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Abstract— From a hybrid systems point of view, we provide
a modeling framework and a trajectory tracking control design
methodology for juggling systems. We present the main ideas
and concepts in a one degree-of-freedom juggler, which consists
of a ball bouncing on an actuated robot. We design a hybrid
control strategy that, with only information of the ball’s state at
impacts, controls the ball to track a reference rhythmic pattern
with arbitrary precision. We extend this hybrid control strategy
to the case of juggling multiple balls with different rhythmic
patterns. Simulation results for juggling of one and three balls
with a single actuated robot are presented.

I. INTRODUCTION

Mechanical systems with impacts are nonsmooth dynami-

cal systems with trajectories that have intervals of continuity

(flow) and points of discontinuity (jumps). Several frame-

works for modeling these systems have been proposed in

the literature, including Poincaré map modeling [3], [14],

[15], [12], dynamical systems with unilateral constraints [1],

[15], [2], and measure differential inclusions [7].

Following the framework in [4] (see also [5], [10]), we

model mechanical systems with impacts as hybrid dynam-

ical systems where flows are given by a differential equa-

tion/inclusion and jumps by a difference equation/inclusion,

on specific subsets of the state space. In this paper, we focus

our attention on a particular class of mechanical systems

with impacts: juggling systems. Juggling systems consist of

a plant, given by one or many objects, controlled at impacts

by an actuated robot [3], [6].

The problem of stabilization of juggling systems to rhyth-

mic patterns has received great attention from the engineering

and neuroscience community because of its relevance in

robotics and nature. A widely used benchmark juggling

system for this type of task is the one degree-of-freedom

juggler, which consists of a ball bouncing vertically on an

actuated one degree-of-freedom robot. Notable references on

this topic include the feedback control strategies in [15],

[12], [9] and the open-loop strategies in [11], [8] for phase-

lock stabilization to rhythmic patterns. Our novel modeling

framework for juggling systems, which permits the combi-

nation of both continuous-time and discrete-time features in
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the control algorithm and uses an extended time domain for

the system solutions (called hybrid time domain), allow us

to accomplish trajectory tracking tasks as well. We propose

a hybrid control strategy for the one degree-of-freedom

juggler which, by relying only on measurements of the ball

state at impacts, tracks (well-posed) reference trajectories

with arbitrary precision. Additionally, the trajectory tracking

control strategy is not limited to plants with a single juggling

object; it also solves the problem of stabilizing multiple balls

to different rhythmic patterns.

To the best of our knowledge, there are no previous results

in the literature that solve the (multiple-object) trajectory

tracking problem for juggling systems. Additionally, the

modeling and control design techniques we introduce in this

paper can be extended to more general mechanical systems

with impacts, including applications ranging from control

of walking and jumping robots to robotic manipulators and

beyond.

II. HYBRID MODELING OF JUGGLING SYSTEMS

A. General model and solution concept

We consider juggling systems with plant given by

ẋ1 = f1(x1) , (1)

where x1 = [x⊤

11 x⊤

12]
⊤ ∈ R

n1 is the state, and actuated

robot given by

ẋ2 = f2(x2, u) , (2)

where x2 = [x⊤
21 x⊤

22]
⊤ ∈ R

n2 is the state and u ∈ R
m

is the control input. The components x11 and x21 of the

states x1 and x2 correspond to the position state, while the

components x12 and x22 correspond to the velocity state of

the plant and actuated robot, respectively. Let x := [x⊤

1 x⊤

2 ]⊤

and f(x, u) := [f1(x1)
⊤ f2(x2, u)⊤]⊤.

The impact law between the plant and the actuated robot

is given by the difference equations

x+
1 = g1(x), x+

2 = g2(x) , (3)

where x+

1 , x+

2 denote the value of the state x1, x2 after the

impact. Let g(x) := [g1(x)⊤ g2(x)⊤]⊤. The impacts between

the plant and the actuated robot are assumed to occur when,

for a continuously differentiable function h : R
n1+n2 → R,

the state x and the input u satisfy

h(x) = 0 and 〈∇h(x), f(x, u)〉 ≤ 0 . (4)



We interpret the juggling system above as the hybrid

system

ẋ = f(x, u) h(x) ≥ 0 , (5)

x+ = g(x) h(x) = 0 and 〈∇h(x), f(x, u)〉 ≤ 0, (6)

where f and the state constraint in (5) define the flow map

and flow set, respectively, and g and the state constraints

in (6) define the jump map and jump set, respectively. We

follow the framework for hybrid systems in [4], [5] where

solutions are given on hybrid time domains by hybrid arcs.

A set E is a hybrid time domain if for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, . . . J}) is a compact hybrid time domain,

i.e. it can be written as

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 . . . ≤ tJ .

A hybrid arc x is a function defined on a hybrid time

domain domx mapping to a state space such that x(t, j) is

locally absolutely continuous in t for each j, (t, j) ∈ domx.

The notation used in (5)-(6) is suggestive of the meaning

of solutions. Vaguely, for an input u : domu → R
m, a

hybrid arc x : domx → R
n is a solution to a hybrid

system (5)-(6) if domx = domu and x(t, j) satisfies: (C1)

ẋ(t, j) = f(x(t, j), u(t, j)) and h(x(t, j)) ≥ 0 for almost all

t in every nontrivial interval [tj , tj+1], (t, j) ∈ domx, and

(C2) x+(t, j) := x(t, j + 1) = g(x(t, j)), h(x(t, j)) = 0,

and 〈∇h(x(t, j)), f(x(t, j), u(t, j))〉 ≤ 0 for all (t, j) such

that (t, j), (t, j + 1) ∈ domx. For more details, see [4], [5].

B. One degree-of-freedom juggler

For the one degree-of-freedom juggler depicted in Fig-

ure 1, the dynamics of the ball (plant) are given by Newton

x11

x12 < 0

x21

x22 > 0

u

0

Fig. 1. One degree-of-freedom juggler: one ball (plant) and actuated robot.
Their positions are denoted by x11, x21 and their velocities by x12, x22,
respectively.

laws

ẋ1 =

[

x12

−γ

]

=: f1(x1) , (7)

where x1 := [x11 x12]
⊤ ∈ R

2, x11 is the height, x12 is the

velocity of the ball, and γ is the gravity constant. The mass

of the plant is denoted by m1. The actuated robot is assumed

to have double integrator dynamics given by

ẋ2 =

[

x22

u

]

=: f2(x2, u) ,

where x2 := [x21 x22]
⊤ ∈ R

2, x21 is the height, x22 is the

velocity of the actuated robot, and u ∈ R is the control input.

The mass of the actuated robot is denoted by m2.

Impacts are modeled by an impact rule with conservation

of momentum [1], [13]:

x+
12 − x+

22 = −e(x12 − x22) ,

m1x
+

12 + m2x
+

22 = m1x12 + m2x22 ,

where e ∈ (0, 1) is the restitution coefficient. Let λ =
m1

m1+m2

. Then, the update law at impacts velocities is

[

x+

12

x+
22

]

=

[

λ − (1 − λ)e (1 − λ)(1 + e)
λ(1 + e) 1 − λ − λe

] [

x12

x22

]

=: Γ(λ, e)

[

x12

x22

]

,

while the update law for positions is given by

x+

11 = x11, x+

21 = x21 .

The impacts between the ball and the actuated robot occur

when x11 = x21 and x12 ≤ x22.

Then, the one degree-of-freedom juggler system in Fig-

ure 1 is given by the hybrid system H with flows

ẋ11 = x12, ẋ12 = −γ
ẋ21 = x22, ẋ22 = u

}

x11 − x21 ≥ 0 ,

and jumps

x+
11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

x22

]

x+

21 = x21

x+
22 =

[

0 1
]

Γ(λ, e)

[

x12

x22

]































x11 − x21 = 0
and x12 − x22 ≤ 0 .

Note that for this system, the flow and jump sets, denoted

by C and D, respectively, can be defined as in (5)-(6) with

h(x) := x11 − x21 (the condition 〈∇h(x), f(x, u)〉 ≤ 0
becomes x12 − x22 ≤ 0):

C :=
{

x ∈ R
4 | x11 − x21 ≥ 0

}

,

D :=
{

x ∈ R
4 | x11 − x21 = 0, x12 − x22 ≤ 0

}

.

III. TRAJECTORY TRACKING WITH HYBRID CONTROL

In this section, we introduce a trajectory tracking problem

for the one degree-of-freedom juggler in Section II-B and

propose a hybrid control strategy that solves it. The main

ideas and concepts are applicable when solving trajectory

tracking problems for more general classes of mechanical

systems with impacts.

A. Reference trajectories for tracking

We generate rhythmic juggling patterns with the hybrid

system Hr given by

ṙ1 = r2, ṙ2 = −γ r1 − r∗1 ≥ 0 ,

r+
1 = r1, r+

2 = −r2 r1 − r∗1 = 0 and r2 ≤ 0 ,

where r∗1 is the reference height parameter. Let r := [r1 r2]
⊤.

Given an initial condition r0, r0
1 ≥ r∗1 , the solution r to Hr



defines a reference trajectory for tracking on a hybrid time

domain dom r. The reference r has impacts at r1 = r∗1 ;

velocity after the impact given by minus the velocity before

the impact, where the velocity value after the impact defines

the reference velocity parameter r∗2 ; and impact period given

by Tr = 2r∗2/γ. To guarantee that the reference trajectories

are “well-posed” (in the sense that they can be tracked by

H), the flow map of Hr is given by (7). Figure 2 depicts a

reference trajectory r with r∗1 , r∗2 > 0.

B. Finite-time ε-tracking

We are interested in practical tracking of the ball position

given a reference signal r generated by Hr. Both x1 and r
are given on hybrid time domains which do not necessarily

need to be the same. By tracking between x1 and r we mean

that their graphs are close after a finite amount of time.

Definition 3.1 (finite-time ε-tracking): Given ε ≥ 0 and

hybrid arcs x1 : domx1 → R
2, r : dom r → R

2, x1 and r
are ε-close after T ≥ 0 if

(a) for all (t, j) ∈ domx1 with (t, j) � (T, J) for some J ,

(T, J) ∈ domx1, there exists (t′, j′) ∈ dom r, |t−t′| ≤
ε, and

|x1(t, j) − r(t′, j′)| ≤ ε, (8)

(b) for all (t, j) ∈ dom r with (t, j) � (T, J) for some J ,

(T, J) ∈ dom r, there exists (t′, j′) ∈ domx1, |t−t′| ≤
ε, and

|r(t, j) − x1(t
′, j′)| ≤ ε . (9)

When this property holds for x1 and a given reference

trajectory r, we will call it finite-time ε-tracking, and we

will say that “x1 finite-time ε-tracks r”. With an appropriate

offset of x1 and r, finite-time ε-tracking corresponds to the

notion of graphical closeness of solutions to hybrid systems

introduced in [4] (see also [5]).

C. Problem statement and control strategy

We want to solve the following control problem:

(⋆) Given a level of tracking accuracy ε > 0 and a reference

trajectory r generated by Hr, the ball state component

x1 of the solutions to H finite-time ε-tracks the reference

trajectory r with only measurements of x1 at impact

times.

To solve it, we propose the following control algorithm (see

Figure 2):

• Algorithm for Single-ball Juggling: At every impact

between the ball and the actuated robot (say, it occurs at

hybrid time (t0, 0) and that after the jump, the hybrid time

is (t0, 1)):
Step 1) Compute the apex time of the trajectory describing

the ball position (x11) resulting from the impact (denote this

time by ta);

Step 2) Solve for the time of the next two consecutive

impacts after ta in the reference signal r. Denote these

impact times by t′1 and t′2, respectively. If t′1 = ta then define

(t1, t2) to be either (t′1, t
′

2) or (t′1 + Tr, t
′

2 + Tr). Otherwise,

(t1, t2) = (t′1, t
′
2).

Step 3) Compute the ball trajectory x1 at (t1, 1) (thus,

assuming no impacts between time t0 and t1);

Step 4) Compute the value of the state x2 at (t1, 1), denoted

by x′

2, required for the value of x1 after the impact at (t2, 2),
that is, x1(t2, 3), to be equal to the reference trajectory r;

Step 5) Generate a virtual reference trajectory z that at time

(t1, 1) is equal to the value of x2, given by x′

2, computed in

Step 4).

Finally, the control law applied to the actuated robot is

designed so that x2 tracks the virtual reference trajectory

computed in Step 5).

Note that Steps 1)-5) can be computed by explicitly

solving the dynamics of H. The virtual reference trajectory

in Step 5), denoted by z, is a trajectory that satisfies the

dynamics of the actuated robot. At the impact time, it is

reset to a value that guarantees that, when tracked by the

actuated robot, the next impact occurs at the appropriate

time (at this time instant, x2 is equal to x′

2). Figure 2

0 t0 t1 t2 t

Fig. 2. Main control idea to track a reference trajectory r (r1 component
plot in red, dashed). At the impact at t = t0, the controller computes
the resulting ball position trajectory x11 (blue, dashed) at time t1 and the
required value of the state x2 at t1 such that the next desired impact time
t2 of the reference, x1 equals r. The virtual reference trajectory z (black)
resulting from this computation is tracked by the actuated robot (green,
dashed).

depicts the computations in Steps 1)-5) that the control

algorithm performs at the impact at (t0, 0). For simplicity,

the trajectories are plotted projected to the ordinary time axis

t of their hybrid time domain.

D. Hybrid controller

We implement the control algorithm above in a hybrid

controller, which we denote by Hc. Its state is given by z =
[z1 z2]

⊤ ∈ R
2, the virtual reference state. The controller

performs three main tasks:

• At every impact, perform computations in Step 1)-4).

• At every impact, reset z to a value such that the

continuous dynamics of z generate a virtual reference

trajectory that matches the impact constraint in Step 4).

• In between impacts, control the actuated robot to track

the virtual reference trajectory r.

We define the continuous dynamics of the state z by a

copy of the dynamics of the actuated robot. Then, the flows

of Hc are given by

ż1 = z2, ż2 = α (10)



where α < 0. This constant is chosen so that the z1

components of the solution to (10) are described by con-

cave parabolas (see [9] for a rigorous robustness analysis

regarding the selection of such parameter). The jump map

for Hc is given by
[

z1

z2

]+

∈ κc(x1, z, r) (11)

where κc : R
2 × R

2 × R
2 →→ R

2 is a set-valued mapping,

as it will become clear in the next section, that updates the

state z for the generation of the virtual trajectory. The output

of the controller is given by

u = κ(x2, z) ,

where u is the control input to the actuated robot and κ : R
2×

R
2 → R

2. As (11) suggests, the hybrid controller Hc uses

only the states x1, z and reference information at impacts for

the update of z.

The closed-loop system resulting from controlling the

juggling system H with the hybrid controller Hc can be

written as the following hybrid system, which we denote

by Hcl, with state space O := R
6:

ẋ11 = x12, ẋ12 = −γ
ẋ21 = x22, ẋ22 = κ(x2, z)
ż1 = z2, ż2 = α







x11 − x21 ≥ 0 ,

x+

11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

x22

]

x+
21 = x21

x+
22 =

[

0 1
]

Γ(λ, e)

[

x12

x22

]

[

z1

z2

]+

∈ κc(x1, z, r)















































x11 − x21 = 0
and

x12 − x22 ≤ 0 .

E. Control design and main results

To design the update law κc of the hybrid controller Hc,

we initially replace the dynamics of the actuated robot in H
by the dynamics of the state z in Hc. That is, we consider

the hybrid system

ẋ11 = x12, ẋ12 = −γ
ż1 = z2, ż2 = α

}

x11 − z1 ≥ 0 ,

x+

11 = x11

x+

12 =
[

1 0
]

Γ(λ, e)

[

x12

z2

]

[

z1

z2

]+

∈ κc(x1, z, r)























x11 − z1 = 0
and

x12 − z2 ≤ 0 .

We denote this system by Hv meaning virtual juggling

system. The control design idea is to define the set-valued

map κc such that the control task (⋆) is accomplished for Hv

and then design the control law κ, which acts on the actuated

robot, to accomplish asymptotic tracking between x2 and z
during flows. To that end, we first state the following result

for the solutions to Hv. Below, by feasible initial condition

of Hv we mean any initial condition for which solutions to

Hv never reach x11 = z1, x12 = z2.

Lemma 3.2: For every feasible initial condition

[x0
11 x0

12 z0
1 z0

2 ]
⊤ of Hv, the next impact occurs at

time (t1, 0), where t1 is given by the nonnegative solution

to

z0
1 = −

γ + α

2
t21 + (x0

12 − z0
2)t1 + x0

11 . (12)

Moreover, the position and velocity of the ball after the

impact at (t1, 0), denoted by x11(t1, 1) and x12(t1, 1), re-

spectively, are given by

x11(t1, 1) = −
γ

2
t21 + x0

12t1 + x0
11, (13)

x12(t1, 1) =
[

1 0
]

Γ(λ, e)

[

x0
12 − γt1

αt1 + z0
2

]

. (14)

Lemma 3.2 can be shown by solving explicitly for x1 and

z. In fact, (12) follows from solving the system backward

in time from the jump condition of Hv , (13) follows since

at jumps, the x11 component of the solution is mapped to

itself, and (14) is derived from the impact rule in Hv .

Let J : R
2 × R

2 × R
2 →→ R

2 be the set-valued mapping

J(x1, z, r) :=














r2+r∗
2

γ
if ax12+bz2

γ
<

r2+r∗
2

γ
{

r2+r∗
2

γ
,

r2+r∗
2

γ
+ Tr

}

if ax12+bz2

γ
=

r2+r∗
2

γ

r2+r∗
2

γ
+ Tr if ax12+bz2

γ
>

r2+r∗
2

γ
,

a =
[

1 0
]

Γ(λ, e)

[

1
0

]

, b =
[

1 0
]

Γ(λ, e)

[

0
1

]

.

Our control algorithm first computes the time for the

next impact t1 in Step 1) and then computes Step 2)-5)

to generate a virtual trajectory. Regarding Step 1), the set-

valued mapping J defines the time(s) to the next impact,

given by t1, from the current state. If the apex time of the

trajectory x11 is smaller than the time for the next impact of

the reference, then t1 is given by the next impact time of the

reference. If, instead, the apex time of the trajectory x11 is

larger than the time for the next impact of the reference, then

the impact is postponed for one period Tr. When t1 is equal

to the apex time, both times are possible and, therefore, J is

set valued. Regarding Step 2)-5), for each t1 ∈ J(x1, z, r),
the reset value z∗ for z is computed by two applications of

Lemma 3.2. We do this by setting x1(t2, 3) = r∗, t1 + Tr

(see Figure 2). Then, the set-valued mapping κc is given for

each x1, z, r ∈ R
2 by all points z∗ = [z∗1 z∗2 ]⊤ satisfying

z∗1 ∈ −
γ + α

2
t̃2 + (ax12 + bz2 − z∗2)t̃ + x11

z∗2 ∈
r∗1 + γ

2
T 2

r + γ

2
t̃2 − (ax12 + bz2)t̃ − x11

bTr

+
(aγ − bα)t̃ − a(ax12 + bz2)

b
for each t̃ ∈ J(x1, z, r) .

The control law κ is designed so that the trajectories of the

actuated robot system track the virtual reference trajectories.



In a perfect tracking scenario, when the error between the

actuated robot state and the virtual trajectory is zero, the

control algorithm achieves finite-time 0-tracking. This is

actually the case for the virtual juggling system Hv .

Theorem 3.3: For each reference trajectory r generated

from Hr and each feasible initial condition of Hv , each

solution to Hv is bounded and the x1 component finite-time

0-tracks the reference trajectory r. Moreover, the trajectories

coincide after three impacts.

In general, there is an error between x2 and z. Let e1 :=
x21 − z1, e2 := x22 − z2. Then, the error system is

ė1 = e2, ė2 = u − α .

Given k1, k2 > 0, a particular choice of the control law κ to

accomplish the tracking between x2 and z is given by

κ(x2, z) = α − k1(x21 − z1) − k2(x22 − z2) .

We now state the main result of this section. As defined

for Hv, feasible initial conditions for Hcl correspond to

initial conditions from which solutions to Hcl never reach

the condition x11 = x21, x12 = x22.

Theorem 3.4: For each compact set K ⊂ O, each ε > 0,

and each reference trajectory r generated from Hr, there

exists k1, k2 ∈ R such that each solution to Hcl starting

from K that is feasible is bounded and the x1 component

finite-time ε-tracks the reference trajectory r. Moreover, only

three impacts are required for x1 and r to be ε-close.

Remark 3.5: The proof of Theorem 3.3 follows from the

construction of the update law κc, which is designed so

that the ball component of solutions to Hv converge to the

reference trajectory in finite time. To show Theorem 3.4,

we establish that, on compact sets, the error between the

nominal trajectories and the trajectories with perturbed im-

pact time (by a mismatch between x2 and z) vanishes

with the mismatch between x2 and z. Then, the desired

tracking precision given by ε can be obtained by choosing

fast enough converging tracking law κ so that at the impact

times, the state of the actuated robot is within appropriate

level of perturbation. This condition is satisfied by selecting

large enough parameters k1, k2 of the tracking law κ. Using

this same proof technique, we are also able to show that

the closed-loop system is robust to measurement noise,

computation errors, and observer-based output feedback. Due

to space constraints, we do not pursue this here.

F. Simulations

We simulate the closed-loop system Hcl with a reference

trajectory generated by Hr with r∗1 = 0 m, r∗2 = 10 m/s, and

initial condition r0 = [0 m 10 m/s]⊤.

Figure 3 shows a simulation of the closed-loop system. For

simplicity, we present the trajectories projected to the ordi-

nary time t axis. The ball trajectory approaches the reference

trajectory in the neighborhood of the time corresponding to

the third bounce. Note that the parameters of the control law

κ steer the actuated robot to a very small neighborhood of

0

0 2 4

5
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15

−5

−10

−15

−20

−25

−30

t
Fig. 3. Simulation of closed-loop system Hcl. System parameters: m1 =
1 Kg, m2 = 9 Kg, e = 0.8, γ = 9.8 m/s2. Controller parameters:
α = −9.8, k1 = 2000, k2 = 100. Initial condition: x11(0, 0) = 5 m,
x12(0, 0) = 1 m/s, x21(0, 0) = −1 m, x22(0, 0) = 0 m/s. The trajectory
of the ball (blue) impacts with the actuated robot (trajectory in green). Finite-
time ε-tracking is achieved at the third bounce when the ball trajectory
approaches the reference trajectory (red, dashed). The virtual reference z is
depicted with black, dashed line.
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Fig. 4. Simulation of closed-loop system Hcl. System parameters: m1 =
1 Kg, m2 = 9 Kg, e = 0.8, γ = 9.8 m/s2. Controller parameters:
α = −9.8, k1 = 2000, k2 = 100. Initial condition: x11(0, 0) = 5 m,
x12(0, 0) = −8 m/s, x21(0, 0) = −1 m, x22(0, 0) = 0 m/s. The
trajectory of the ball (blue) impacts with the actuated robot (trajectory
in green). Finite-time ε-tracking is achieved at the third bounce when the
ball trajectory approaches the reference trajectory (red, dashed). The virtual
reference z is depicted with black, dashed line.

the virtual reference. This level of closeness can be made

arbitrarily small by choosing large enough k1 and k2.

The simulation in Figure 4 is for the same reference

trajectory but for different initial conditions of the ball. It

illustrates the decision that the controller makes when the

apex time of the trajectory after the first bounce is larger than

the next impact of the reference trajectory. As a difference

to the simulation in Figure 3, the second impact is planned

for t1 = 4r∗2/γ rather than for t1 = 2r∗2/γ.

IV. THE MULTIPLE-BALLS JUGGLING CASE

In this section, we consider the multiple ball juggling

problem. Suppose we are given n reference trajectories, n
balls, and one actuated robot. Our goal is the following:

(⋆⋆) Given a level of tracking accuracy ε > 0 and n
reference trajectories generated by Hr with distinct impact

times, the i-th ball state component xi
1 of the solutions to



the closed-loop system finite-time ε-tracks the i-th reference

trajectory ri with only measurements of xi
1 at impact times.

We propose a strategy that combines the control algorithm

introduced in Section III to plan the impacts for each ball

individually and uses additional logic to select the ball to

control. Let Q := {1, 2, . . . , n} and q be a logic state, q ∈
Q. Let zq ∈ R

2 be the virtual reference state of the q-th

ball. The reference trajectory for q-th ball is generated by

the hybrid system Hq
r . We assume that for each q, Hq

r is

defined as Hr. For problem (⋆⋆), we further assume that the

reference trajectories are such that the impact times do not

occur at the same time and that they have the above ordering

property: every n impacts, each reference trajectory has only

one impact, and the order is preserved. The control logic for

multiple-ball juggling is as follows.

• Algorithm for Multiple-ball Juggling: At an impact

between the q-th ball and the actuated robot:

Step 1) With reference trajectory rq , compute Step 1)-5) of

the Algorithm for Single-ball Juggling to obtain zq∗. Update

the state zq with this value.

Step 2) Update the logic state q by q+= mod (q, n) + 1.

Step 3) Apply to the actuated robot a control law that tracks

the virtual reference zq.

We implement this logic in a hybrid controller and obtain

the closed-loop system HM
cl given by

ẋ1
11 = x1

12, ẋ1
12 = −γ

ẋ2
11 = x2

12, ẋ2
12 = −γ

...
...

ẋn
11 = xn

12, ẋn
12 = −γ

ẋ21 = x22, ẋ22 = κ(x2, z
q)

ż1
1 = z1

2 , ż1
2 = α

ż2
1 = z2

2 , ż2
2 = α

...
...

żn
1 = zn

2 , żn
2 = α































































xq
11 − x21 ≥ 0 ,

[

xq
12

x22

]+

= Γ(λ, e)

[

xq
12

x22

]

[

zq
1

zq
2

]+

∈ κc(x
q
1, z

q, rq)

q+ = mod (q, 2) + 1























xq
11 − x21 = 0

and

xq
12 − x22 ≤ 0 ,

where in the jump map and jump set, we have omitted the

states that remain constant during flows and jumps.

By construction, the closed-loop system HM
cl inherits the

same properties than the ones of Hcl in Theorem 3.4. The

main difference in the multiple trajectory tracking problem is

that feasible initial conditions need to satisfy more restrictive

constraints: every n impacts, each ball has impacted only

once, and the order is preserved.

We will just mention that the controller construction

for multiple (and consequently, for the single-ball case)

trajectory tracking is such that the conditions for nominal

robustness of hybrid systems in [4] and [5] hold.

Figure 5 shows simulations results for three-balls juggling.

The reference trajectories have a 120deg phase difference

between each other. The plots show that each ball ε-tracks

the corresponding reference trajectory after the third impact.
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Fig. 5. Simulation of the closed-loop system HM
r for three balls. System

parameters: m1

1
= m2

1
= m3

1
= 1 Kg, m2 = 9 Kg, e = 0.8, γ =

9.8 m/s2. Controller parameters: α = −9.8, k1 = 2000, k2 = 100. For the
given initial conditions, the trajectories approach their respective reference
trajectories (in red, dashed) at their third bounce.
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