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Abstract— We present an algebraic characterization of the
standard commutative relaxation of the word problem in terms
of a polynomial equality. We then consider a variant of the
commutative word problem, referred to as the “Zero-to-All
reachability” problem. We show that this problem is equivalent
to a finite number of commutative word problems, and we
use this insight to derive necessary conditions for Zero-to-All
reachability. We conclude with a set of illustrative examples.

I. INTRODUCTION

A. Motivation and Background

The paper focuses on solving commutative relaxations of

the word problem for finite Semi-Thue systems, referred to

simply as the “word problem” for brevity. While this problem

has long been studied by the computer science community

[3], our interest in it stems from its relevance to a number of

verification and analysis problems in emerging engineering

applications, ranging from multi-agent systems described by

graph grammars [6] to biochemical processes in cells [10].

Let Σ be a finite set and let Σ∗ denote the set of all

sequences over Σ, including the empty sequence denoted
by #. A grammar rule or production is an ordered pair in

Σ∗×Σ∗. A (finite) Semi-Thue system is a finite alphabet set

Σ and a (finite) set of productions P ⊂ Σ∗ ×Σ∗. The word

problem for Semi-Thue systems can be stated as follows:

Given a Semi-Thue system (Σ,P) and two words u and v
in Σ∗, is it possible to transform u into v by applying rules
from P? This problem is known to be undecidable even when
P is finite [11].
A relaxation of the word problem can be obtained by

considering a commutative version in which (ab, ba) ∈ P
for all a and b in Σ. The word problem in finite commutative
Semi-Thue systems is known to be equivalent to several

other problems, including the reachability problem for vector

addition systems (also referred to as vector replacement

systems) and the Petri net reachability problem, all of which

have been shown to be decidable [12], [9], [7].

A further relaxation of the word problem can be obtained

by considering a symmetric version of the commutative

relaxation, namely one in which the set of productions P
has the property that if (u, v) ∈ P , then (v, u) ∈ P .
The word problem for the corresponding finite commutative

Thue system (Σ,P) has been extensively studied over the
past century, leading to a recognition of its connection to

algebraic problems. In particular, the relation between finitely

presented commutative monoids and polynomial rings was
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first noted in [5], where it was also proved that the ideal

membership problem for a polynomial ring is decidable (see

[13] for a more accessible reference). The word problem

for finite commutative Thue systems and the corresponding

ideal membership problem were subsequently shown to be

NP-hard [8]. Various computational techniques for verifying

ideal membership exist, beginning with Buchberger’s work

on Gröbner basis [1], [2], and continuing with more recent

developments including the approach in [4] based on primary

decompositions of the ideal.

B. Overview of the Paper

The contributions of the paper are as follows: First, we

present an algebraic characterization of the standard com-

mutative relaxation of the word problem in terms of a poly-

nomial equality where the coefficients of certain polynomials

are restricted to be non-negative. Next, we consider a variant

of the commutative word problem, referred to as the “Zero-

to-All reachability” problem, stated as follows: Is it possible

to transform the empty string into any word in Σ∗ using the

rules in P? We show that this problem is equivalent to a
finite number of commutative word problems, and we use

this insight to derive necessary conditions for Zero-to-All

reachability.

The paper is organized as follows: A formal statement of

the word problem and a precise description of its standard

commutative relaxation, expressed as a point-to-point reach-

ability problem in an infinite directed graph, is presented in

Section II. The algebraic characterization and computational

tools proposed for solving the commutative word problem

(or equivalently, the point-to-point reachability problem) are

presented in Section III. It is shown in Section IV that

the Zero-to-All reachability problem is equivalent to finitely

many point-to-point reachability problems, and a necessary

condition for reachability is derived. A set of simple illustra-

tive examples follows in Section V, and the paper concludes

in Section VI where directions for future work are given.

II. COMMUTATIVE RELAXATIONS

Consider a finite alphabet set Σ and a finite set of

productions P ⊂ Σ∗ × Σ∗ defining a finite Semi-Thue

system (Σ,P). The application of rule (r, w) ∈ P to a word
u = αrβ, where α, β ∈ Σ∗, yields another word u′ = αwβ.
The word problem can be stated as follows:

Given a finite Semi-Thue system (Σ,P) and two

words u, v ∈ Σ∗, is it possible to transform u into

v by sequentially applying rules in P?
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A finite commutative Semi-Thue system is a finite Semi-

Thue system (Σ,P) such that:

{(ab, ba)|a, b ∈ Σ} ⊂ P

The word problem for finite commutative Semi-Thue systems

will be referred to throughout the paper as the “commutative

word problem”.

A. Commutative Relaxation for the Word Problem

A relaxation of the word problem for a given finite Semi-

Thue system (Σ,P) can be obtained by considering the word
problem for a new system (Σ,P ′) such that P ⊂ P ′. In

this case, it is clear that if there exists a transformation

of u into v using rules in P , there also exists such a
transformation using rules in P ′. Equivalently, the non-

existence of a transformation using rules in P ′ implies the

non-existence of a transformation using rules in P .
In particular, a commutative relaxation of the word prob-

lem for a given system (Σ,P) can be obtained by defining:

P ′ = P ∪ {(ab, ba)|a, b ∈ Σ}

B. Graph Theoretic Formulation of the Commutative Word

Problem

Consider an alphabet set Σ = {a1, . . . , an} and let (Σ,P)
be a finite commutative Semi-Thue system. Consider the

Parikh mapping Φ : Σ∗ → Nn, in which the ith coordinate
of Φ(u) is the number of occurrences of the symbol ai in

word u. In this setting, words u and v are equivalent, denoted
uRv, if their images by the Parikh mapping are identical1.
For any two words u and v in the same equivalence class,
there always exists a transformation of u into v and one
of v into u using the rules in P . Now consider two words
u and v with Φ(u) 6= Φ(v). Note that it is possible to
transform u into v using the rules in P iff it is possible
to transform a representative element of the equivalence

class of u into a representative element of the equivalence
class of v. It follows from this simple observation that the
commutative word problem can be formulated as a point-to-

point reachability problem in an infinite directed graph.

Indeed, consider a finite commutative Semi-Thue system

(Σ,P), where Σ = {a1, . . . , an}. Define a set B ⊂ Nn×Nn

as follows:

B = {(Φ(r),Φ(w))|(r, w) ∈ P}

We can construct an infinite directed graph GB = (N , E)
with nodes N = Nn and directed edges defined by (see

Figure 1):

E = {(s + δ, t + δ)|(s, t) ∈ B, δ ∈ Nn}

A directed path from node u to node v is understood to
be a sequence of directed edges (u1, v1), . . ., (uk, vk) of
GB satisfying u1 = u, ui+1 = vi for i ∈ {1, . . . , k − 1},
and vk = v. The point-to-point reachability problem can be
stated as follows:

1R clearly defines an equivalence relation on Σ∗, being reflexive,
symmetric and transitive.

Given an infinite directed graph GB and two nodes

u and v, does there exist a directed path from u to

v in GB?

The commutative word problem for system (Σ,P) and
the point-to-point reachability problem for the corresponding

graph GB are equivalent. Indeed, the nodes of GB in this

case are understood to be the representative elements of the

equivalence classes in Σ∗.

N
n

Fig. 1. Construction of infinite digraph GB for a case where the alphabet

set Σ is binary and where B = {(
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III. THE POINT-TO-POINT REACHABILITY

PROBLEM

In this section, we present an algebraic characterization

of the point-to-point reachability problem. In particular, we

show that existence of a directed path from one given node

to another is equivalent to the existence of a “non-negative”

polynomial solution to a particular polynomial equation.

A. Algebraic Characterization of Point-to-Point Reachability

Consider a set B ⊂ Nn × Nn with cardinality p and a
corresponding digraph GB as described in Section II-B. We

can uniquely associate with every node u = (u1, . . . , un) a
monomial xu ∈ Q[x1, . . . , xn], where Q denotes the field of

rationals, as follows:

xu = xu1

1 . . . xun
n

We can also uniquely associate with every element (s, t) of
B a binomial xt − xs ∈ Q[x1, . . . , xn].

Theorem 1: There exists a directed path from node u to
node v in GB iff there exists polynomials g1, . . . , gp ∈
Q[x1, . . . , xn], with non-negative coefficients, such that:

xv − xu =

p
∑

i=1

(xti − xsi)gi(x) (1)

with (si, ti) ∈ B for all i.
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Proof: Note that when u = v, the Theorem holds vac-
uously. We will thus assume that u 6= v in the following
proof.

To prove necessity, let (u0, v0), (u1, v1),..., (uN , vN ) be
a directed path from u = u0 to v = vN in GB. For each

i ∈ {0, 1, . . . , N}, we have:

(ui, vi) = (ski
+ δi, tki

+ δi)

for some (ski
, tki

) ∈ B and some δi ∈ Nn. Hence we have

xui = xski
+δi = xski xδi and xvi = xtki

+δi = xtki xδi . It

follows that:

xv − xu =

N
∑

i=0

(xvi − xui) =

N
∑

i=0

(xtki − xski )xδi

Collecting terms, we get the expression in (1) with each

polynomial gi(x) having non-negative integer coefficients.

To prove sufficiency, suppose there exists polynomials

g1, . . . , gp with non-negative rational coefficients such that

(1) holds, and let d be the least common denominator of the
coefficients. Equation (1) can be re-written as:

dxv − dxu =

p
∑

i=1

(xti − xsi)hi(x)

where polynomials h1, . . . , hp have non-negative integer

coefficients. We can then write:

(d − 1)(xv − xu) + xv − xu =
m

∑

i=1

(xti − xsi)h′
i(x) (2)

where h′
1, . . . , h

′
m are monomials with unity coefficients

(obtained by simply expanding polynomials h1, . . . , hp) and

with m ≥ p. Note that there must exist a j ∈ {1, . . . ,m}
such that xu = xsj h′

j(x). Let xu1 = xtj h′
j(x). We can write:

(d−1)(xv−xu)+xv−xu1 =
∑

i∈{1,...,m}\{j}

(xti −xsi)h′
i(x)

Pair (u, u1) is a directed edge in GB, since (u, u1) = (sj +
δj , tj + δj), with h′

j(x) = xδj and hence δj ∈ Nn. If u1 = v
we are done, having found a directed path (u, u1) = (u, v)
from u to v. Otherwise, by repeating the same argument k
times for xui , with k ≤ m − d (see comment2), we can
construct a sequence of edges (u, u1), (u1, u2), ..., (uk, v).
For if such a sequence does not exist, we would have:

(d−1)(xv−xu)+xv−xum−d+1 =
∑

i∈I

(xti −xsi)h′
i(x) (3)

where index set I ⊂ {1, . . . ,m} has cardinality d − 1.
The left and right hand sides of (3) would thus include d
(identical) monomials with unity coefficients and d−1 mono-
mials with unity coefficients, respectively, implying that the

equality cannot hold and thus leading to a contradiction. ¤

2It should be clear thatm ≥ d otherwise (2) cannot hold unless xv = xu,
which is excluded here.

B. Verifying the Polynomial Equation

Having thus derived an algebraic characterization of point-

to-point reachability, the question becomes: How can we

verify the condition in (1)?

A naive way consists of solving a sequence of increasingly

large linear programs until a feasible solution is found.

Consider p candidate polynomials of fixed total degree r:

gi(x) =
∑

|α|≤r

ci,αxα, i ∈ {1, . . . , p}

where |α| refers to the total degree of monomial xα. Verify-

ing (1) for this choice of candidate polynomials reduces to

verifying feasibility of a linear program of the form:

Ax = 0

x ≥ 0

Decision variable x here is the vector of coefficients of
g1, . . . , gp. The equality constraints are obtained by collect-

ing terms in:

xv − xu −

p
∑

i=1

(xti − xsi)gi(x) = 0

and setting the coefficient of each monomial term equal to

0. The inequality constraints impose the restriction that the

coefficients of g1, . . . , gp are non-negative.

The solution procedure is then as follows: Initialize r
to max{1, |v| − max

i
|ti|, |u| − max

i
|si|}, and consider the

corresponding linear program. If a feasible solution exists,

the existence of a directed path from u to v is verified, and
at least one such directed path can be explicitly constructed

from the verified polynomial equality (see Example 1 in

Section V). On the other hand, if the linear program is found

to be infeasible, increase r by 1 and repeat the process.

This approach, while conceptually simple, is not par-

ticularly efficient. One major direction of future research

will focus on developing more computationally efficient

verification tools. Note that dropping the requirement of

non-negative coefficients reduces the problem to an ideal

membership problem, which has been extensively studied in

algebraic-geometry and for which more efficient approaches,

based on ideal primary decompositions, have been developed

[2], [4]. One direction that will thus be explored is the

possibility of developing similar reduction techniques for the

class of problems of interest.

IV. VARIANTS OF THE COMMUTATIVE WORD

PROBLEM

In this section, we consider another graph reachability

problem corresponding to a variant of the commutative word

problem. We show how it can be equivalently re-formulated

as a finite number of point-to-point reachability problems,

and we derive necessary conditions for reachability.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB13.1

5577

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 20,2010 at 21:25:37 UTC from IEEE Xplore.  Restrictions apply. 



A. Zero-to-All Reachability

Given an infinite directed graph GB constructed as in

Section II-B, let 0 denote the node 0n ∈ Nn. The Zero-to-All

reachability problem can be stated as:

Is there a directed path in GB from node 0 to every

node in N \ {0}?

This problem is equivalent to the following problem for the

corresponding finite commutative Semi-Thue system (Σ,P):

Is it possible to transform the empty string # into

any word in Σ∗ by applying rules from P?

Remark 1: The All-to-Zero reachability problem can be

stated as follows: Is there a directed path in GB from every

node to 0? While this Section focuses on the Zero-to-All
reachability problem, the All-to-Zero reachability problem

can be similarly treated: It suffices to note that All-to-Zero

reachability of GB is equivalent to Zero-to-All reachability

of GB′ , where B′ = {(t, s)|(s, t) ∈ B}.

B. Reduction to Point-to-Point Reachability

We begin by noting that the Zero-to-All reachability

problem can be reduced to solving n point-to-point reach-
ability problems. Given a set B and an associated infinite
digraph GB as described in Section II-B, let ei be the node

corresponding to the coordinates of the ith basis vector (i.e.
the unit vector whose ith entry is 1).

Theorem 2: GB is Zero-to-All reachable iff there exists a

directed path from 0 to each of the nodes e1, . . . , en.

Proof: Necessity is trivial: If the digraph is Zero-to-All

reachable, there exists a directed path from 0 to every node
in N , in particular to e1, . . . , en.

To prove sufficiency, we begin by noting that if there

exists a directed path from 0 to ei, there also exists

a directed path from any node v = (v1, . . . , vn)′ to
w = (v1, . . . , vi + 1, . . . , vn)′. Indeed, let (0, u1), (u1, u2),
. . . , (uk, ei) be a directed path from 0 to ei. Then the

path (v, u1 + v), (u1 + v, u2 + v), . . . , (uk + v, ei + v)
is a directed path from v to w. It follows that it is
always possible to construct a directed path from 0
to any node v = (v1, . . . , vn)′ passing through nodes e1,

2e1, . . . , v1e1, v1e1+e2, . . . , v1e1+v2e2, . . . ,
n

∑

i=1

viei. ¤

C. A Necessary Condition for Zero-to-All Reachability

We next show that feasibility of n decoupled integer
linear programs is a necessary condition for Zero-to-All

reachability. Associate with every (s, t) ∈ B a vector b =
t − s in Nn.

Theorem 3: If GB is Zero-to-All reachable, then there

exists non-negative integers αi
1, . . ., αi

p, i ∈ {1, . . . , n}
satisfying the following set of decoupled linear equations:

α1
1b1 + . . . + α1

pbp = e1

... (4)

αn
1 b1 + . . . + αn

p bp = en

where ei is the ith basis vector.

Note that Theorem 3 is only a necessary condition. Thus,

while it does not allow us to directly verify Zero-to-All

reachability, it can be used to certify that a given graph GB is

not Zero-to-All reachable when at least one of the n integer
linear programs defined by (4) does not admit a feasible

(non-negative, integer) solution. The following intermediate

statements will be used in the proof.

Lemma 1: If there exists a directed path in GB from 0 to

x, then x =

p
∑

i=0

αibi for some αi ∈ N.

Proof: Let (u0, u1), (u1, u2), . . . , (uk−1, uk) be such a
directed path, and let βi = ui+1 − ui. We have:

x = uk − u0

=
k−1
∑

i=0

(ui+1 − ui)

=

k−1
∑

i=0

βi

=

p
∑

i=0

αibi, for some αi ∈ N.

¤

Lemma 2: Let R =
{

∑p
i=1

αibi|αi ∈ N

}

. If GB is Zero-

to-All reachable, then Nn ⊆ R.
Proof: Suppose there exists an x ∈ Nn such that s /∈ R:

thus, x 6=

p
∑

i=1

αibi for any choice of α1, . . . , αp in N, there

exists no directed path from 0 to x, and hence GB is not

Zero-to-All reachable. ¤

Lemma 3: Nn ⊆ R iff each of the integer linear programs
in (4) has a feasible non-negative integer solution.

Proof: Necessity is straightforward: Suppose that the ith

linear equation in (4) does not have a feasible non-negative

integer solution. Then there exists at least one element of Nn

that is not in R, namely ei.

To prove sufficiency, note that if each of the linear

programs in (4) has a feasible non-negative integer solution,

then the linear program:

p
∑

i=1





n
∑

j=1

ajα
j
i



 bi =

n
∑

j=1

ajej

has a non-negative integer solution for any choice of values

a1, . . . , an in N. Thus, every x ∈ Nn also belongs to R. ¤

Proof of Theorem 3: Follows as a direct consequence of

Lemmas 1, 2 and 3. ¤

V. ILLUSTRATIVE EXAMPLES

Example 1 uses a toy problem to give insight into Theorem

1. Examples 2-4 present simple variations of the toy problem

to illustrate the results derived in Sections III and IV.

Example 1: Consider a knight playing on an infinite

chessboard. The squares of the chessboard can be associated

with N2, as shown in Figure 2. Let e1 =

(

1
0

)

, e2 =
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s3

s2e2

s1e10

s4

Fig. 2. Knight on an infinite chessboard.

(

0
1

)

, s1 =

(

2
0

)

, s2 =

(

2
1

)

, s3 =

(

1
2

)

, s4 =
(

0
2

)

. The basic moves of the knight are given by:

B = {(0, s2), (0, s3), (s1, e2), (s4, e1),

(s2, 0), (s3, 0), (e2, s1), (e1, s4)}

and the binomials associated with the elements of B are:

(0, s2) → x2y − 1

(0, s3) → xy2 − 1

(s1, e2) → y − x2

(s4, e1) → x − y2

(s2, 0) → 1 − x2y

(s3, 0) → 1 − xy2

(e2, s1) → x2 − y

(e1, s4) → y2 − x

By Theorem 1, the following (readily verifiable) polyno-

mial equality, being of the form (1), allows us to prove the

existence of a feasible directed path for the chess knight from

node u =

(

4
4

)

to node v =

(

3
3

)

:

x3y3 − x4y4 = (xy2 − 1)x4y4

+ (y − x2)(
1

2
x3y2 +

1

2
x4y4)

+ (x − y2)x5y4

+ (1 − xy2)(
1

2
x3y3 +

1

2
x5y2)

(5)

Indeed, following the steps in the sufficiency proof of Theo-

rem 1, we can construct a sequence of directed edges starting

at u, passing through nodes u1 =

(

5
6

)

, u2 =

(

6
4

)

,

u3 =

(

4
5

)

and ending at u4 = v. Using the same

procedure, we can alternatively construct another sequence

of directed edges, also starting at u, but passing through

u1 =

(

5
6

)

, u2 =

(

6
4

)

, u3 =

(

5
2

)

and ending at

u4 = v. This simple example illustrates the intuition behind
the algebraic characterization of point-to-point reachability

given by (1), namely that the right hand side describes an

“average” of d different directed paths from u to v.

N
n

e1

e2

0

Fig. 3. Directed paths of the knight from 0 to e1 and e2.

Example 2: Assume that the knight begins the game at

the corner of the infinite chessboard, associated with the 0
node in this setup (see Figure 2). An interesting question is

this: Can she can reach all the squares of the chessboard?

Equivalently, we need to check whether the infinite directed

graph GB constructed as described in Section II-B for B
given in Example 1 is Zero-to-All reachable. By Theorem 2,

we need to verify existence of directed paths from 0 to e1

and e2, which can be easily done by inspection (see Figure

3).

Example 3: Variants of the problem in Example 2 can

be posed by restricting the knight’s allowable moves. For

instance, consider the case where the knight’s moves are

restricted to a subset of B given by:

B2 = {(0, s2), (s4, e1), (s3, 0)}

Can the knight still reach all the squares of the chessboard

starting from 0? According to Theorem 3, the answer is no

whenever the integer linear program in (4) has no feasible

non-negative solution. In this particular example, this reduces

to checking the feasibility of two integer linear programs

(corresponding to i = 1, 2):

Ax = ei

x ≥ 0

with A given by:

A =

[

2 1 −1
1 −2 −2

]
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Both ILPs turn out to be infeasible here, hence we conclude

that the knight cannot reach all the squares on the playing

board (in fact, she cannot even reach e1 and e2 with the

allowable moves).

Example 4: Finally, consider the case where the knight’s

basic moves are restricted to:

B3 = {(0, s2), (s3, 0), (e2, s1), (e1, s4)}

The corresponding linear programs described in (4) are both

feasible in this case, which gives us hope that there could

exist directed paths from 0 to e1 and e2. We will attempt to

construct these paths using Theorem 1 in conjunction with

the naive LP-based procedure proposed in Section III-B. We

begin by considering candidate polynomials g1, g2, g3 and

g4 of total degree 1 (i.e. gi(x, y) = ai+bix+ciy). The corre-
sponding linear programs are both found to be infeasible. We

then increase the total degree of the candidate polynomials

to 2 (i.e. gi(x, y) = ai + bix+ ciy +dix
2 + fixy + liy

2) and

repeat the procedure. In this case, a solution to both LPs is

found, and the corresponding verified polynomial equalities

are:

x− 1 = (x2y − 1)(1 + y) + (1− xy2)(x + y) + (y2 − x)xy

and:

y − 1 = (x2y − 1) + (1 − xy2)y + (y2 − x)xy

The corresponding directed paths from 0 to e1 and e2, which

can be reconstructed (see Example 1), are shown in Figure 4.

It is interesting to note that the knight can reach all squares

of the chessboard using only 3 basic moves, namely (0, s2),
(s3, 0) and (e1, s4).

N
n

e10

e2

Fig. 4. Directed paths of the knight from 0 to e1 and e2 in Example 4.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We presented an algebraic characterization of commutative

word problems in terms of a polynomial equality, thus

generalizing existing results for the symmetric case. We

also considered a “Zero-to-All reachability” question for

commutative Semi-Thue systems: We showed that solving

this problem is equivalent to solving a finite number of

commutative word problem, and we used this insight to

derive necessary conditions for Zero-to-All reachability.

B. Future Work

Research will be pursued in two broad directions. The first

direction will aim at addressing the following questions: Is it

possible to construct a hierarchy of commutative relaxations

for a given Semi-Thue system? And if so, can anything

be said about the solution of the word problem for the

original system based on the properties of the solutions of the

word problem for a number of the commutative relaxations?

The second direction is computational, and will aim at (i)

understanding the relation between the algebraic characteri-

zation of the commutative word problem and the standard LP

solution of shortest path problems in appropriately defined

finite subgraphs and (ii) finding more efficient computational

procedures for verifying the polynomial equation, possibly

via appropriate reduction procedures.
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