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Abstract— Prediction error identification requires that the
selected model structure be identifiable, and that the data be
informative with respect to this model structure. Whereas a
range of sufficient conditions for informative experiments has
been available for a long time, there were surprisingly no
results of necessary and sufficient nature. With the recent surge
of interest in optimal experiment design, whose solutions are
typically in the form of multisines, it is of interest to know
the minimal richness required of the externally applied signal
to make the experiment informative. For all commonly used
model structures, we provide necessary and sufficient conditions
on the degree of richness of the applied signal to generate an
informative experiment, both in open loop and in closed loop.
In a closed-loop setup, where identification can be achieved with
no external excitation if the controller is of sufficient degree, our
results provide an unexpected and precisely quantifiable trade-
off between controller degree and required degree of external
excitation.

I. INTRODUCTION

This paper takes a new look at the concept of identifiability
and of informative experiments for linear time-invariant
systems, both in open-loop and in closed-loop identification.
Identifiability is a requirement on the chosen model structure,
while the generation of data that are informative with respect
to an identifiable model structure is a requirement on the
experiment design. The combination of an identifiable model
structure with an experiment that delivers informative data
with respect to this model structure yields a well-defined
identification problem, guaranteeing a unique global mini-
mum of the identification criterion [6].

Some readers might think that everything has been said
and written about these concepts, which were much studied
all through the 1970’s. We shared the same view . . . until
recently. The motivation for our renewed interest into these
very fundamental questions is the recent surge of interest in
the question of experiment design, itself triggered by the new
concept of least costly identification experiment for robust
control [2], [3], [5], [4]. In this context, questions like the
following become relevant:
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1) what is the smallest amount of external excitation that
is required to generate informative data?

2) assuming that the system operates in closed-loop, when
can the noise by itself generate informative data?

3) if, in a closed-loop experiment, noise excitation is
not sufficient, then how much additional reference
excitation is required?

4) assuming that excitation can be applied at different
entry points of a multi-input system operating in closed
loop, is it necessary to excite each input to achieve
identifiability (or to achieve a given accuracy level)?

Sufficient conditions for informativity using noise excita-
tion only (question 2) have been given, under different sets
of assumptions, in [7], [8], [3]. The key condition is in terms
of the complexity of the feedback controller; this complexity
condition relates the controllability (or observability) indices
of the controller to the controllability (or observability)
indices of the plant. Question 4 has been addressed in [1]
where it is shown that, when informative data cannot be
generated using noise excitation only, this does not imply
that all reference inputs must be excited.

In attempting to address questions 1 and 3 above, we
discovered to our surprise that these questions do not seem
to have been addressed (or at least solved) before. As is well-
known, besides the choice of an identifiable model structure,
the key ingredient to achieve a unique global minimum of the
identification criterion is the informativity of the experiment.
In open-loop identification, and in all closed-loop identifica-
tion experiments where the noise excitation by itself does
not make the experiment informative, the informativity is
achieved by applying a sufficiently rich external signal. The
degree of richness of a signal is a concept that is precisely
defined; a signal is said to be sufficiently rich of degree n if
its spectral density is nonzero in at least n distinct frequency
points in the interval (−π, π]. But whereas the scientific
literature abunds with sufficient conditions on input signal
richness, there appear to be no result on the smallest possible
degree of richness that delivers informative data in a given
identification setup. In other words, necessary conditions on
input richness that will guarantee an informative experiment
are strangely lacking. The recent resurgence of interest
in optimal experiment design makes this question all the
more relevant, because the inputs that result from optimal
experiment design computations are most often expressed as
multisines. It is then important to know how many different
frequencies are required to ensure that these optimal inputs
produce informative data.

The purpose of this contribution is to attempt to find
the smallest possible degree of richness of the excitation
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signal that makes an experiment informative with respect to
a chosen model structure, both in open-loop and in closed-
loop identification. More precisely, we address the following
two questions:
• assuming open-loop identification, what is the smallest

degree of input signal richness that is necessary to
achieve an informative experiment with respect to a
chosen model structure?

• assuming closed-loop identification with a controller
that is not sufficiently complex to yield informative data
using noise excitation only, what is then the smallest
degree of reference signal excitation that is necessary
to achieve an informative experiment with respect to a
chosen model structure?

The results of this paper provide necessary and sufficient
conditions for informativity of the experiment, both in open
loop and in closed loop, for all commonly used single-
input single-output model structures (ARMAX, ARX, BJ
and OE). While the results for open-loop experiments are to
be expected, our results for closed-loop experiments provide
a remarkable and quantifiable trade-off between controller
complexity and required degree of richness of the external
excitation.

The paper is organized as follows. In Section II we set
up the notations and the key tools of the prediction error
identification framework. In Section III, we recall the basic
concepts of identifiability and informative experiments, while
in Section IV we define the degree of richness of a signal
in connection with the full rank property of a corresponding
regression vector. The body of our results is in Section V
where we derive the minimal degree of richness that is
required of the external signal to provide informative data,
for all commonly utilized model structures, in both an open-
loop and a closed-loop setup. In line with common practice,
we conclude with conclusions.

II. THE PREDICTION ERROR IDENTIFICATION
SETUP

Consider the identification of a linear time-invariant
discrete-time single-input single-output process

S : y(t) = G0(z)u(t) +H0(z)e(t) (1)

In (1) z is the forward-shift operator, G0(z) and H0(z) are
the process transfer functions, u(t) is the control input and
e(t) is white noise with variance σ2

e . Both transfer functions,
G0(z) and H0(z), are rational and proper; furthermore,
H0(∞) = 1, that is the impulse response h(t) of the filter
H0(z) satisfies h(0) = 1.

This true system may be under feedback control with a
proper rational stabilizing controller K(z):

u(t) = K(z)[r(t)− y(t)]. (2)

The system (1) is identified using a model structure
parametrized by a vector θ ∈ Rd:

M(θ) : y(t) = G(z, θ)u(t) +H(z, θ)e(t). (3)

It is assumed that the loop transfer function G(z)K(z) has
a non-zero delay, both for G0(z) and for all G(z, θ). The set
of models M(θ), for all θ in some set Dθ ∈ Rd, defines the
model set M , {M(θ) | θ ∈ Dθ}. The true system is said
to belong to this model set, S ∈M, if there is a θ0 such that
M(θ0) = S. In a prediction error identification framework, a
model [G(z, θ) H(z, θ)] uniquely defines the one-step-ahead
predictor of y(t) given all input/output data up to time t:

ŷ(t|t− 1, θ) = Wu(z, θ)u(t) +Wy(z, θ)y(t), (4)

where Wu(z, θ) and Wy(z, θ) are stable filters obtained from
the model [G(z, θ) H(z, θ)] as follows:

Wu(z, θ) = H−1(z, θ)G(z, θ), Wy(z, θ) =[1−H−1(z, θ)].
(5)

Since there is a 1 − 1 correspondance between
[G(z, θ), H(z, θ)] and [Wu(z, θ), Wy(z, θ)], the model
M(θ) will in the future refer indistinctly to either one of
these equivalent descriptions. For later use, we introduce
the following vector notations:

W (z, θ) , [Wu(z, θ) Wy(z, θ)], z(t) ,

[
u(t)
y(t)

]
(6)

We shall also consider throughout this paper that the vector
process z(t) is quasistationary [6], so that the spectral density
matrix Φz(ω) is well defined.

The one-step-ahead prediction error is defined as:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ) = y(t)−W (z, θ)z(t)
= H−1(z, θ) [y(t)−G(z, θ)u(t)] . (7)

Using a set of N input-output data and a least squares
prediction error criterion yields the estimate θ̂N [6]:

θ̂N = arg min
θ∈Dθ

1
N

N∑
t=1

ε2(t, θ). (8)

Under reasonable conditions [6], θ̂N
N→∞−→ θ∗ ,

arg minθ∈Dθ V̄ (θ), with

V̄ (θ) , Ē[ε2(t, θ)] (9)

where

Ē[f(t)] , lim
N→∞

1
N

N∑
t=1

E[f(t)]. (10)

If S ∈M and if θ̂N
N→∞−→ θ0, the parameter error converges

to a Gaussian random variable:
√
N(θ̂N − θ0) N→∞−→ N(0, Pθ), (11)

where

Pθ = [I(θ)]−1 |θ=θ0 , (12)

I(θ) =
1
σ2
e

Ē
[
ψ(t, θ)ψ(t, θ)T

]
, (13)

ψ(t, θ) = −∂ε(t, θ)
∂θ

=
∂ŷ(t|t− 1, θ)

∂θ
= ∇θW (z, θ)z(t), (14)

where ∇θW (z, θ) , ∂W (z,θ)
∂θ . The matrix I(θ0) is called the

information matrix.
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III. IDENTIFIABILITY AND INFORMATIVE DATA

Several concepts of identifiability have been proposed in
the scientific literature, and these definitions have evolved
over the years. Here we adopt a uniqueness-oriented defini-
tion proposed in [6], which deals with the injectivity of the
mapping from parameter vector to model.

Definition 3.1: (Identifiability) A parametric model
structure M(θ) is locally identifiable at a value θ1 if ∃δ > 0
such that, for all θ in || θ − θ1 ||≤ δ:

W (z, θ) = W (z, θ1) ∀z ⇒ θ = θ1.

The model structure is globally identifiable at θ1 if the same
holds for δ → ∞. Finally, a model structure is globally
identifiable if it is globally identifiable at almost all θ1.

The definition of identifiability (local, or
global) is a property of the parametrization of
the model [G(z, θ), H(z, θ)] or, equivalently,
[Wu(z, θ), Wy(z, θ)]. It tells us that if the model structure
is globally identifiable at some θ1, then there is no other
parameter value θ 6= θ1 that yields the exact same predictor
as M(θ1). However, it does not guarantee that the minimum,
say θ1, of the asymptotic criterion V̄ (θ) is unique, even
if the model structure is globally identifiable at θ1. This
requires, additionally, that the data set is informative enough
to distinguish between different predictors, which leads us
to the definition of informative data with respect to a model
structure.

Definition 3.2: (Informative data) [6] A quasistationary
data set z(t) is called informative with respect to a parametric
model set {M(θ), θ ∈ Dθ} if, for any two models W (z, θ1)
and W (z, θ2) in that set,

Ē{[W (z, θ1)−W (z, θ2)]z(t)}2 = 0 (15)

implies

W (eω, θ1) = W (eω, θ2) for almost all ω. (16)

By Parseval’s theorem, we can rewrite:

Ē{[W (z, θ1)−W (z, θ2)]z(t)}2 (17)

=
1

2π

∫ π

−π
|W (ejω, θ1)−W (ejω, θ2)|2Φz(ω)dω

It is easy to see that an experiment that yields Φz(ω) > 0
for almost all ω is informative for all model structures, but
such condition is of course unnecessarily strong.

The definition of informative data is with respect to a
given model set, not with respect to the true system, which
may or may not belong to the model set. In an identification
experiment, one typically first selects a globally identifiable
model structure; this is a user’s choice. Experimental condi-
tions must then be selected that make the data informative
with respect to that structure; this is again a user’s choice.
However, the data are generated by the true system, in open
or in closed loop. Thus, the conditions that make a data

set z(t) informative with respect to some model structure
depend on the true system and on the possible feedback
configuration.

The main contribution of this paper will be to describe
the weakest possible richness conditions on the input signal
u(t) (in open-loop identification) or r(t) (in closed-loop
identification) that make the data informative with respect to
a given model structure. The degree of richness of a signal
will be defined in the next section.

Finally, even though the results in this paper are not
restricted to the situation where the true system is in the
model set, in the situation where this is the case, we have
the following classical result [6].

Proposition 3.1: Consider a model structure that can re-
spresent the true system, i.e. M(θ0) = S for some θ0 ∈ Dθ.
Let this model structure be globally identifiable at θ0, and let
the data be informative with respect to this model structure.
Then θ0 is the unique global minimum of V̄ (θ) defined by
(9), and in addition I(θ0) > 0.

Convergence of an identification algorithm to the exact θ0
when S ∈ M thus rests on the satisfaction of two different
conditions: (i) the use of a model structure that is identifiable,
at least at the global minimum θ0 of the asymptotic criterion
V̄ (θ); (ii) the application of experiments that are informative
with respect to the model structure used.

IV. RICH AND EXCITING SIGNALS

In this section we introduce the concept of richness of
a signal and of a persistently exciting regression vector. To
motivate these definitions, we first derive explicit expressions
for the pseudoregression vector ψ(t, θ) of (14) whose covari-
ance defines the information matrix I(θ) through (13).

The pseudoregression vector can be written:

ψ(t, θ) = [∇θWu(z, θ) ∇θWy(z, θ)]
[
u(t)
y(t)

]
(18)

We rewrite this gradient in terms of the external excitation
signals, u and e in the case of open-loop data, r and e in the
case of closed-loop data. We omit the explicit dependence
on the variables z and θ whenever it creates no confusion.

Open-loop identification setup
In open-loop identification, the data are generated as[

u(t)
y(t)

]
=
[

1 0
G0 H0

] [
u(t)
e(t)

]
(19)

The pseudoregressor is then expressed in terms of the exter-
nal signals as

ψ(t, θ) = [∇θWu +∇θWyG0 ∇θWyH0]
[
u(t)
e(t)

]
, Vuol(z, θ)u(t) + Veol(z, θ)e(t) (20)

Closed-loop identification setup
In closed-loop identification, the data are generated as[

u(t)
y(t)

]
= S

[
K −KH0

KG0 H0

] [
r(t)
e(t)

]
(21)
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where K = K(z) is the controller, and S = S(z) =
1

1+K(z)G0(z)
is the sensitivity function. The pseudoregressor

is then expressed in terms of the external signals as

ψ(t, θ)
= [SK(∇θWu+∇θWyG0) SH0(∇θWy−K∇θWu)]

×
[
r(t)
e(t)

]
, Vrcl(z, θ)r(t) + Vecl(z, θ)e(t) (22)

We observe that in both setups the pseudoregressor is a
sum of two d-vectors of quasistationary signals: the first is
obtained as the output of a d-vector of proper stable rational
transfer functions driven by the known scalar external signal
(u or r); the second is obtained as the output of a d-vector of
proper stable rational transfer functions driven by the white
noise signal e. We now introduce the following classical
definitions.

Definition 4.1: A quasistationary vector signal ψ(t) is
called persistently exciting (PE) if Ē[ψ(t)ψT (t)] > 0.
Whether a quasistationary vector signal ψ(t) obtained as a
filtered version (by a vector V (z) of transfer functions) of a
quasistationary scalar signal u(t) is PE or not depends not
only on V (z) but also on the degree of richness of the input
u(t). The richness of a scalar signal is defined as follows.

Definition 4.2: A quasistationary scalar signal u(t) is suf-
ficiently rich of order n (denoted SRn) if the following
regressor is PE:

φ1,n(t) ,


u(t− 1)
u(t− 2)

...
u(t− n)

 =


z−1

z−2

...
z−n

u(t) (23)

The vector φ1,n(t) serves as a basis for all regression vectors
that are obtained as (vector)-filtered versions of a scalar
signal u(t). For future use, we introduce the notation:

Bk,n(z) ,
[
z−k z−k−1 . . . z−n

]T
, for k ≤ n. (24)

Observe that, by our assumption of quasistationarity, u(t)
is SRn if Bk+1,k+n(z)u(t) is PE for any k. Thus, we
could just as well have used φ0,n−1(t) in lieu of φ1,n(t)
in Definition 4.2: the definition is shift-invariant. We denote
by Un the set of all SRn signals.

Proposition 4.1: A scalar quasistationary signal u(t) is
SRn if
• its spectral density is nonzero in at least n frequency points
in the interval (−π, π].
• it cannot be filtered to zero by a FIR filter of degree n−1:
α1z

−1 + . . .+ αnz
−n.

A scalar signal u(t) is SREn if its spectral density is nonzero
in exactly n frequency points in the interval (−π, π].
The equivalence comes by observing that

αT Ē[φ1,n(t)φT1,n(t)]α

=
1

2π

∫ π

−π
|α1e

−jω + . . .+ αne
−jnω|2Φu(ω)dω.

V. INFORMATIVITY OF THE DATA SET FOR
ARMAX AND BJ MODEL STRUCTURES

In this section we derive necessary and sufficient condi-
tions for the informativity of the data set for ARMAX and
BJ model structures, as well as for the special cases of ARX
and OE model structures.

A. Open-loop identification
Recall Definition 3.2 for informative data. We introduce

the following shorthand notation (see (6)):

4Wu , Wu(z, θ1)−Wu(z, θ2)
4Wy , Wy(z, θ1)−Wy(z, θ2). (25)

For open loop data, it follows from (19) that:

[W (z, θ1)−W (z, θ2)]z(t)
= [4Wu +4WyG0]u(t) +4WyH0e(t). (26)

Given the independence between u and e, condition (15) is
therefore equivalent with the following set of conditions:

Ē{[4Wu +4WyG0]u(t)}2 = 0 (27)
Ē{4WyH0e(t)}2 = 0 (28)

We now seek the smallest degree of richness of u for which
the conditions (27)-(28) imply 4Wu ≡ 0 and 4Wy ≡ 0.
Since (28) implies 4Wy ≡ 0, this is equivalent with finding
necessary and sufficient conditions on the richness of u such
that

E{[4Wu]u(t)}2 = 0 =⇒ 4Wu ≡ 0 (29)

ARMAX model structure
Consider first the ARMAX model structure

A(z−1)y(t) = B(z−1)u(t) + C(z−1)e(t) (30)

where A(z−1) = 1 + a1z
−1 + . . . + anaz

−na ,
B(z−1) = b1z

−1 + . . . + bnbz
−nb , and C(z−1) =

1 + c1z
−1 + . . .+ cncz

−nc . We comment that for ARMAX
model structures, one must consider as generic the possible
existence of common roots between the polynomials A
and B, as well as between A and C. However, the three
polynomials A, B and C must be coprime at any identifiable
θ. We then have the folllowing result.

Theorem 5.1: For the ARMAX model structure (30), the
data set is informative if and only if u(t) is SRk, where
k = nb + min{na, nc}.

Proof: Since 4Wy ≡ 0 it follows that

C(z, θ1)
A(z, θ1)

=
C(z, θ2)
A(z, θ2)

for any pair of values θ1 and θ2. Since the polynomials A
and C may have common roots, let U(z) be the greatest
common factor of A(z, θ1) and C(z, θ1):

A(z, θ1) = A1(z, θ1)U(z), C(z, θ1) = C1(z, θ1)U(z),

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 47th IEEE Conference on Decision and Control.
Received March 4, 2008.



with U(z) = 1 + u1z
−1 + . . . + unuz

−nu . Then 4Wy ≡ 0
is equivalent with

A(z, θ2)C1(z, θ1)− C(z, θ2)A1(z, θ1) = 0 (31)

with A1(z, θ1) and C1(z, θ1) coprime. The general solution
of (31) is

A(z, θ2) = A1(z, θ1)T (z), C(z, θ2) = C1(z, θ1)T (z),

where T (z) is an arbitrary monic polynomial of the same
degree as U . For this ARMAX model structure, the left hand
side of (29), expressed at those two values θ1 and θ2, is
equivalent with:

Ē{[A(z, θ2)B(z, θ1)−A(z, θ1)B(z, θ2)]u(t)}2 = 0, (32)

which is equivalent with

Ē{[T (z)B(z, θ1)− U(z)B(z, θ2)]u(t)}2 = 0. (33)

This implies

T (z)B(z, θ1)− U(z)B(z, θ2) ≡ 0 (34)

if and only if u(t) ∈ Unb+nu . Note that U(z) and B(z, θ1)
are coprime by definition of U(z). The general solution of
(34) is therefore

B(z, θ2) = M(z)B(z, θ1), T (z) = M(z)U(z).

However, since T (z) and U(z) have the same degree, nu,
and since both are monic, the only solution is M(z) = 1,
which implies that θ1 = θ2. We conclude that the predictor
at θ1 is identical to the predictor at any other value θ2 if
and only if u(t) ∈ Unb+nu where nu is the number of
common roots between A(z, θ) and C(z, θ) at θ1. For the
data to be informative with respect to the ARMAX model
structure, this must hold at all values of θ1. The stated result
then follows, since the maximum number of common roots
between A(z, θ) and C(z, θ) is min{na, nc}.

The corresponding result for an ARX model structure
follows immediately.

Corollary 5.1: For the ARX model structure A(z−1)y(t)
= B(z−1)u(t) + e(t) with A and B as above, the data set
is informative if and only if u(t) ∈ Unb .

BJ model structure
Consider now the BJ model structure:

y(t) =
B(z−1)
F (z−1)

u(t) +
C(z−1)
D(z−1)

e(t) (35)

where B(z−1) and C(z−1) are as above, with
F (z−1) = 1 + f1z

−1 + . . . + fnf z
−nf and

D(z−1) = 1 + d1z
−1 + . . . + dndz

−nd . We have the
following result.

Theorem 5.2: For the BJ model structure (35) operating
in open loop, the data are informative if and only if u(t) is
SRk, where k = nb + nf .

Proof: It follows from (31) that C(z,θ1)
D(z,θ1)

= C(z,θ2)
D(z,θ2)

.

Therefore, (32) is equivalent with Ē{D(z,θ1)
C(z,θ1)

[B(z,θ1)
F (z,θ1)

−
B(z,θ2)
F (z,θ2)

]u(t)}2 = 0, or equivalently,

Ē{[F (z, θ2)B(z, θ1)− F (z, θ1)B(z, θ2)]u(t)}2 = 0. (36)

Since the degree of the polynomial that filters u(t) in (36)
is nb + nf , the result then follows immediately.

Corollary 5.2: For the OE model structure y(t) =
B(z−1)
F (z−1)u(t)+e(t), the richness condition on u(t) is identical
to that for the BJ model structure.

B. Closed-loop identification
For closed-loop data, it follows from (21) that

[W (z, θ1)−W (z, θ2)]z(t) = (37)
KS[4Wu +4WyG0]r(t) +H0S[4Wy −K4Wu]e(t)

Given the independence between r and e, condition (15) is
therefore equivalent with the following set of conditions:

Ē{KS[4Wu +4WyG0]r(t)}2 = 0 (38)
Ē{H0S[4Wy −K4Wu]e(t)}2 = 0 (39)

These conditions, in turn, are equivalent with the following
set of conditions

4Wy ≡ K4Wu, (40)
Ē{K4Wur(t)}2 = 0, (41)

where the second expression follows by substituting the first
in (38) and using S = (1 + KG0)−1. Note that, given the
first condition, the second is equivalent with

Ē{4Wyr(t)}2 = 0 (42)

For the controller K(z) of (2) we shall consider
a coprime factorization K(z) = X(z−1)

Y (z−1) , with
X(z−1) = x0 + x1z

−1 + . . . + xnxz
−nx and

Y (z−1) = 1 + y1z
−1 + . . .+ ynyz

−ny .

ARMAX model structure
We first consider the ARMAX model structure (30)
under feedback control with the stabilizing controller
K(z) = X(z−1)

Y (z−1) . For simplicity, we shall consider only
parameter values θ at which the following assumption holds.

Assumption 1: The polynomials A(z−1)Y (z−1) +
B(z−1)X(z−1) and C(z−1) are coprime.

Notice that the subset of θ values at which these polyno-
mials have a common root has measure zero in the parameter
space. They correspond to parameter values that cause a pole-
zero cancellation between the closed-loop poles of the model
and the zeros of the noise model. We then have the following
result.

Theorem 5.3: Consider the ARMAX model structure
(30) under feedback control with the stabilizing controller
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K(z) = X(z−1)
Y (z−1) , with Assumption 1 holding.

(i) Let r(t) ≡ 0. Then the data are informative if and only
if

max(nx − na, ny − nb) ≥ 0. (43)

(ii) Let max(nx − na, ny − nb) < 0. Then the data are
informative for almost all r(t) ∈ Uk if and only if

k ≥ min(na − nx, nb − ny). (44)
Proof: For the ARMAX model structure (30), the

identity (40) is equivalent with1

(A2Y +B2X)C1 = (A1Y +B1X)C2, (45)

where the pairs of polynomials C1 and A1Y +B1X , as well
as C2 and A2Y +B2X are coprime by Assumption 1. Since
C1 and A1Y + B1X are coprime, the general solution of
(45) is

A2Y +B2X = M(A1Y +B1X), C2 = MC1, (46)

where M(z) is an arbitrary polynomial. But since C1(z) and
C2(z) are monic with the same degree, the only solution is
M(z) = 1, i.e.

C1 = C2 and (A1 −A2)Y + (B1 −B2)X = 0. (47)

Since X and Y are coprime, the general solution of this last
equality is given by

4A = TX, 4B = −TY, (48)

where T (z) = t1z
−1 + . . . + tntz

−nt is again an arbitrary
polynomial with deg T (z) = nt , min{na − nx, nb − ny}.
T (z) = 0 is the only solution of (48), and hence the data
are informative without any external excitation, if and only
condition (43) holds.

Now consider the case where max(nx − na, ny − nb) <
0, i.e. min{na − nx, nb − ny} ≥ 1. It then follows from
C1 = C2 and 4B = −TY that condition (41) is equivalent
with Ē{XTr(t)}2 = 0. This implies T (z) ≡ 0, and hence
the data are informative, if and only if r(t) ∈ Uk with k ≥
min(na − nx, nb − ny) provided the points of support of
r(t) do not coincide with possible zeroes of X on the unit
circle. This proves part (ii) of the Theorem.

Comment. An ARMAX model identified in closed loop is
identifiable from noise information only if the controller is
sufficiently complex with respect to the model structure,
in a way that is made precise by the condition (43); this
condition is known and can be found in [8]. What is novel
and, we believe, remarkable in Theorem 5.3 is that, when
that complexity condition is not satisfied by the controller,
then the degree of richness required of the reference signal is
precisely determined by how much that condition is violated.
In other words, the degree of richness required of r(t) is
precisely equal to the difference between the complexity
required by expression (43) and the actual complexity of
the controller.

1To keep notations simple, we drop the z argument here.

Corollary 5.3: For the ARX model structure
A(z−1)y(t) = B(z−1)u(t) + e(t) under feedback control
with the stabilizing controller K(z) = X(z−1)

Y (z−1) , the richness
conditions are identical to those given in Theorem 5.3 for
the ARMAX model structure.

Proof: The proof follows immediately by setting
C(z−1) = 1 everywhere in the proof of Theorem 5.3.

BJ model structure
We now consider the BJ model structure (35) under feedback
control with the stabilizing controller K(z) = X(z−1)

Y (z−1) . For
simplicity, we shall again exclude parameter values θ that
cause a pole-zero cancellation between the closed-loop
poles of the model and the zeros of the noise model. This
corresponds to the following assumption.

Assumption 2: The polynomials F (z−1)Y (z−1) +
B(z−1)X(z−1) and C(z−1) are coprime.

We then have the following result.
Theorem 5.4: Consider the BJ model structure (35) under

feedback control with the stabilizing controller K(z) =
X(z−1)
Y (z−1) , with Assumption 2 holding.
(i) Let r(t) ≡ 0. Then the data are informative if and only
if

max(nx − nf , ny − nb) ≥ nd +min{nx, nf}. (49)

(ii) Let max(nx−nf , ny −nb) < nd +min{nx, nf}. Then
the data are informative for almost all r(t) ∈ Uk if and only
if

k ≥ nd +min{nx, nf}+min(nf − nx, nb − ny). (50)
Proof: For the BJ model structure, the identity (40) is

equivalent with

(F1Y +B1X)D1

C1F1
=

(F2Y +B2X)D2

C2F2
. (51)

Suppose first that D1 and F1 have a common polynomial
factor H(z) = 1 + h1z

−1 + . . . + hnhz
−nh , so that D1 =

D̄1H and F1 = F̄1H , with D̄1 and F̄1 coprime. Consider,
additionally, that there are possible pole-zero cancellations
at θ1 between the zeroes of the controller and the poles of
G(θ1), i.e. let M(z) = 1 + m1z

−1 + . . . + mnmz
−nm be

the greatest common factor between X and F̄1, so that X =
X1M andF̄1 = F ∗1M with X1 and F ∗1 coprime. Note that
F1 = F ∗1MH . Then (51) is equivalent with

(F ∗1HY +B1X1)D̄1

C1F ∗1
=

(F2Y +B2X)D2

C2F2
, (52)

where C1F
∗
1 and (F ∗1HY + B1X1)D̄1 are now coprime

because C1 is coprime with D1 (and hence with D̄1) and
also with F1Y + B1X (and hence with F ∗1HY + B1X1)
by Assumption 1. In addition, F ∗1 is coprime with B1, D̄1

and X1, and hence with the whole numerator. The general
solution is therefore

C2F2 = C1F
∗
1 T (53)

(F2Y +B2X)D2 = (F ∗1HY +B1X1)D̄1T, (54)
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where T = 1+t1z−1+. . .+tntz
−nt of degree nt = nm+nh.

Equation (54) can be rewritten as

(F2D2−F ∗1HD̄1T )Y +(B2D2M −B1D̄1T )X1 = 0 (55)

with X1 and Y coprime. Note that the leading term of the
polynomials multiplying Y and X1 is zero. The general
solution of (55) is given by

F2D2 − F ∗1HD̄1T = X1U (56)
B2D2M −B1D̄1T = −Y U (57)

where U is an arbitrary polynomial of the form U(z) =
u1z
−1 + . . .+ unuz

−nu , with nu = nd + nm +min{nf −
nx, nb − ny}. U(z) = 0 is the only solution of (56)-(57) if
and only if max{nx − nf , ny − nb} ≥ nd + nm. Suppose
this is the case; it then follows from (56)-(57) that

F2D2 = F ∗1HD̄1T and (58)
B2D2M = B1D̄1T (59)

Combining (53) and (58) yields

C2

D2
=

C1

HD̄1
=
C1

D1
,

while combining (58) and (59) yields

B2

F2
=

B1

F ∗1HM
=
B1

F1
.

Together, these last two identities imply that the data are
sufficiently informative to distinguish between the model
at θ1 and any other model. Part (i) of the Theorem then
follows from the fact that nm is the number of common
roots between the zeroes of the controller and the poles of
the plant model and that the largest possible number of such
common roots, for any value of θ1, is min{nx, nf}.

Consider now the case where the controller is not suf-
ficiently complex to produce informative data with noise
excitation only, i.e. condition (49) is violated. We then seek
necessary and sufficient richness conditions on the external
excitation r(t) under which conditions (40) and (41) or,
equivalently (42), imply4Wu ≡ 0 and4Wy ≡ 0. It follows
from the previous derivations that

4Wy =
C1D2 −D1C2

C1C2

=
1

C1C2
[C1D2 −D1

C1F
∗
1 T

F2
]

=
1

F2C2
[D2F2 −D1F

∗
1 T ] =

X1U

F2C2
(60)

Thus, (42) implies4Wy ≡ 0 if and only if E{ X1U
F2C2

r(t)}2 =
0 implies U(z) ≡ 0. Remember that deg(U) , nu = nd +
nm + min{nf − nx, nb − ny} where nm is the number of
common roots between the controller zeroes and the poles
of G(z, θ) at the considered θ1. Since the largest number
of such pole-zero cancellations at any θ1 is min{nx, nf}, it
then follows that U(z) ≡ 0 if and only if r(t) ∈ Uk for all
k ≥ nd +min{nx, nf}+min(nf − nx, nb − ny) provided
the points of support of u(t) do not coincide with possible

zeroes of X on the unit circle. This proves part (ii) of the
Theorem.
Comment. We observe that, just like in the case of an
ARMAX model structure identified in closed loop, the degree
of richness required of the external excitation signal r(t)
is precisely equal to the difference between the complexity
required by expression (49) and the actual complexity of the
controller.

Corollary 5.4: For the OE model structure y(t) =
B(z−1)
F (z−1)u(t)+e(t), under feedback control with the stabilizing

controller K(z) = X(z−1)
Y (z−1) , the data set is informative if and

only if K(z) 6= 0.
Proof: Since Wy(z) = 0 for an OE model, condition

(39) is equivalent with K4Wu ≡ 0. Since Wu = B1
F1
− B2

F2

this implies B1
F1

= B2
F2

if and only if K(z) 6= 0.
This confirms a result obtained in [3] where it was shown that
an OE model structure is identifiable in closed loop without
external excitation if the controller is not identically zero.

VI. CONCLUSIONS

We have provided necessary and sufficient conditions
on the external signals to achieve informative data for all
commonly used input-output models, under both open-loop
and closed-loop experimental conditions. Our objective has
been to find the smallest possible degree of richness of
the external signal (u in open loop, r in closed loop) that
delivers an informative data set. While the open-loop results
were either known or to be expected, the novel contribution
of this paper lies with the closed-loop results. They show a
remarkable and precisely quantifiable trade-off between the
controller complexity and the required degree of external
excitation. Our present work consists in establishing the
tightest possible connection between informativity of the
data set and positivity of the information matrix.
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