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Abstract— Detecting and isolating multiple faults is a compu- compared to the complete set of tests. When a test triggers an
tationally intense task which typically consists of computing a alarm and a fault is detected, appropriate tests are started
set of tests, and then computing the diagnoses based on the testyake it possible to compute a refined diagnosis decision.
results. This paper proposes a method to reduce the compu- Such h ) flexibl d fi bl
tational burden by only running the tests that are currently uch an approach requires a fiexible and reconfigura ; €
needed, and dynamically starting new tests when the need framework where tests can be stopped and restarted on-line
changes. A main contribution is a method to select tests such in a controlled fashion, and also be run on historical data.
_that the computational burden_ is redu_ced while maintaining the The objective of this paper is to illustrate how such a
isolation performance of the diagnostic system. Key components dynamic approach to diagnosis can be designed and imple-

in the approach are the test selection algorithm, the test initial- mented using linear dvnamical or models. In particul
ization procedures, and a knowledge processing framework that Mented using linear dynamical process models. In particula

supports the functionality needed. The approach is exemplified it Will be shown how such an approach requires controlled
on a relatively small dynamical system, which still illustrates the  ways of initializing the dynamic diagnostic tests, and how t

complexity and possible computational gain with the proposed  select which new tests that need to be started when a certain
approach. set of diagnostic tests has generated an alarm.

The reconfigurable diagnosis framework proposed in this
) ) ] ) ) _ paper is introduced in Section I, and the theoretical diagn

Detection and isolation of multiple faults in a dynamicgjs packground needed is presented in Section Ill. Methods
process is a computationally expensive task, and the cafdy to determine, in a specific situation, which tests that
increases rapidly with the number of faults and modedhoy|d be started next are treated in Section IV. A proper
complexity. A real-time, model-based diagnosis systemroft iyjiglization procedure for dynamic tests is described in
consists of a set of pre-compiled diagnostic tests togeth@gction V. The complete approach is exemplified on a
with a fault isolation module [3], [14]. The diagnostic ®st gy | dynamic system in Section VI, which, in spite of the
are based on a formal description of the process, often in thgjatively small size of the example, clearly illustraté® t
form of differential or difference equations. _ complexity of the problem and the possible computational

The computational complexity of such a diagnosis sysyain with the proposed approach. The computational frame-
tem mainly originates from two sources: complexity of theyork used to implement the approach, DyKnow, is briefly

process model and the number of fault modes that are coflsscribed in Section VII, and finally some conclusions are
sidered. A high capability of distinguishing between faplt given in Section VIII.

especially when multiple faults are considered, requires a
large number of diagnostic tests [9]. Also, the more complex  !l. FLEXDX: A RECONFIGURABLEDIAGNOSIS
the process model is, the more computationally intenseeis th FRAMEWORK
task of executing the diagnostic tests. This paper devedops This section gives an overview of the proposed reconfig-
reconfiguration scheme to handle computational issueswhilirable diagnosis framework, named FlexDx. As mentioned in
still being able to handle multiple faults. Recently, wotks the introduction, the approach must be capable of switching
on-line reconfiguration of the diagnosis system has appearen and off tests dynamically while refining the set of diag-
For a related work, see e.g. [2], where Kalman-filters armoses. This is done in an iterative manner by the following
reconfigured based on diagnosis decisions. procedure:

The main idea of this work is to utilize the observation 1) Initiate the set of diagnoses.
that all tests are not needed at all times, which can be used t(Q) Based on the set of diagnoses, compute the set of tests
reduce the overall computational burden. For example, when o be performed.
starting a fault free system, there is no need to run tests3) Compute the initial state of the selected tests.
that are designed with the sole purpose of distinguishing 4) Run the tests until an alarm is triggered.
between faults. In such a case, only tests that are able t05) Compute the current set of diagnoses based on the test
detect faults are needed, which may be significantly fewer results, then go to step 2.

T . . _ _ When dealing with multiple fault diagnosis, it has been
This work is partially supported by grants from the Swedigrghautics h ful Il di ith th .. |
Research Council (NFFP4-S4203) and the Swedish Foundati@trategic S. own useful to r_epresent a _'agnolses with the minima
Research (SSF) Strategic Research Center MOVIII. diagnoses [5]. This representation will also be used here.

I. INTRODUCTION



When FlexDx is started, there are no conflicts and the onB. Residual Generation

m@n@ma: diagnosis is the no-fault mode NF, i.e. the set of pagiguals are used both to detect and isolate faults. This
minimal diagnoses is set to{NF} in step 1. Step 2 US€S 5y can be formulated in a hypothesis testing setting. For

a function that given a set of diagnosgsreturns the set yiq et 1. denote both the fault signal and the corresponding
of testsT' to be performed next. Step 3 initiates each of th%ingle fault mode and IeF be the set of faults.

tests inT'. A test might include a residual generator given in ,
state-space form. This means that the start-up of such a tgst
involves the estimation of the initial condition of the rsal
generator. In step 4, the tests are performed until at lewest o Hy:f; =0, f; € Fo
of them triggers an alarm and a test result is generated in the Cr ,
form of a set of conflicts [4], [16]. Step 5 is a function that Hy: i # 0 for somef; € Fo
computes the current set of diagnodesgiven the previous where F, C F is the set of faults the residual is designed
set of diagnoses and the generated set of conflicts. This stepdetect. This means that the residual is not supposed to
can be performed with algorithms handling multiple faulidetect all faults, only the faults itFy. By generating a set
diagnoses [4], [11]. of such residuals, each sensitive to different subggtof

Step 4 and 5 are standard steps used in diagnosis systegts, fault isolation is possible. This isolation prooee is
and will not be described in further detail, while step 2 andriefly described in Section III-C.
3 are new steps needed for dynamically changing the test sein the literature there exists several different ways to
T'. The details of these steps are given in Section IV and ¥6rmally introduce residuals. In this paper an adaptedioers
respectively. But before that, a brief theoretical backgb  of the innovation filter defined in [10] is used. For this, iflwi
on test construction for dynamic systems. be convenient to consider the nominal model under a specific

IIl. THEORETICAL BACKGROUND hyppthesis. The nominal model under hypothdsjsabove

{;}igr:ver? by (t2_) withV (q) = ? anqdfi |: 0 for atll fi_ € ]—‘(I)_.
) . th this notion, a nominal residual generator is a linear
of a set of tests. Each test consists of a residy) that time-invariant filterr = R(q)w where for all observations

is thresholded such that it triggers an alarmpqift)| > 1. : ; . :
Note that the threshold can be set to one without of loss 9%{ consistent with the nominal model (2) under hypothesis

. . ) ) , it holds thatlim;_, . r(¢) = 0.
generality. It is assumed that the residuals are normalized’ : e r(t) =0

such that a given false alarm probabiljiys is obtained, i.e Now, consider again the stochastic model (2) where it
9 P iy ' 7" is clear that a residual generated with a nominal residual

P(|r(t)] > 1INF) = pga (1) generator will be subject to a noise component from the

. . : rocess noise. A nominal residual generator undéf, is

The residuals are designed using a model of the process;j0 . . .

be diagnosed t en said tq be a residual generator for. the §tochast|c. model
' (2) if the noise component in the residuak white Gaussian

A. The Model noise.

The class of models considered here are linear differential It can be shown [6] that all residual generatdtg;), as
algebraic models. It is worth noting that even if the devetbp defined above, for the stochastic model (2) can be written as
approach relies on results for linear systems, the basi ide _
is equally applicable also to non-linear model descrifgtion R(q) = Q(a)L(q)

There are several ways to formulate differential-alg&braiyhere the matrix operato(q) satisfies the condition
models. Here, a polynomial approach is adopted but similgj;) f7(q) = 0. This means that the residual is computed

results can be adopted for other model formulations, €.y  — ((q)L(q)w and it is immediate that the internal
descriptor models. The model is given by the expression form of the residual is given by

H(q)x+ L F =V 2
@z + Lo+ Fla)f = Vigp @) r= QL@ = —QWF@/ +Q@)V(gw (3)
where z(t) € R™=, w(t) € R™, f(t) € R™f, and S
o(t) € R™v. The matricest (¢), L(q), F(q), andV (q) are Thus, the fault sensitivity is given by
polynomial matrices in the time-shift operatgr The vec- _
tor x contains all unknown signals, which includes internal r=-QFf “)

system states and unknown inputs. The veeta@ontains all  and the statistical properties of the residual unéigiis given
known signals such as control signals and measured signals,

pair of hypotheses associated with a residual can then
stated as

The diagnosis systems considered in this paper cons

the vectorf contains the fault-signals, and the vectois r=Q(q)V (g (5)
white, possibly multidimensional, zero mean, unit covaca
Gaussian distributed noise. A complete design procedure is given in e.g. [10] for state-

To guarantee that the model is well formed, it is assumespace models and in [6] for models on the form (2). The
that the polynomial matri{H (z) L(z)] has full column objective here is not to describe a full design proceduré, bu
rank for somez € C. This assumption assures that for anyit is worth mentioning that a design algorithm can be made
noise realizatiorv(t) and any fault signalf(t) there exists fully automatic and that the main computational steps ol
a solution to the model equations (2). a null-space computation and a spectral factorization.



C. Computing the Diagnoses diagnoses. This is possible since (6) implies thdt’) C

The fault sensitivity of the residuat in (3) is given O(b) if 0" Cb. Hence, ift' is consistent it follows thab is
by (4). Here; is sensitive to the faults with non-zero transfeiconsistent and therefore it is sufficient to check if the miaii -
functions. LetC be the set of faults that a residualis consistent modes remain consistent when new observations
sensitive to. Then, if residualtriggers an alarm, then at least@ré processed.
one of .the faults inC'" must have occurred and the conflicty  Tagts for Checking Model Consistency
[16] C is generated. i )

Let a seth C F represent a system behavioral mode, Next, we will describe how tests can be used to detect
which means thaff; # 0 for all f; € b C F and f; = 0 if w gé. o). Let T = {t;]: € {1,2,...}} be the set of
for all f; ¢ b. The behavioral modé is then a diagnosis if 2l available tests and let = Qi(q)L(¢)w be the residual
it can explain all generated conflicts, ilehas a non-empty Corresponding to test. .
intersection with each generated conflict. A diagndsis A residual generator checks the consistency of a part
considered aninimal diagnosis if no proper subset afis  Of the complete model. To determine which part, only the
a diagnosis [4], [16]. Algorithms to compute all minimal deterministic model needs to be considered. It can be shown
diagnoses for a given set of conflicts, which is equivalent tht2] that residual; checks the consistency @f(¢)w = 0
the so called minimal hitting set problem, can be found ifVN€re&:(¢) is a polynomial in the time-shift operator. By

for example [4], [16]. The following example illustrateseth defining the set of consistent observations for tests in a
main principle. similar way as for models, we define

Example 1:Let anX in position (7, j) in the table below O(t;) = {w|&(q@)w = 0} @)
indicate that residuat; is sensitive to faultf;
|1 fo S Now, we are ready to characterize all test sEtthat are
r1 X X capable of detecting any inconsistencyuof O(b). For this
re | X X purpose, only tests; with the property thaD(b) C O(t;)
rs | X X can be used. For such a test, an alarm impliesahdtO(¢;)
If residualsr; and r, trigger alarms, then conflict6’;, =  which further implies thatv ¢ O(b). This means that a test

{f2, fs} andCy = {f1, f3} are generated. For a set of faultssetT is capable of detecting any inconsistencyuof O(b)
to be a diagnosis, it must then explain both these conflict§.and only if
It is straightforward to verify that the minimal diagnoses i
this case aré, = {f3} andby = {f1, fo}. o o) = N O(t:) 8)
ti€{t;€T]O(b)CO(t;)}
IV. TESTSELECTION A trivial solution to (8) isT 2 whereO(t) — O(b
. . . . ) rivial solution to isT = where = .

This section describes step 2 in the procedure given In {th ®) (6)
Section I, i.e. how the set of tes#S is selected given a set C. The Set of All Available Tests
D.of minimal diagnoses. There are many possible ways how ¢+ 7 is not capable of checking the consistencyofhen
this can be done, and the method that will be described hegg s hset of tests will be capable of doing this either. Hence
is based on the deterministic properties of (2) only an@seli s approach sets requirements on the entire set of Tests
on basic principles in consistency-based diagnosis. In this paper, we will use two different types of test s@ts

A fundamental task in consistency-based diagnosis is {gilling (8) for all modesh € B. These are introduced by
compute the set of consistent modes [4] given a model, a 5@t following example.

of possible behavioral modes, and observations. The deSignExampIe 2: Consider the model
goal of the test selection algorithm will be to perform tests

such that the set of consistent modes is equal to the set of ri(t+1) = axi(t) +wi(t) + fi(t)

diagnoses computed by the diagnosis system. z2(t) = z1(t) + f2(t) )
wa(t = x1(t) + f3(t

A. Consistent Behavioral Modes wzgtg - xigt; + ﬁgt;

The deterministic behavior in a behavioral modeis
described by (2) when = 0 and f; = 0 for all f; ¢ b,
and the set of observations consistent vitls consequently

where z; are unknownsuw; known variables,c a known
parameter, and; the faults. There arg* modes and the set
of observations consistent with each mode is

given by - : T
w1 (t) + cws (t) — wo(t +
O®) = {uln 3penfi: Haz+ Lo+ ) Fil@)fi =0} e R ) N N
fieb (6) O({f1}) = {w| — wa(t) + ws(t) = 0}
This means that a modeis consistent with the deterministic ~ O({f2}) = O({f1}) = O({ f2, fa}) =
part of model (2) and an observatianif w € O(b). Hence, = {w|w (t) + aws(t) — wa(t +1) = 0}

to achieve the goal the set of diagnoses should, given an O _ _

. = t t) —ws3(t+1)=0
observationw, be equal to{b € Blw € O(b)} where B ({f3}) = {w|w1(t) + aws(t) — ws(t + 1) = 0}
denotes the set of all behavioral modes. As mentioned iFhe behavioral models for the 10 remaining moé&® not
Section Il, we will use minimal diagnoses to represent altontain any redundancy and the observations are therefore



not restricted, i.eO(b) = R3. In contrast to (6), the sets of valuable information would be missed. It is also important
consistent observations are here expressed in the same fdahat the state of the new test gets properly initialized hsuc
as for tests that is with linear differential equations i th that the fault sensitivity is appropriate already from the
known variables only. Any set described as in (6) can bstart, and the residuals can deliver tests results immeddiat
written in this form [15]. o Therefore, the initialization of a new test consists of two
The first type of test sef; will be to design one test steps:
for each distinct behavioral model containing redundancy, 1) Estimate the time of the fault.
i.e., for the exampleZ; consists of four testg; such that 2) Estimate the initial condition.

O(t:) = O(0), O(t2) = O({f1}), O(t?) = O({f2}), and " goth these steps require the use of historical data, which
O(ta) = O({f3}). To check the consistency af € O((), therefore have to be stored. The fault time estimation will
two linear residuals are needed and this number is the ige the historical residuals from the triggered test, while
degree of redundancy of a model. These two residuals Cgfl, initial condition estimation uses the measured data fro
be combined in a positive definite quadratic form to obtaig,o process before the fault occurred. In case not enough

a scalar test quantity. When stochastics are considered, fig(orical data is available, it is reasonable to use allaivie
quadratic form is chosen such that the test quantity cor§ormyaia |1n such a case, one may expect some degradation in

gt
to a x"-distribution. , detection performance compared to running all tests at all
Tests for models with a high degree of redundancy can Rgpes.

complex and the second type of test getincludes only the
tests for the behavioral models with degree of redundancy A. Estimating the Fault Time

For the exampleT; = {t»,13,%4} and by noting thaO () = There are many possibilities to estimate the fault time.
O(t;) N O(t;) for anyi # j whered, j € {2,3,4}, any two  See for example [13], [1] for standard approaches based on
tests can be used to check the consistencyvof O(0). |ikelihood ratios. Here, a window-based test has been chose
In [9] it has been shown under some general conditions thatshould be noted, however, that for the given framework,
7, fulfills (8) for all modesb € B. what is important is not really to find the exact fault time,
. but rather to find a time-point before the fault has occurred.
D. Test Selection Methods The estimated time-point will be denoted by.

We will exemplify methods that given a set of minimal Given a number of residuals from an alarming test,
diagnosesD select a test séf' C 7 such that (8) is fulfilled »(1),... 7(k), let us compute the sum of the squared resid-
forallb € D. An optional requirement that sometimes mighfyals over a sliding window, i.e.,

be desirable is to select such a testBeatith minimum car- '

dinality. The reason for not requiring minimum cardinaliy _ 1 2 . . B

that the computational complexity of computing a minimum S(t) = o2 er (t+7), E=0, k=t (10)
cardinality solution is generally much higher than to fingt an =

solution. If the residual generator is designed such that, under the nu

The most straightforward method is to use the first typ8ypothesis that no fault has occurre@(j));_, are white
of tests and not require minimum cardinality solutions.cgin and Gaussian with variance?, then S(t) ~ x*(¢) in the -
the first type of test set includes a trivial testt;) = O(b) fault free case. Hence(t) can be useq to test _vvhether this
for all modesb with model redundancy, it follows that a null hypothesis has been rejected at different time-pplys
strategy is to start the tests corresponding to the minimal Simple x*-test. Since it is preferable to get an estimated
diagnoses inD. time-point that occurs before the actual fault time, rathan

Example 3:Consider Example 2 and assume that the séffter, the threshold of thg?-test should be chosen such that
of minimal diagnoses i) = {0}. Then it is sufficient to the null hypothesis is fairly easily rejected. The estinates
perform test,, i.e.T = {t,}. If the set of minimal diagnoses then set to the time-point of the last non-rejected testo Als
are D = {{f2},{f3},{f4}}, thents is used to check the in order not to risk a too late estimate, the time-point at the
consistency of botH f,} and {f,} and the total set of tests beginning of the sliding window is used.
'S.T. N {t3’t4}'. Fo_r this e>§ample, th|§ ;trategy prqduces th%. Estimating the Initial Condition
minimum cardinality solutions, but this is not true in gealer ) ) o

A second method is to use the second type of tests angHaving fo'undtf, the next step is to initialize the state Qf
for example require a minimum cardinality solution. Thethe_ new _re5|dual generator. The method used here_ considers
discussion of the method will be given in Section VI where? time-window of samples ab(t; — k), ..., w(ty) as input

this method has been applied to a larger example. to find a good initial state:(¢;) of the filter at the last time
point of the window.

V. INITIALIZATION Consider the following residual generator:
When a new test selection has been made, new tests have z(t +1) = Az(t) + Bw(t) (11)
to be initialized. Since information about faults sometime r(t) = Cx(t) + Duw(t) (12)

are only visible in the residuals for a short time-periocaft
a fault occurrence, we would like a new test to start runningssume thatv(t) = wo(t)+Nv(t) wherewq(t) is the noise-
before the currently considered fault occurred; otherwistee data (inputs and outputs) from the process model and



v(t) is Gaussian noise. In fault free operation, there is a state M
sequencer(t), such that the output(t) = 0 if v(t) = 0, 0, 0
i 2
no AN )
X0 (t + 1) = Axo(t) + Bwo(t) (13)
0 = Cao(t) + Dwo(t) (14) 4
Givenw(t), t =ty — k,...,ty, we would like to estimate u

xo(ts). This will be done by first estimating, (¢t — k). . .
From (13) al’ldw(t) _ wo(t) + Nv(t) we get ’ Fig. 1. lllustration of the example process; a DC-servo coteteto an

inertia with a spring.
0= wao(tf —k)+ R,Wy

&  Ryxo(ty —k)+ R,W = R,DyV (15) _ , _ _
wherew(t) is an input signal controlling the torque from the

where motor (with a scaling coefficierit = 1.1), 6, (t) andd () are
[ C D o 0 ... the angles of the motor axis and the flywheel, respectively,
CA CB D 0 .. and M, (t) is the torque of the spring. The moments of inertia
R,=| . R,=| CAB CB D in the motor isJ; = 1 and for the flywheel/; = 0.5. The
: i parametersy; = 1 and ay = 0.1 determine the viscous
[cA” [cAMIB L D friction at the motor and flywheel respectively, while =
(w(ty — k) [wo(ty — k) 0.05 is the spring constant anrd; = 0.1 the viscous damping

coefficient of the spring.

W= : Wo = As outputs, the motor axis angle and velocity, and the an-
w(ty) L wo(ty) gle of the flywheel are measured. We will design the diagno-
oty — k) N 0 ... 0 sis system for six possible single faults(¢), ..., fs(t); one
. f_ 5 0O N ... 0 for each equation. The augmented system model becomes
= : vV = . .
o(ts) I01() = R(u(t) + (1)) — aabi (1) = M (1)

P L T M, () = a2(61(t) — 62() + a3 (01(5) — B2(8)) + falt)
ssuming that the distribution ofl” is known, say, B ;

V ~ N(0,Xy), (15) means thatR,zo(t; — k) + R,W J202 t; : _(z;)ei(? —(:)Afff)(;; fs(t)

- 4 1
)
)
(

(
(
is a zero-mean stochastic vector with covariance matrix ¥1(t) =61
R,DyvEyDELRY.. Note that the expression above corre-  y,(t) = 6y (t) + f5(t) + va(t)

sponds to the actual re_5|duals obtal_ned when startl_ng N 02(t) + fo(t) + v3(t)

xo(ty—k). Due to the design of the residual generator giving

white residuals, this means that, Dy Xy DL RI ~ %I, Here,v;(t), for i = 1,2,3, are measurement noise terms.
Hence, a reasonable estimatexoft; — k) is given by the Since the diagnosis framework will work on sampled data,

regular least-squares estimate, we discretize the model before designing the tests, using a
zero-order hold assumption. The noise is implemented as

y3(t

. = (RTRV-1RTR
. Tolty — k) (Ry Re)™ Ry R W (16) i.i.d. Gaussian noise with variand®—>. Here, the second
From this,2o(t) can be computed as type of tests described in Section IV-C for the discretized
olty) = Adolty ~ k)¢ o todundanch resull na set o1 (65, Ther cortespon
k—1 k—2 ' ;
[A*¥1B AMB ... AB B 0]W ing fault sensitivities are obtained directly from the mide

The choice ofk is made in advance, based on the computeelquations, using expression (4), and are shown in Table I.

variance of the initial residuals givehy(t;). The largerk is, ] ]

the closer this variance comes to the stationary case. Henfe Reduction of the Computational Burden

k can be chosen based on a maximum probability of false To quantify the reduction in computational burden in

alarms during the initial time steps. this example, a simple measure is used, where the number

VI. EXAMPLE of residual values computed in the FlexDx framework is
compared to the number of residual values computed for the

To illustrate the FlexDx framework, let us consider thecase where no dynamic reconfiguration of tests is used. This

simulated _example system shown in Figure 1, whgre iS of course a coarse measure: for instance, it is not taken
DC-servo is _connected toa flywhegl through a rotationay, consideration that different tests may have dragtical
(damped)'sprmg. T.he system dynamics can be described Wferent computational requirements. However, since the
the following equations: objective here is to illustrate general principles ratheant
Jlél(t) = ku(t) — o101 (t) — M(t) to quantify an exact reduction for a particular example, the
_ _ ] y simple approach is deemed sufficient.
A{S(t) N az(al.(t) 62(1)) + aa(0u(t) - 62(1)) In a simulated scenario, the system is started in the fault-
J205(t) = —aba(t) + M (t) free mode. Att = 100, f; is set t00.2, and att = 200,



TABLE | TABLE I
THE FAULT SENSITIVITY OF THE RESIDUALS DIAGNOSIS EVENTS

f1

o
&
ot
1)

T1
T2
3
T4
5
6
7
8
9
T10
11
T12
T13

Ly ta Active Tests Minimal Diagnoses
0 102.6 1,2,5 NF
98.9 102.7 1,3,10,13 1,3,5,6
98.9 1022 1,2 ,11,12 1,3,25,26,45,46
102.3 1,2, 10,11 1,23,25,26,35,36,45
1,2
1,2
1,2

X X X

XX X X X X

98.9 1026 0,11  1.23.26.35. 36,45
98.9  105.2 11 1,2326. 36, 45
1,23.26, 36, 245, 345, 456

X X X X X X x:o,
> X x X X X X X[
x X X X X X X X|=
O U N
©
®
©

XX XX XX XX X
XX X X X X
X X X

minimal diagnoses during the corresponding phase. Each
iteration ends when one or several of the active tests trigge
an alarm and these are in bold type.

’ ’ L L A step by step description of the procedure given in
- - i Section 1l will be given next. Step 1 initiates the set of
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 minima| diagnoses td = {NF}, Wh|Ch is ShOWh in row 1.

2 2 2 2 The degree of redundancy of the behavioral model for NF is

o o ” Z% o 3, and therefore 3 tests are needed to check & O(NF)
0 10 200 30 0 100 200 00 0 100 200 30 0 100 200 300 is consistent. Step 2 computes the first, in lexicographical
2 2 2 2 ordering, minimum cardinality solution to (8), which is the
w0 i 2o —WM— = o S o test setT” = {1,2,5} given in row 1. Step 3 initiates the
e e testsT and test 5 triggers an alarm at tinig = 102.6.
From the fault sensitivity of residual; given in Table I,
P C ={f1, f3, f5, fo} becomes a conflict which is the output
! of step 4. The new set of minimal diagnoses, computed in
o 100 20 a0 step 5, are shown in the second row. Returning to step 2,
Fig. 2. Residuals computed by FlexDx. the degree of redundancy for each of the behavioral models
corresponding to minimal diagnoses &eand therefore at
least two tests are needed to check the consistency of each of
f5 is set t00.1. The residuals computed by the diagnosishem. The minimum cardinality test set computed in step 2 is
system are shown in Figure 2. It is important to note thaf’ = {1, 3,10, 13}. This set is shown in row 2. Tests 1 and 3
during time intervals where the residual is plotted as beingheck the consistency dff;}, 1 and 10 the consistency of
exactly 0, no residual computations are performed, and thuffs}, 3 and 13 the consistency ¢ffs}, and 10 and 13 the
residuals are not computed for all the time-points. Here theonsistency of{ fs}. In step 3, the fault time is estimated
second test selection method in Section IV-D has been usédd.t; = 98.9 by using the alarming residua}. The initial
By comparing the number of residual values computed fastates of the residuals used in the téStare estimated using
a diagnosis system running all tests at all times with thebservations sampled before tirye Proceeding in this way,
number of residuals computed with the proposed systerthe diagnosis system concludes in row 4 tht} is the only
a 78% reduction of the number of computed residuals igonsistent single fault.
obtained for the simulated scenario. Further, the figuravsho
that the largest number of tests is performed during the faul
transitions for a short period of time. The reduction okgdin ~ To implement the FlexDx framework, a number of issues
in the example is significant and for systems with a lovhave to be managed besides implementing the algorithms
failure rate or high degree of redundancy, a larger redacticand connecting them into a system. When a potential fault is
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can be expected. detected, FlexDx computes the last known fault free time
. . and the new set of residuals to be tested starting atttjmito
B. Test Reconfiguration implement this, three issues have to be solved. First, BlexD

To show how the diagnosis system is reconfigured duringuust be reconfigured to compute the new set of residuals and
a fault transient, we will describe what is happening whetheir tests. Second, these computations must begin attfime
the fault f; occurs att = 100 in the simulated scenario. The which will be in the past. Third, at the same time as FlexDx
course of events is described in Table II. is computing residuals and performing tests on the historic

Each row in the table gives the most important propertiedata, system observations will keep coming at their normal
of one iteration in the procedure given in Section Il. Inrate.
one such iteration, the set of active tests are executed onTo manage these issues, FlexDx is implemented using
observations collected from time; to ¢,. The column DyKnow, a knowledge processing middleware framework for
minimal diagnoses shows a simplified representation of ttaescribing, implementing and interacting with applicato



Q O VIII. Di1scussiON ANDCONCLUSIONS
Syat Bsanators ) residuals The diagnosis framework proposed here reduces the com-
ystem Residuals ResuitSet putational burden of performing multiple fault diagnosis b
only running the tests that are currently needed. This iregl
O a method for dynamically starting new tests. An important
contribution is a method to select tests such that the com-
result set . . . . P . .
testset | qocicet | dmses | piagnoces R putational burden is rgduced _Whlle maintaining the isofati _
| Teonoses It performance of the diagnostic system. Key components in

the approach are test selection, test initialization, drel t

Fig. 3. An overview of the components of the FlexDx implementatiThe
boxes are computational units and the arrows are streamsf Aegalring
arrow means that a computational unit has an internal statehwikifed

knowledge processing middleware framework DyKnow that
supports the needed functionality. Specific algorithms for
diagnosing linear dynamical systems have been developed to

back to itself. The thick black |i that the input Bronized . . .
inafim; roctl The fhick backfine means That The MpUIs STsIonize fustrate the diagnosis framework, but the frameworklitse

is more general. In the given example, the proposed approach
has shown a significant reduction of the computational bur-

processing asynchronous streams of information [7], [8gen for a relatively small dynamical system. For systemh wit

DyKnow processes streams on many levels of abstractions

ner ifferen mponents in istri Fﬁ< | . .
generated by different components in a distributed syste 0 be even higher. Systems with low failure rate are also a

mediating information between sensing and deliberatitog prC s of systems where the approach can be expected to be
cesses. These streams can be viewed as time-series and gﬁ Y w PP xp

start as continuous streams of sensor readings. Procest%s%gn;?ffguji’r;lnf:ﬂ?g;ﬁgfsgﬁ;nweijgﬁy s;t;isetggith
combine such streams by computing, synchronizing, filgerin q Y 9 gm

high degree of redundancy, i.e. systems for which there
ists many possible tests, the reduction can be expected

and approximating to derive higher level abstractions.

A DyKnow application consists of a set of sources rep-
resenting processes providing external streams (e.gspsen [q
inputs), a set of computational units representing pr&sess
on streams, and a set of labeled streams generated frol#l
the sources and computational units. A computational unit
can encapsulate any computation on one or more streamis]
Examples of computational units are filters and other sign
processing algorithms, but also more complex procedure
such as the test selection algorithm presented in Section I\5]
Each stream is described by a declarative policy whic 6]
defines both which source it comes from and the constraint
on the stream. These constraints can for example specif
the maximum delay, how to approximate missing values o 7]
that the stream should contain samples added with a regular

4]

sample period. [8]
An overview of the FlexDx implementation is shown in
Figure 3. It consists of four computational uniiesiduals [9]
to compute the residualResultSet to perform the tests on 0]

the residualsPiagnoses to compute the current diagnoses
based on the test results, amestSet which computes the
set of tests to be performed based on the current diagnosgsl
The computational units are connected by streams. The input
to FlexDx is a stream of system observations coming fromni2]
a sourceSystem and the initial diagnoses.

The three features of DyKnow which provides the necp3]
essary support for FlexDx is the ability to buffer streams
to create streams starting from a time in the past and Fﬂ)
replace computational units at run-time. When the set of teti 5]
changes,TestSet will replace Residuals and ResultSet
with new instances computing the current residuals and.test'®!
It will also replace the stream of system observations by a
new stream of system observations, but starting from ttte las
known fault free time. The system will then resume operation
as before, until the next fault is detected.

reduction in computational burden.
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