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Abstract— Detecting and isolating multiple faults is a compu-
tationally intense task which typically consists of computing a
set of tests, and then computing the diagnoses based on the test
results. This paper proposes a method to reduce the compu-
tational burden by only running the tests that are currently
needed, and dynamically starting new tests when the need
changes. A main contribution is a method to select tests such
that the computational burden is reduced while maintaining the
isolation performance of the diagnostic system. Key components
in the approach are the test selection algorithm, the test initial-
ization procedures, and a knowledge processing framework that
supports the functionality needed. The approach is exemplified
on a relatively small dynamical system, which still illustrates the
complexity and possible computational gain with the proposed
approach. 1

I. I NTRODUCTION

Detection and isolation of multiple faults in a dynamic
process is a computationally expensive task, and the cost
increases rapidly with the number of faults and model
complexity. A real-time, model-based diagnosis system often
consists of a set of pre-compiled diagnostic tests together
with a fault isolation module [3], [14]. The diagnostic tests
are based on a formal description of the process, often in the
form of differential or difference equations.

The computational complexity of such a diagnosis sys-
tem mainly originates from two sources: complexity of the
process model and the number of fault modes that are con-
sidered. A high capability of distinguishing between faults,
especially when multiple faults are considered, requires a
large number of diagnostic tests [9]. Also, the more complex
the process model is, the more computationally intense is the
task of executing the diagnostic tests. This paper developsa
reconfiguration scheme to handle computational issues while
still being able to handle multiple faults. Recently, workson
on-line reconfiguration of the diagnosis system has appeared.
For a related work, see e.g. [2], where Kalman-filters are
reconfigured based on diagnosis decisions.

The main idea of this work is to utilize the observation
that all tests are not needed at all times, which can be used to
reduce the overall computational burden. For example, when
starting a fault free system, there is no need to run tests
that are designed with the sole purpose of distinguishing
between faults. In such a case, only tests that are able to
detect faults are needed, which may be significantly fewer
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compared to the complete set of tests. When a test triggers an
alarm and a fault is detected, appropriate tests are startedto
make it possible to compute a refined diagnosis decision.
Such an approach requires a flexible and reconfigurable
framework where tests can be stopped and restarted on-line
in a controlled fashion, and also be run on historical data.

The objective of this paper is to illustrate how such a
dynamic approach to diagnosis can be designed and imple-
mented using linear dynamical process models. In particular,
it will be shown how such an approach requires controlled
ways of initializing the dynamic diagnostic tests, and how to
select which new tests that need to be started when a certain
set of diagnostic tests has generated an alarm.

The reconfigurable diagnosis framework proposed in this
paper is introduced in Section II, and the theoretical diagno-
sis background needed is presented in Section III. Methods
how to determine, in a specific situation, which tests that
should be started next are treated in Section IV. A proper
initialization procedure for dynamic tests is described in
Section V. The complete approach is exemplified on a
small dynamic system in Section VI, which, in spite of the
relatively small size of the example, clearly illustrates the
complexity of the problem and the possible computational
gain with the proposed approach. The computational frame-
work used to implement the approach, DyKnow, is briefly
described in Section VII, and finally some conclusions are
given in Section VIII.

II. FLEXDX : A RECONFIGURABLEDIAGNOSIS

FRAMEWORK

This section gives an overview of the proposed reconfig-
urable diagnosis framework, named FlexDx. As mentioned in
the introduction, the approach must be capable of switching
on and off tests dynamically while refining the set of diag-
noses. This is done in an iterative manner by the following
procedure:

1) Initiate the set of diagnoses.
2) Based on the set of diagnoses, compute the set of tests

to be performed.
3) Compute the initial state of the selected tests.
4) Run the tests until an alarm is triggered.
5) Compute the current set of diagnoses based on the test

results, then go to step 2.
When dealing with multiple fault diagnosis, it has been

shown useful to represent all diagnoses with the minimal
diagnoses [5]. This representation will also be used here.



When FlexDx is started, there are no conflicts and the only
minimal diagnosis is the no-fault mode NF, i.e. the set of
minimal diagnosesD is set to{NF} in step 1. Step 2 uses
a function that given a set of diagnosesD returns the set
of testsT to be performed next. Step 3 initiates each of the
tests inT . A test might include a residual generator given in
state-space form. This means that the start-up of such a test
involves the estimation of the initial condition of the residual
generator. In step 4, the tests are performed until at least one
of them triggers an alarm and a test result is generated in the
form of a set of conflicts [4], [16]. Step 5 is a function that
computes the current set of diagnosesD, given the previous
set of diagnoses and the generated set of conflicts. This step
can be performed with algorithms handling multiple fault
diagnoses [4], [11].

Step 4 and 5 are standard steps used in diagnosis systems
and will not be described in further detail, while step 2 and
3 are new steps needed for dynamically changing the test set
T . The details of these steps are given in Section IV and V
respectively. But before that, a brief theoretical background
on test construction for dynamic systems.

III. T HEORETICAL BACKGROUND

The diagnosis systems considered in this paper consist
of a set of tests. Each test consists of a residualr(t) that
is thresholded such that it triggers an alarm if|r(t)| > 1.
Note that the threshold can be set to one without of loss of
generality. It is assumed that the residuals are normalized
such that a given false alarm probabilitypFA is obtained, i.e.

P (|r(t)| > 1|NF) = pFA (1)

The residuals are designed using a model of the process to
be diagnosed.

A. The Model

The class of models considered here are linear differential-
algebraic models. It is worth noting that even if the developed
approach relies on results for linear systems, the basic idea
is equally applicable also to non-linear model descriptions.

There are several ways to formulate differential-algebraic
models. Here, a polynomial approach is adopted but similar
results can be adopted for other model formulations, e.g.
descriptor models. The model is given by the expression

H(q)x + L(q)w + F (q)f = V (q)v (2)

where x(t) ∈ R
mx , w(t) ∈ R

mw , f(t) ∈ R
mf , and

v(t) ∈ R
mv . The matricesH(q), L(q), F (q), andV (q) are

polynomial matrices in the time-shift operatorq. The vec-
tor x contains all unknown signals, which includes internal
system states and unknown inputs. The vectorw contains all
known signals such as control signals and measured signals,
the vectorf contains the fault-signals, and the vectorv is
white, possibly multidimensional, zero mean, unit covariance
Gaussian distributed noise.

To guarantee that the model is well formed, it is assumed
that the polynomial matrix[H(z) L(z)] has full column
rank for somez ∈ C. This assumption assures that for any
noise realizationv(t) and any fault signalf(t) there exists
a solution to the model equations (2).

B. Residual Generation

Residuals are used both to detect and isolate faults. This
task can be formulated in a hypothesis testing setting. For
this, letfi denote both the fault signal and the corresponding
single fault mode and letF be the set of faults.

A pair of hypotheses associated with a residual can then
be stated as

H0 : fi = 0, fi ∈ F0

H1 : fi 6= 0 for somefi ∈ F0

whereF0 ⊆ F is the set of faults the residual is designed
to detect. This means that the residual is not supposed to
detect all faults, only the faults inF0. By generating a set
of such residuals, each sensitive to different subsetsF0 of
faults, fault isolation is possible. This isolation procedure is
briefly described in Section III-C.

In the literature there exists several different ways to
formally introduce residuals. In this paper an adapted version
of the innovation filter defined in [10] is used. For this, it will
be convenient to consider the nominal model under a specific
hypothesis. The nominal model under hypothesisH0 above
is given by (2) withV (q) = 0 and fi = 0 for all fi ∈ F0.
With this notion, a nominal residual generator is a linear
time-invariant filterr = R(q)w where for all observations
w, consistent with the nominal model (2) under hypothesis
H0, it holds thatlimt→∞ r(t) = 0.

Now, consider again the stochastic model (2) where it
is clear that a residual generated with a nominal residual
generator will be subject to a noise component from the
process noisev. A nominal residual generator underH0 is
then said to be a residual generator for the stochastic model
(2) if the noise component in the residualr is white Gaussian
noise.

It can be shown [6] that all residual generatorsR(q), as
defined above, for the stochastic model (2) can be written as

R(q) = Q(q)L(q)

where the matrix operatorQ(q) satisfies the condition
Q(q)H(q) = 0. This means that the residual is computed
by r = Q(q)L(q)w and it is immediate that the internal
form of the residual is given by

r = Q(q)L(q)w = −Q(q)F (q)f + Q(q)V (q)v (3)

Thus, the fault sensitivity is given by

r = −Q(q)F (q)f (4)

and the statistical properties of the residual underH0 is given
by

r = Q(q)V (q)v (5)

A complete design procedure is given in e.g. [10] for state-
space models and in [6] for models on the form (2). The
objective here is not to describe a full design procedure, but
it is worth mentioning that a design algorithm can be made
fully automatic and that the main computational steps involve
a null-space computation and a spectral factorization.



C. Computing the Diagnoses

The fault sensitivity of the residualr in (3) is given
by (4). Here,r is sensitive to the faults with non-zero transfer
functions. LetC be the set of faults that a residualr is
sensitive to. Then, if residualr triggers an alarm, then at least
one of the faults inC must have occurred and the conflict
[16] C is generated.

Let a setb ⊆ F represent a system behavioral mode,
which means thatfi 6= 0 for all fi ∈ b ⊆ F and fj = 0
for all fj /∈ b. The behavioral modeb is then a diagnosis if
it can explain all generated conflicts, i.e.b has a non-empty
intersection with each generated conflict. A diagnosisb is
considered aminimal diagnosis if no proper subset ofb is
a diagnosis [4], [16]. Algorithms to compute all minimal
diagnoses for a given set of conflicts, which is equivalent to
the so called minimal hitting set problem, can be found in
for example [4], [16]. The following example illustrates the
main principle.

Example 1:Let anX in position(i, j) in the table below
indicate that residualri is sensitive to faultfj

f1 f2 f3

r1 X X
r2 X X
r3 X X

If residualsr1 and r2 trigger alarms, then conflictsC1 =
{f2, f3} andC2 = {f1, f3} are generated. For a set of faults
to be a diagnosis, it must then explain both these conflicts.
It is straightforward to verify that the minimal diagnoses in
this case areb1 = {f3} andb2 = {f1, f2}. ⋄

IV. T EST SELECTION

This section describes step 2 in the procedure given in
Section II, i.e. how the set of testsT is selected given a set
D of minimal diagnoses. There are many possible ways how
this can be done, and the method that will be described here
is based on the deterministic properties of (2) only and relies
on basic principles in consistency-based diagnosis.

A fundamental task in consistency-based diagnosis is to
compute the set of consistent modes [4] given a model, a set
of possible behavioral modes, and observations. The design
goal of the test selection algorithm will be to perform tests
such that the set of consistent modes is equal to the set of
diagnoses computed by the diagnosis system.

A. Consistent Behavioral Modes

The deterministic behavior in a behavioral modeb is
described by (2) whenv = 0 and fj = 0 for all fj /∈ b,
and the set of observations consistent withb is consequently
given by

O(b) = {w|∃x,∃fi∈bfi : H(q)x+L(q)w+
∑

fi∈b

Fi(q)fi = 0}

(6)
This means that a modeb is consistent with the deterministic
part of model (2) and an observationw if w ∈ O(b). Hence,
to achieve the goal the set of diagnoses should, given an
observationw, be equal to{b ∈ B|w ∈ O(b)} where B
denotes the set of all behavioral modes. As mentioned in
Section II, we will use minimal diagnoses to represent all

diagnoses. This is possible since (6) implies thatO(b′) ⊆
O(b) if b′ ⊆ b. Hence, ifb′ is consistent it follows thatb is
consistent and therefore it is sufficient to check if the minimal
consistent modes remain consistent when new observations
are processed.

B. Tests for Checking Model Consistency

Next, we will describe how tests can be used to detect
if w /∈ O(b). Let T = {ti|i ∈ {1, 2, . . .}} be the set of
all available tests and letri = Qi(q)L(q)w be the residual
corresponding to testti.

A residual generator checks the consistency of a part
of the complete model. To determine which part, only the
deterministic model needs to be considered. It can be shown
[12] that residualri checks the consistency ofξi(q)w = 0
where ξi(q) is a polynomial in the time-shift operator. By
defining the set of consistent observations for tests in a
similar way as for models, we define

O(ti) = {w|ξi(q)w = 0} (7)

Now, we are ready to characterize all test setsT that are
capable of detecting any inconsistency ofw ∈ O(b). For this
purpose, only teststi with the property thatO(b) ⊆ O(ti)
can be used. For such a test, an alarm implies thatw /∈ O(ti)
which further implies thatw /∈ O(b). This means that a test
setT is capable of detecting any inconsistency ofw ∈ O(b)
if and only if

O(b) =
⋂

ti∈{ti∈T |O(b)⊆O(ti)}

O(ti) (8)

A trivial solution to (8) isT = {t} whereO(t) = O(b).

C. The Set of All Available Tests

If T is not capable of checking the consistency ofb, then
no subset of tests will be capable of doing this either. Hence,
this approach sets requirements on the entire set of testsT .
In this paper, we will use two different types of test setsT
fulfilling (8) for all modesb ∈ B. These are introduced by
the following example.

Example 2:Consider the model

x1(t + 1) = αx1(t) + w1(t) + f1(t)
x2(t) = x1(t) + f2(t)
w2(t) = x1(t) + f3(t)
w3(t) = x2(t) + f4(t)

(9)

where xi are unknowns,wi known variables,α a known
parameter, andfi the faults. There are24 modes and the set
of observations consistent with each mode is

O(∅) = {w|

[

w1(t) + αw2(t) − w2(t + 1)
−w2(t) + w3(t)

]

= 0}

O({f1}) = {w| − w2(t) + w3(t) = 0}

O({f2}) = O({f4}) = O({f2, f4}) =

= {w|w1(t) + αw2(t) − w2(t + 1) = 0}

O({f3}) = {w|w1(t) + αw3(t) − w3(t + 1) = 0}

The behavioral models for the 10 remaining modesb do not
contain any redundancy and the observations are therefore



not restricted, i.e.O(b) = R
3. In contrast to (6), the sets of

consistent observations are here expressed in the same form
as for tests that is with linear differential equations in the
known variables only. Any set described as in (6) can be
written in this form [15]. ⋄

The first type of test setT1 will be to design one test
for each distinct behavioral model containing redundancy,
i.e., for the exampleT1 consists of four teststi such that
O(t1) = O(∅), O(t2) = O({f1}), O(t3) = O({f2}), and
O(t4) = O({f3}). To check the consistency ofw ∈ O(∅),
two linear residuals are needed and this number is the the
degree of redundancy of a model. These two residuals can
be combined in a positive definite quadratic form to obtain
a scalar test quantity. When stochastics are considered, the
quadratic form is chosen such that the test quantity conforms
to a χ2-distribution.

Tests for models with a high degree of redundancy can be
complex and the second type of test setT2 includes only the
tests for the behavioral models with degree of redundancy 1.
For the example,T2 = {t2, t3, t4} and by noting thatO(∅) =
O(ti) ∩ O(tj) for any i 6= j wherei, j ∈ {2, 3, 4}, any two
tests can be used to check the consistency ofw ∈ O(∅).
In [9] it has been shown under some general conditions that
T2 fulfills (8) for all modesb ∈ B.

D. Test Selection Methods

We will exemplify methods that given a set of minimal
diagnosesD select a test setT ⊆ T such that (8) is fulfilled
for all b ∈ D. An optional requirement that sometimes might
be desirable is to select such a test setT with minimum car-
dinality. The reason for not requiring minimum cardinalityis
that the computational complexity of computing a minimum
cardinality solution is generally much higher than to find any
solution.

The most straightforward method is to use the first type
of tests and not require minimum cardinality solutions. Since
the first type of test set includes a trivial testO(ti) = O(b)
for all modesb with model redundancy, it follows that a
strategy is to start the tests corresponding to the minimal
diagnoses inD.

Example 3:Consider Example 2 and assume that the set
of minimal diagnoses isD = {∅}. Then it is sufficient to
perform testt1, i.e.T = {t1}. If the set of minimal diagnoses
are D = {{f2}, {f3}, {f4}}, then t3 is used to check the
consistency of both{f2} and{f4} and the total set of tests
is T = {t3, t4}. For this example, this strategy produces the
minimum cardinality solutions, but this is not true in general.

A second method is to use the second type of tests and
for example require a minimum cardinality solution. The
discussion of the method will be given in Section VI where
this method has been applied to a larger example.

V. I NITIALIZATION

When a new test selection has been made, new tests have
to be initialized. Since information about faults sometimes
are only visible in the residuals for a short time-period after
a fault occurrence, we would like a new test to start running
before the currently considered fault occurred; otherwise

valuable information would be missed. It is also important
that the state of the new test gets properly initialized, such
that the fault sensitivity is appropriate already from the
start, and the residuals can deliver tests results immediately.
Therefore, the initialization of a new test consists of two
steps:

1) Estimate the time of the fault.
2) Estimate the initial condition.

Both these steps require the use of historical data, which
therefore have to be stored. The fault time estimation will
use the historical residuals from the triggered test, while
the initial condition estimation uses the measured data from
the process before the fault occurred. In case not enough
historical data is available, it is reasonable to use all available
data. In such a case, one may expect some degradation in
detection performance compared to running all tests at all
times.

A. Estimating the Fault Time

There are many possibilities to estimate the fault time.
See for example [13], [1] for standard approaches based on
likelihood ratios. Here, a window-based test has been chosen.
It should be noted, however, that for the given framework,
what is important is not really to find the exact fault time,
but rather to find a time-point before the fault has occurred.
The estimated time-point will be denoted bytf .

Given a number of residuals from an alarming test,
r(1), . . . , r(k), let us compute the sum of the squared resid-
uals over a sliding window, i.e.,

S(t) =
1

σ2

ℓ
∑

j=1

r2(t + j), t = 0, . . . , k − ℓ (10)

If the residual generator is designed such that, under the null
hypothesis that no fault has occurred,(r(j))k

j=1 are white
and Gaussian with varianceσ2, then S(t) ∼ χ2(ℓ) in the
fault free case. Hence,S(t) can be used to test whether this
null hypothesis has been rejected at different time-points, by
a simpleχ2-test. Since it is preferable to get an estimated
time-point that occurs before the actual fault time, ratherthan
after, the threshold of theχ2-test should be chosen such that
the null hypothesis is fairly easily rejected. The estimatetf is
then set to the time-point of the last non-rejected test. Also,
in order not to risk a too late estimate, the time-point at the
beginning of the sliding window is used.

B. Estimating the Initial Condition

Having foundtf , the next step is to initialize the state of
the new residual generator. The method used here considers
a time-window of samples ofw(tf − k), . . . , w(tf ) as input
to find a good initial statex(tf ) of the filter at the last time
point of the window.

Consider the following residual generator:

x(t + 1) = Ax(t) + Bw(t) (11)

r(t) = Cx(t) + Dw(t) (12)

Assume thatw(t) = w0(t)+Nv(t) wherew0(t) is the noise-
free data (inputs and outputs) from the process model and



v(t) is Gaussian noise. In fault free operation, there is a state
sequencex0(t), such that the outputr(t) = 0 if v(t) = 0,
i.e.,

x0(t + 1) = Ax0(t) + Bw0(t) (13)

0 = Cx0(t) + Dw0(t) (14)

Given w(t), t = tf − k, . . . , tf , we would like to estimate
x0(tf ). This will be done by first estimatingx0(tf − k).

From (13) andw(t) = w0(t) + Nv(t) we get

0 = Rxx0(tf − k) + RwW0

⇔ Rxx0(tf − k) + RwW = RwDV V (15)

where

Rx =











C
CA

...
CAk











Rw =











D 0 0 . . .
CB D 0 . . .

CAB CB D . . .
. . .

CAk−1B . . . D











W =







w(tf − k)
...

w(tf )






W0 =







w0(tf − k)
...

w0(tf )







V =







v(tf − k)
...

v(tf )






DV =











N 0 . . . 0
0 N . . . 0
...

...
. . .

...
0 0 . . . N











Assuming that the distribution ofV is known, say,
V ∼ N(0,ΣV ), (15) means thatRxx0(tf − k) + RwW
is a zero-mean stochastic vector with covariance matrix
RwDV ΣV DT

V RT
W . Note that the expression above corre-

sponds to the actual residuals obtained when starting in
x0(tf −k). Due to the design of the residual generator giving
white residuals, this means thatRwDV ΣV DT

V RT
w ≈ σ2I.

Hence, a reasonable estimate ofx0(tf − k) is given by the
regular least-squares estimate,

x̂0(tf − k) = −(RT
x Rx)−1RT

x RwW (16)

From this,x̂0(tf ) can be computed as

x̂0(tf ) = Akx̂0(tf − k)+
[

Ak−1B Ak−2B . . . AB B 0
]

W

The choice ofk is made in advance, based on the computed
variance of the initial residuals given̂x0(tf ). The largerk is,
the closer this variance comes to the stationary case. Hence,
k can be chosen based on a maximum probability of false
alarms during the initial time steps.

VI. EXAMPLE

To illustrate the FlexDx framework, let us consider the
simulated example system shown in Figure 1, where a
DC-servo is connected to a flywheel through a rotational
(damped) spring. The system dynamics can be described by
the following equations:

J1θ̈1(t) = ku(t) − α1θ̇1(t) − Ms(t)

Ms(t) = α2(θ1(t) − θ2(t)) + α3(θ̇1(t) − θ̇2(t))

J2θ̈2(t) = −α4θ̇2(t) + Ms(t)

u

J2

θ2

Ms

θ1

J1

Fig. 1. Illustration of the example process; a DC-servo connected to an
inertia with a spring.

whereu(t) is an input signal controlling the torque from the
motor (with a scaling coefficientk = 1.1), θ1(t) andθ2(t) are
the angles of the motor axis and the flywheel, respectively,
andMs(t) is the torque of the spring. The moments of inertia
in the motor isJ1 = 1 and for the flywheelJ2 = 0.5. The
parametersα1 = 1 and α4 = 0.1 determine the viscous
friction at the motor and flywheel respectively, whileα2 =
0.05 is the spring constant andα3 = 0.1 the viscous damping
coefficient of the spring.

As outputs, the motor axis angle and velocity, and the an-
gle of the flywheel are measured. We will design the diagno-
sis system for six possible single faultsf1(t), . . . , f6(t); one
for each equation. The augmented system model becomes

J1θ̈1(t) = k(u(t) + f1(t)) − α1θ̇1(t) − Ms(t)

Ms(t) = α2(θ1(t) − θ2(t)) + α3(θ̇1(t) − θ̇2(t)) + f2(t)

J2θ̈2(t) = −α4θ̇2(t) + Ms(t) + f3(t)

y1(t) = θ1(t) + f4(t) + v1(t)

y2(t) = θ̇1(t) + f5(t) + v2(t)

y3(t) = θ2(t) + f6(t) + v3(t)

Here,vi(t), for i = 1, 2, 3, are measurement noise terms.
Since the diagnosis framework will work on sampled data,

we discretize the model before designing the tests, using a
zero-order hold assumption. The noise is implemented as
i.i.d. Gaussian noise with variance10−3. Here, the second
type of tests described in Section IV-C for the discretized
system is used. Tests for all behavioral models with degree
of redundancy1 result in a set of13 tests. Their correspond-
ing fault sensitivities are obtained directly from the model
equations, using expression (4), and are shown in Table I.

A. Reduction of the Computational Burden

To quantify the reduction in computational burden in
this example, a simple measure is used, where the number
of residual values computed in the FlexDx framework is
compared to the number of residual values computed for the
case where no dynamic reconfiguration of tests is used. This
is of course a coarse measure: for instance, it is not taken
into consideration that different tests may have drastically
different computational requirements. However, since the
objective here is to illustrate general principles rather than
to quantify an exact reduction for a particular example, the
simple approach is deemed sufficient.

In a simulated scenario, the system is started in the fault-
free mode. Att = 100, f1 is set to0.2, and att = 200,



TABLE I

THE FAULT SENSITIVITY OF THE RESIDUALS.

f1 f2 f3 f4 f5 f6

r1 X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X
r7 X X X X
r8 X X X X
r9 X X X X
r10 X X X X
r11 X X X X
r12 X X X X
r13 X X X X
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Fig. 2. Residuals computed by FlexDx.

f5 is set to0.1. The residuals computed by the diagnosis
system are shown in Figure 2. It is important to note that
during time intervals where the residual is plotted as being
exactly0, no residual computations are performed, and thus
residuals are not computed for all the time-points. Here the
second test selection method in Section IV-D has been used.
By comparing the number of residual values computed for
a diagnosis system running all tests at all times with the
number of residuals computed with the proposed system,
a 78% reduction of the number of computed residuals is
obtained for the simulated scenario. Further, the figure shows
that the largest number of tests is performed during the fault
transitions for a short period of time. The reduction obtained
in the example is significant and for systems with a low
failure rate or high degree of redundancy, a larger reduction
can be expected.

B. Test Reconfiguration

To show how the diagnosis system is reconfigured during
a fault transient, we will describe what is happening when
the faultf1 occurs att = 100 in the simulated scenario. The
course of events is described in Table II.

Each row in the table gives the most important properties
of one iteration in the procedure given in Section II. In
one such iteration, the set of active tests are executed on
observations collected from timetf to ta. The column
minimal diagnoses shows a simplified representation of the

TABLE II

DIAGNOSIS EVENTS

tf ta Active Tests Minimal Diagnoses
1 0 102.6 1, 2,5 NF

2 98.9 102.7 1, 3, 10,13 1, 3, 5, 6
3 98.9 102.2 1, 2, 6, 7,8, 11,12 1, 3, 25, 26, 45, 46
4 98.9 102.3 1, 2,6, 7, 9, 10, 11 1, 23, 25, 26, 35, 36, 45
5 98.9 102.6 1, 2, 7,9, 10, 11 1, 23, 26, 35, 36, 45
6 98.9 105.2 1, 2, 7, 10,11 1, 23, 26, 36, 45
7 100.6 − 1, 2, 7, 10 1, 23, 26, 36, 245, 345, 456

minimal diagnoses during the corresponding phase. Each
iteration ends when one or several of the active tests trigger
an alarm and these are in bold type.

A step by step description of the procedure given in
Section II will be given next. Step 1 initiates the set of
minimal diagnoses toD = {NF}, which is shown in row 1.
The degree of redundancy of the behavioral model for NF is
3, and therefore 3 tests are needed to check ifw ∈ O(NF)
is consistent. Step 2 computes the first, in lexicographical
ordering, minimum cardinality solution to (8), which is the
test setT = {1, 2, 5} given in row 1. Step 3 initiates the
testsT and test 5 triggers an alarm at timeta = 102.6.
From the fault sensitivity of residualr5 given in Table I,
C = {f1, f3, f5, f6} becomes a conflict which is the output
of step 4. The new set of minimal diagnoses, computed in
step 5, are shown in the second row. Returning to step 2,
the degree of redundancy for each of the behavioral models
corresponding to minimal diagnoses are2, and therefore at
least two tests are needed to check the consistency of each of
them. The minimum cardinality test set computed in step 2 is
T = {1, 3, 10, 13}. This set is shown in row 2. Tests 1 and 3
check the consistency of{f1}, 1 and 10 the consistency of
{f3}, 3 and 13 the consistency of{f5}, and 10 and 13 the
consistency of{f6}. In step 3, the fault time is estimated
to tf = 98.9 by using the alarming residualr5. The initial
states of the residuals used in the testsT are estimated using
observations sampled before timetf . Proceeding in this way,
the diagnosis system concludes in row 4 that{f1} is the only
consistent single fault.

VII. I MPLEMENTATION ISSUES

To implement the FlexDx framework, a number of issues
have to be managed besides implementing the algorithms
and connecting them into a system. When a potential fault is
detected, FlexDx computes the last known fault free timetf
and the new set of residuals to be tested starting at timetf . To
implement this, three issues have to be solved. First, FlexDx
must be reconfigured to compute the new set of residuals and
their tests. Second, these computations must begin at timetf
which will be in the past. Third, at the same time as FlexDx
is computing residuals and performing tests on the historic
data, system observations will keep coming at their normal
rate.

To manage these issues, FlexDx is implemented using
DyKnow, a knowledge processing middleware framework for
describing, implementing and interacting with applications
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Fig. 3. An overview of the components of the FlexDx implementation. The
boxes are computational units and the arrows are streams. A self referring
arrow means that a computational unit has an internal state which is fed
back to itself. The thick black line means that the inputs are synchronized
in time.

processing asynchronous streams of information [7], [8].
DyKnow processes streams on many levels of abstractions
generated by different components in a distributed system
mediating information between sensing and deliberating pro-
cesses. These streams can be viewed as time-series and can
start as continuous streams of sensor readings. Processes
combine such streams by computing, synchronizing, filtering
and approximating to derive higher level abstractions.

A DyKnow application consists of a set of sources rep-
resenting processes providing external streams (e.g., sensor
inputs), a set of computational units representing processes
on streams, and a set of labeled streams generated from
the sources and computational units. A computational unit
can encapsulate any computation on one or more streams.
Examples of computational units are filters and other signal
processing algorithms, but also more complex procedures
such as the test selection algorithm presented in Section IV.
Each stream is described by a declarative policy which
defines both which source it comes from and the constraints
on the stream. These constraints can for example specify
the maximum delay, how to approximate missing values or
that the stream should contain samples added with a regular
sample period.

An overview of the FlexDx implementation is shown in
Figure 3. It consists of four computational units:Residuals
to compute the residuals,ResultSet to perform the tests on
the residuals,Diagnoses to compute the current diagnoses
based on the test results, andTestSet which computes the
set of tests to be performed based on the current diagnoses.
The computational units are connected by streams. The input
to FlexDx is a stream of system observations coming from
a sourceSystem and the initial diagnoses.

The three features of DyKnow which provides the nec-
essary support for FlexDx is the ability to buffer streams,
to create streams starting from a time in the past and to
replace computational units at run-time. When the set of tests
changes,TestSet will replace Residuals and ResultSet
with new instances computing the current residuals and tests.
It will also replace the stream of system observations by a
new stream of system observations, but starting from the last
known fault free time. The system will then resume operation
as before, until the next fault is detected.

VIII. D ISCUSSION ANDCONCLUSIONS

The diagnosis framework proposed here reduces the com-
putational burden of performing multiple fault diagnosis by
only running the tests that are currently needed. This involves
a method for dynamically starting new tests. An important
contribution is a method to select tests such that the com-
putational burden is reduced while maintaining the isolation
performance of the diagnostic system. Key components in
the approach are test selection, test initialization, and the
knowledge processing middleware framework DyKnow that
supports the needed functionality. Specific algorithms for
diagnosing linear dynamical systems have been developed to
illustrate the diagnosis framework, but the framework itself
is more general. In the given example, the proposed approach
has shown a significant reduction of the computational bur-
den for a relatively small dynamical system. For systems with
a high degree of redundancy, i.e. systems for which there
exists many possible tests, the reduction can be expected
to be even higher. Systems with low failure rate are also a
class of systems where the approach can be expected to be
advantageous, since then typically only a small subset of the
tests are required to run continuously, rendering a significant
reduction in computational burden.
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