

primal subgradient algorithm to recover the source. Let

xms(τ) and xms(τ + 1). We update xms as

x
ms(τ + 1) =

[

x
ms(τ) − ǫτ

(

∑

t

p
mst
s

)]+

, (31)

where ǫτ is a positive scalar stepsize. In (31), source rate is

adjusted according to the aggregate dual variables
∑

t pmst
s
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generated locally at the source node. Compared with (18),

(31) does not need the dual variables fed back from all the

links over the multicast tree Tms and all the sinks in session

m, which suggests a small delay. The source rates are guar-

anteed to lie inside the Slepian-Wolf region through
∑

t pmst
s

without the coordination of sources. Penalty function method

can be applied similar to Section III.

Each source compresses data according to rate xms in (31)

by using randomized linear network coding.

Session scheduling and network coding: Note that (29) is

equivalent to the following problem

max
g,f

∑

i,j,m,s,t

g
mst
i,j

(

p
mst
i − p

mst
j

)

−
∑

i,j

βi,j

(

∑

m

f
m
i,j

)

−
∑

i,j

λi,j

∑

m

f
m
i,j ,

subject to
∑

s

g
mst
i,j ≤ f

m
i,j ,

= max
g,f,r

∑

i,j

(

∑

m

f
m
i,j

∑

t

max
s

[

p
mst
i − p

mst
j

]+

−βi,j

(

∑

m

f
m
i,j

)

− λi,j

∑

m

f
m
i,j

)

,

(32)

where the last equality comes from the fact that
∑

s gmst
i,j

(

pmst
i − pmst

j

)

, subject to
∑

s gmst
i,j ≤ fm

i,j is a

linear programming, we can always choose an extreme point

solution, i.e.,

g
mst
i,j =

{

fm
i,j , if s =

(

smt
)∗

, and pmst
i − pmst

j ≥ 0,
0, otherwise,

(33)

where (smt)
∗

= arg maxs

(

pmst
i − pmst

j

)

. For each

link (i, j), let m∗

i,j be the multicast session, which

has the maximum aggregate differential link prices, i.e.,

m∗

i,j = arg max
m

∑

t

max
s

[

pmst
i − pmst

j

]+
, and define wi,j =

maxm

∑

t maxs

[

pmst
i − pmst

j

]+
. As in (13), the solution to

(32) is

f
m
i,j =

{

f∗
i,j if m = m∗

i,j ,
0, otherwise,

(34)

where f∗

i,j is the maximizer of

max
f

(wi,j − λi,j)f − βi,j (f) . (35)

If βi,j(·) is a strictly convex function, the optimal solution

solving (35) is

f
∗
i,j =

{

β′−1
i,j (wi,j − λi,j) if wi,j > λi,j ,

0 if wi,j ≤ λi,j .
(36)

For each link (i, j), a random linear combination of

packets from sources
(

sm∗

i,jt
)

∗

, t ∈ Tm∗

i,j
, in session m∗

i,j

is sent at the rate of f∗

i,j . This is equivalent to solving (29)

by the following assignment

g
mst
i,j =

{

f∗
i,j , if m = m∗

i,j , s =
(

smt
)∗

, and pmst
i −pmst

j > 0,
0, otherwise.

(37)

Link scheduling: Solving (30) is similar to that in Section

III.

Dual variable update: Let p(τ) and λ(τ) denote the dual

variables p, λ at time τ , respectively. After solving (27)-(30),

by the subgradient method, each node i updates its dual

variable p with respect to source s and sink t in session

m according to

p
mst
i (τ + 1) =























































pmst
i (τ) + γτ

(

xms(p(τ))

−
∑

j gmst
i,j (p(τ)) +

∑

j gmst
j,i (p(τ))

)

,
if i = s,

[

pmst
i (τ) + γτ

(

− ymst(p(τ))

−
∑

j gmst
i,j (p(τ)) +

∑

j gmst
j,i (p(τ))

)]

−

,
if i = t,

pmst
i (τ) + γτ

(

∑

j gmst
j,i (p(τ))

−
∑

j gmst
i,j (p(τ))

)

,
otherwise,

(38)

and every link (i, j) updates its dual variable λ as

λi,j(τ +1)=

[

λi,j(τ)+γτ

(

∑

m

f
m
i,j(p(τ),λ(τ))− ri,j(λ(τ))

)]+

,

(39)

where γτ is positive scalar stepsize, and [·]− denotes the

projection onto R
−. After node i updates its congestion

price, it passes pmst
i (τ +1) to all its neighbors for next time

slot source coding, rate allocation, scheduling and network

coding.

Note that our algorithm (31)-(39) only requires nodes to

communicate with direct neighbors. Thus, our design is a

hop-by-hop control mechanism. Note that the above session

scheduling component uses back-pressure to do optimal

scheduling, similarly to [7], [15]. However, the dual variable

pmst
i in our algorithm is negative, while in traditional back-

pressure pmst
i is positive and it can be interpreted as the

queue length. We interpret the negative dual variable pmst
i

as the virtual queue length at each node. Physically, the

negative pmst
i or virtual queue length indicates how many

bits are still required such that the sinks can decode the

compressed data in the end. Interestingly, the virtual source

coding component is also similar to that in [7], and a similar

virtual queue concept is also proposed in [7]. Our algorithm

is obtained from the utility maximization framework while

that in [7] is obtained intuitively. Another difference of our

algorithm from those in [7], [15] is that in [7], [15] node

i immediately sends packets to node j whenever the ac-

cumulated queue length difference
∑

t

max
s

[

pmst
i − pmst

j

]+

is greater than zero, while our algorithm requires that
∑

t

max
s

[

pmst
i − pmst

j

]+
is greater than λi,j . Clearly, when

λi,j = 0 or no link cost, our policy reduces to that of the

original back-pressure policy. By using network coding, we

circumvent the difficulty of finding a minimum cost Steiner

tree as in [3]. Moreover, our algorithm is fully distributed

without the coordination of sources.

The same convergence result holds as that in Section III.

Other practical issues are discussed in [10].

V. EXPERIMENTAL RESULTS

We consider the butterfly network shown in Fig. 1. For

simplicity, we assume that there is only one session and

the network is a wireline network. Two sources s1 and

s2 multicast correlated information to t1 and t2. All links
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Fig. 2. The evolution of source rates versus the number of iterations of
the distributed algorithm with given multicast trees and stepsizes ǫ = 0.05
and γ = 0.05 Fig. 1.

have unit capacity, and have the same linear cost function

β(x) = 0.5x. We assume that H(s1|s2) = H(s2|s1) = 0.2
and H(s1) = H(s2) = 0.5. We do not consider the delay

due to dual variable feedback. All the dual variables are

initialized randomly. It is easy to show that the optimal

source rates for the two sources are 0.35 and 0.35. We use

primal subgradient algorithm to update the source rate.

We first show the results for the case with given mul-

ticast trees. The multicast tree for source s1 is chosen as

{(s1, 1), (1, 2), (2, t2), (s1, t1)}, and for source s2 is chosen

as {(s2, 1), (1, 2), (2, t1), (s2, t2)}. Fig. 2 shows the evolu-

tion of source rates versus the number of iterations of the

distributed algorithm with given multicast trees and fixed

stepsizes ǫ = 0.05 and γ = 0.05. We see that both source

rates converge quickly to a neighborhood of the optimal rates

and oscillate around them since we have chosen a constant

stepsize. This also illustrates the validity of Theorem 1. This

oscillating behavior mathematically results from the non-

differentiability of the dual function.

We next consider distributed algorithm without given mul-

ticast trees. Fig. 3 shows the evolution of source rates versus

the number of iterations in this case with fixed stepsizes

ǫ = 0.05 and γ = 0.05. Comparing Fig. 3 with Fig. 2, we

find that back-pressure algorithm converges more slowly than

end-to-end algorithm. The example in this section is simple.

In general, the cost of back-pressure algorithm may be less

than that using algorithm with given multicast trees since the

capacity region for the latter case is a subset of the capacity

region for the former case.

VI. CONCLUSION

We presented fully distributed algorithms for lossless

source coding and rate allocation for multiple multicast ses-

sions with correlated sources. Based on utility maximization

framework, distributed algorithms for the cases with and

without multicast trees were proposed. Intra-session network

coding avoids the NP-hardness of finding a minimum cost

Steiner tree. The sinks control transmission rates across the

sources via local updates that propagate back to the sources.
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Fig. 3. The evolution of source rates versus the number of iterations of the
distributed algorithm without given multicast trees and stepsizes ǫ = 0.05
and γ = 0.05 in Fig. 1.

This is in contrast to existing algorithms where source

rate control is achieved via centralized coordination among

sources. It is of practical interest to study the implementation

of our algorithms. Finally, designing universal distributed

source codes that can work well for any correlation statistics

is of interest in its own right.
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