
ar
X

iv
:0

80
3.

12
02

v1
  [

m
at

h.
O

C
]  

8 
M

ar
 2

00
8

Distributed Subgradient Methods and Quantization Effects

Angelia Nedić
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Abstract— We consider a convex unconstrained opti-
mization problem that arises in a network of agents
whose goal is to cooperatively optimize the sum of
the individual agent objective functions through local
computations and communications. For this problem,
we use averaging algorithms to develop distributed
subgradient methods that can operate over a time-
varying topology. Our focus is on the convergence rate
of these methods and the degradation in performance
when only quantized information is available. Based on
our recent results on the convergence time of distributed
averaging algorithms, we derive improved upper bounds
on the convergence rate of the unquantized subgradient
method. We then propose a distributed subgradient
method under the additional constraint that agents can
only store and communicate quantized information, and
we provide bounds on its convergence rate that highlight
the dependence on the number of quantization levels.

I. I NTRODUCTION

There has been much interest in developing dis-
tributed methods for optimization in networked-
systems consisting of multiple agents with local in-
formation structures. Such problems arise in a variety
of environments including resource allocation among
heterogeneous agents in large-scale networks, and
information processing and estimation in sensor net-
works. Optimization algorithms deployed in such net-
works should be completely distributed, relying only
on local observations and information, and robust
against changes in network topology due to mobility
or node failures.

Recent work [15] has proposed a subgradient
method for optimizing the sum of convex objective
functions corresponding ton agents connected over a
time-varying topology (see also the short paper [14]).
The goal of the agents is to cooperatively solve the
unconstrained optimization problem

minimize
∑n

i=1 fi(x)
subject to x ∈ R

m,
(1)

This research was partially supported by the National Science
Foundation under grant ECCS-0701623, CAREER grants CMMI
07-42538 and DMI-0545910, and by DARPA ITMANET program.

where eachfi : R
m → R is a convex function,

representing the local objective function of agenti,
and known only to this agent. The decision vectorx
in problem (1) can be viewed as either a resource
vector whose components correspond to resources
allocated to each agent, or a global decision vector
which the agents are trying to optimize using local
information. The proposed method builds on the
work in [23], [24] (see also, [3]). It relies on every
agent maintaining estimates of an optimal solution
to problem (1), and communicating these estimates
locally to its neighbors. The estimates are updated
using a combination of a subgradient iteration1 and an
averaging algorithm. The subgradient step optimizes
the local objective function while the averaging algo-
rithm is used to obtain information about the objective
functions of the other agents.

In this paper, we consider the distributed subgradi-
ent method discussed in [15], and provide improved
convergence rate results. In particular, we use our
recent results on the convergence time of averaging
algorithms [13] and establish new upper bounds on
the difference between the objective function value
of the estimates of each agent and the optimal value
of problem (1). These bounds have a polynomial
dependence on the number of agentsn (in contrast
with the error bounds in [15], [14], which involve
exponential dependence onn). Furthermore, we study
a variation of the distributed subgradient method in
which the agents have access to quantized informa-
tion, and provide bounds on the convergence time that
contain additional error terms due to quantization.

In addition to the papers cited above, our work is
related to the literature on reaching consensus on a
particular scalar value or on computing exact averages
of the initial values of the agents, a subject moti-
vated by natural models of cooperative behavior in

1For subgradient methods see, for example, [19], [21], [20],[8],
[1], [2].
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networked-systems (see, e.g., [25], [9], [4], [16], [5],
and [17], [18]). Closely related is also the work in [10]
and [7], [6], which study the effects of quantization on
the performance of averaging algorithms. Our work
is also related to theutility maximizationframework
for resource allocation in networks (see [11], [12],
[22]). In contrast to this literature, however, we allow
the local objective functions to depend on the entire
resource allocation vector.

The rest of this paper is organized as follows. In
Section II, we describe the distributed subgradient
method and present an improved convergence rate
estimate using our recently established bounds on
the convergence time of our averaging algorithms
[13]. In Section III, we consider a version of the
method under the additional constraint that the agents
can only exchange quantized information. We provide
convergence and rate of convergence results as a
function of the number of quantization levels. Section
IV contains our concluding remarks.
Notation and Basic Notions.We view all vectors
as columns. We useei to denote the vector withith
entry equal to 1 and all other entries equal to 0. We
use1 to denote a vector with all entries equal to 1.
For a matrixA, we useaij or [A]ij to denote the
matrix entry in theith row andjth column. We write
[A]i and [A]j to denote respectively theith row and
the jth column of a matrixA. A vector a is said
to be astochastic vectorwhen its componentsai are
nonnegative and

∑

i ai = 1. A square matrixA is said
to be stochasticwhen each row ofA is a stochastic
vector, and it is said to bedoubly stochasticwhen
bothA and its transposeA′ are stochastic matrices.

For a convex functionF : Rm → R, we use the
notion of a subgradient (see [2]): a vectorsF (x̄) ∈
R

m is a subgradient of a convex functionF at x̄ if

F (x̄) + sF (x̄)
′(x− x̄) ≤ F (x), for all x.

We use the notationf(x) =
∑n

j=1 fi(x). We
denote the optimal value of problem (1) byf∗ and
the set of optimal solutions byX∗.

II. D ISTRIBUTED SUBGRADIENT METHOD

We first introduce our distributed subgradient
method for solving problem (1) and discuss the
assumptions imposed on the information exchange
among the agents. We consider a setV = {1, . . . , n}
of agents. Each agent starts with an initial estimate
xi(0) ∈ R

m and updates its estimate at discrete
timestk, k = 1, 2, . . .. We denote byxi(k) the vector
estimate maintained by agenti at time tk. When
updating, an agenti combines its current estimatexi

with the estimatesxj received from its neighboring

agentsj. Specifically, agenti updates its estimates by
setting

xi(k + 1) =
n
∑

j=1

aij(k)xj(k)− αdi(k), (2)

where the scalarsai1(k), . . . , ain(k) are nonnegative
weights and the scalarα > 0 is a stepsize. The vector
di(k) is a subgradient of the agenti cost function
fi(x) at x = xi(k). We use the notationA(k) to
denote theweight matrix[aij(k)]i,j=1,...,n.

The evolution of the estimatesxi(k) generated by
Eq. (2) can be equivalently represented using tran-
sition matrices. In particular, we define atransition
matrixΦ(k, s) for anys andk with k ≥ s, as follows:

Φ(k, s) = A(k)A(k − 1) · · ·A(s+ 1)A(s).

Using these transition matrices, we relate the estimate
xi(k + 1) to the estimatesx1(s), . . . , xn(s) for any
s ≤ k. In particular, for the iterates generated by Eq.
(2), we have for anyi, and anys andk with k ≥ s,

xi(k + 1) =

n
∑

j=1

[Φ(k, s)]ijxj(s)

− α

k−1
∑

r=s

n
∑

j=1

[Φ(k, r + 1)]ijdj(r)

− αdi(k) (3)

(for more details, see [15]). As seen from the pre-
ceding relation, to study the asymptotic behavior
of the estimatesxi(k), we need to understand the
behavior of the transition matricesΦ(k, s). We do this
under some assumptions on the agent interactions that
translate into some properties of transition matrices.

Our first assumption imposes some conditions on
the weightsaij(k) in Eq. (2).

Assumption 1:For all k ≥ 0, the weight matrix
A(k) is doubly stochastic with positive diagonal.
Additionally, there is a scalarη > 0 such that if
aij(k) > 0, thenaij(k) ≥ η.

The doubly stochasticity assumption on the weight
matrix will guarantee that the subgradient of the
objective functionfi of every agenti will receive
the same weight in the long run. The second part of
the assumption states that each agent gives significant
weight to its own values and to the values of its
neighbors.

At each timek, the agents’ connectivity can be rep-
resented by a directed graphG(k) = (V, E(A(k))),
where E(A) is the set of directed edges(j, i), in-
cluding self-edges(i, i), such thataij > 0. Our
next assumption ensures that the agents are connected
frequently enough to persistently influence each other.



Assumption 2:There exists an integerB ≥ 1 such
that the directed graph
(

V, E(A(kB))
⋃

· · ·
⋃

E(A((k + 1)B − 1))
)

is strongly connected for allk ≥ 0.

A. Preliminary Results

Here, we provide some results that we use later in
our convergence analysis of method (2). These results
hold under Assumptions 1 and 2.

Consider a related update rule of the form

z(k + 1) = A(k)z(k), (4)

wherez(0) ∈ R
n is an initial vector2. Define

V (k) =

n
∑

j=1

(zj(k)− z̄(k))2 for all k ≥ 0,

wherez̄(k) is the average of the entries of the vector
z(k). Under the doubly stochasticity ofA(k), the
initial averagez̄(0) is preserved by the update rule
(4), i.e., z̄(k) = z̄(0) for all k. Hence, the function
V (k) measures the “disagreement” in agent values.

In the next lemma, we give a bound on the decrease
of the agent disagreementV (kB), which is linear in
η and quadratic inn−1. This bound is an immediate
consequence of Lemma 5 in [13].

Lemma 1:Let Assumptions 1 and 2 hold. Then,
V (k) is nonincreasing ink. Furthermore,

V ((k + 1)B) ≤
(

1− η

2n2

)

V (kB) for all k ≥ 0.

Using Lemma 1 we obtain the following result for
the transition matricesΦ(k, s) of Eq. (3).

Corollary 1: Let Assumptions 1 and 2 hold. Then,
for all i, j and allk, s with k ≥ s, we have

∣

∣

∣

∣

[Φ(k, s)]ij −
1

n

∣

∣

∣

∣

≤
(

1− η

4n2

)⌈ k−s+1

B
⌉−2

.

Proof: By Lemma 1, we have for allk ≥ s,

V (kB) ≤
(

1− η

2n2

)k−s

V (sB).

Let k ands be arbitrary withk ≥ s, and let

τB ≤ s < (τ + 1)B, tB ≤ k < (t+ 1)B,

with τ ≤ t. Hence, by the nonincreasing property of
V (k), we have

V (k) ≤ V (tB)

≤
(

1− η

2n2

)t−τ−1

V ((τ + 1)B)

2This update rule captures the averaging part of Eq. (2), as it
operates on a particular component of the agent estimates, with
the vectorz(k) ∈ R

n representing the estimates of the different
agents for that component.

≤
(

1− η

2n2

)t−τ−1

V (s).

Note thatk−s < (t−τ)B+B implying thatk−s+1
B

≤
t− τ + 1, where we used the fact that both sides of
the inequality are integers. Therefore⌈k−s+1

B
⌉− 2 ≤

t− τ − 1, and we have for allk ands with k ≥ s,

V (k) ≤
(

1− η

2n2

)⌈ k−s+1

B
⌉−2

V (s). (5)

By Eq. (4), we havez(k + 1) = A(k)z(k), and
thereforez(k+1) = Φ(k, s)z(s) for all k ≥ s. Letting
z(s) = ei we obtainz(k+1) = [Φ(k, s)]i. Using the
inequalities (5) andV (ei) ≤ 1, we obtain

V ([Φ(k, s)]i) ≤
(

1− η

2n2

)⌈ k−s+1

B
⌉−2

.

The matrixΦ(k, s) is doubly stochastic, because it is
the product of doubly stochastic matrices. Thus, the
average entry of[Φ(k, s)]i is 1/n implying that for
all i andj,

(

[Φ(k, s)]ij −
1

n

)2

≤ V ([Φ(k, s)]i)

≤
(

1− η

2n2

)⌈ k−s+1

B
⌉−2

.

From the preceding relation and
√

1− η/(2n2) ≤
1− η/(4n2), we obtain

∣

∣

∣

∣

[Φ(k, s)]ij −
1

n

∣

∣

∣

∣

≤
(

1− η

4n2

)⌈ k−s+1

B
⌉−2

.

B. Convergence time

We now study the convergence of the subgradient
method (2) and obtain a convergence time bound.
We assume the uniform boundedness of the set of
subgradients of the cost functionsfi at all points3:
for some scalarL > 0, we have for allx ∈ R

m and
all i,

‖g‖ ≤ L for all g ∈ ∂fi(x), (6)

where∂fi(x) is the set of all subgradients offi at x.
We define the time-averaged vectorsx̂i(k) of the

iteratesxi(k) generated by Eq. (2), i.e.,

x̂i(k) =
1

k

k−1
∑

h=0

xi(h). (7)

The use of these vectors allows us to bound the
objective function improvement at every iteration;

3This assumption can be relaxed, see [15].



see [15], [14]. Under the subgradient boundedness
assumption, we have the following result4.

Theorem 1:Let Assumptions 1 and 2 hold, and
assume that the setX∗ of optimal solutions of prob-
lem (1) is nonempty. Let the sets of subgradients be
bounded as in Eq. (6). Also, let the initial vectors
xi(0) in Eq. (2) be such thatmax1≤i≤n ‖xi(0)‖ ≤
αL. Then, the averageŝxi(k) of the iterates obtained
by the method (2) satisfy

f(x̂i(k)) ≤ f∗ +
n dist2(y(0), X∗)

2αk

+
αL2C

2
+ 2αnL2C1,

where

C = 1+ 8nC1, C1 = 1+
nB

β(1− β)
, β = 1− η

4n2
,

(8)
andy(0) = (1/n)

∑n
i=1 xi(0).

Proof: The proof is identical to that of Proposi-
tion 3 in [15] and relies on the use of our improved
convergence rate bound in Corollary 1.

The convergence rate result in the preceding the-
orem improves that of Proposition 3 in [15], where
an analogous estimate is shown with a worse value
for the constantβ. In particular, there the constant
β in [15] is given by β = 1 − η(n−1)B , and C1

increases exponentially withn. As seen from Eq. (8),
our new constantC1 increases only polynomially with
n, indicating a much more favorable scaling as the
network size increases.

III. QUANTIZATION EFFECTS

We next study the effects of quantization on the
convergence properties of the subgradient method. In
particular, we assume that each agent receives and
sends only quantized estimates, i.e., vectors whose
entries are integer multiples of1/Q. At time k,
an agent receives quantized estimatesxQ

j (k) from
some of its neighbors and updates according to the
following rule:

xQ
i (k + 1) =









n
∑

j=1

aij(k)x
Q
j (k)− αd̃i(k)







 , (9)

whered̃i(k) is a subgradient offi at xQ
i (k), and⌊y⌋

denotes the operation of (componentwise) rounding
the entries of a vectory to the nearest multiple of
1/Q. We also assume that the agents’ initial estimates
xQ
j (0) are quantized.

4The assumptionmax1≤i≤n ‖xi(0)‖ ≤ αL in this theorem is
not essential. We use this assumption mainly to present a more
compact expression for the bound on the convergence time. A
bound that explicitly depends on‖xi(0)‖ can be obtained by
following a similar line of analysis

To analyze the proposed method, we find it useful
to rewrite Eq. (9) as follows:

xQ
i (k+1) =

n
∑

j=1

aij(k)x
Q
j (k)−αd̃i(k)− ei(k+1),

(10)
where the error vectorei(k + 1) is given by

ei(k + 1) =

n
∑

j=1

aij(k)x
Q
j (k)− αd̃i(k)− xQ

i (k + 1).

(11)
Thus, the method can be viewed as a subgradient
method with external (possibly persistent) noise, rep-
resented byei(k + 1). Due to the rounding down to
the nearest multiple of1/Q, the error vectorei(k+1)
satisfies

0 ≤ ei(k + 1) ≤ 1

Q
1, for all i andk, (12)

where the inequalities above hold componentwise.
Using the transition matricesΦ(k, s), we can

rewrite the update equation (10) as

xQ
i (k + 1) =

n
∑

j=1

[Φ(k, 0)]ijx
Q
j (0)

−α

k
∑

s=1

n
∑

j=1

[Φ(k, s)]ij d̃j(s− 1)

−
k
∑

s=1

n
∑

j=1

[Φ(k, s)]ijej(s)

−αd̃i(k)− ei(k + 1). (13)

In addition, we consider a relatedstopped model,
where after some timẽk, the agents cease computing
subgradientsd̃j(k), and also after timẽk + 1 stop
quantizing (so that they can send and receive real
numbers). Thus, in this stopped model, we have

d̃i(k) = 0 andei(k + 1) = 0, for all i andk ≥ k̃.

Let {x̃i(k)}, i = 1, . . . , n be the sequences gener-
ated by the stopped model, associated with a particu-
lar time k̃. In view of the preceding relation, we have
for eachi,

x̃i(k) = xQ
i (k) for k ≤ k̃,

and fork ≥ k̃ + 1,

x̃i(k) =

n
∑

j=1

[Φ(k, 0)]ijx
Q
j (0)

−α

k̃
∑

s=1

n
∑

j=1

[Φ(k, s)]ij d̃j(s− 1)

−
k̃
∑

s=1

n
∑

j=1

[Φ(k, s)]ijej(s). (14)



Using the result of Corollary 1, we can show that the
stopped process converges ask → ∞. In particular,
we have the following result.

Lemma 2:Let Assumptions 1 and 2 hold. Then,
for any i and any k̃ ≥ 0, the sequence{x̃i(k)}
generated by Eq. (14) converges and the limit vector
does not depend oni, i.e.,

lim
k→∞

x̃i(k) = y(k̃) for all i and k̃.

Furthermore, for the limit sequencey(k), we have:

(a) For allk,

y(k+1) = y(k)−α

n

n
∑

j=1

d̃j(k)−
1

n

n
∑

j=1

ej(k+1).

(b) When the subgradient norms‖d̃j(k)‖ are uni-
formly bounded by some scalarL [cf. Eq.
(6)] and the agents’ initial values are such that
maxj ‖xQ

j (0)‖ ≤ αL, then for all i and k,
‖xQ

i (k)− y(k)‖ ≤

2

(

αL +

√
m

Q

) (

1 +
nB

β(1− β)

)

,

whereβ = 1 − η
4n2 andm is the dimension of

the vectorsxQ
i .

Proof: By Corollary 1, for anys ≥ 0, the
entries[Φ(k, s)]ij converge to1/n, as k → ∞. By
letting k → ∞ in Eq. (14), we see that the limit
limk→∞ x̃i(k) exists and is independent ofi. Denote
this limit by y(k̃), and note that it is given by

y(k̃) =
1

n

n
∑

j=1

xQ
j (0)−

α

n

k̃
∑

s=1

n
∑

j=1

d̃j(s− 1)

− 1

n

k̃
∑

s=1

n
∑

j=1

ej(s). (15)

From the preceding relation, applied to different val-
ues ofk̃, we see that

y(k + 1) = y(k)− α

n

n
∑

j=1

d̃j(k)−
1

n

n
∑

j=1

ej(k + 1).

This establishes part (a).
Using the relations in Eqs. (13) and (15), and the

subgradient boundedness, we obtain for allk,

‖xQ
i (k)− y(k)‖ ≤

n
∑

j=1

∣

∣

∣

∣

[Φ(k, 0)]ij −
1

n

∣

∣

∣

∣

‖xQ
j (0)‖

+αL

k−1
∑

s=1

n
∑

j=1

∣

∣

∣

∣

[Φ(k, s)]ij −
1

n

∣

∣

∣

∣

+

k−1
∑

s=1

n
∑

j=1

∣

∣

∣

∣

[Φ(k, s)]ij −
1

n

∣

∣

∣

∣

‖ej(s)‖

+2αL+ ‖ei(k)‖+
1

n

n
∑

j=1

‖ej(k)‖.

By using Corollary 1, we have for alli and j, and
any k ≥ s,

‖xQ
i (k)− y(k)‖ ≤

n
∑

j=1

β⌈ k+1

B
⌉−2‖xQ

j (0)‖

+ αL

k−1
∑

s=1

n
∑

j=1

β⌈ k−s+1

B
⌉−2

+

k−1
∑

s=1

n
∑

j=1

β⌈ k−s+1

B
⌉−2‖ej(s)‖

+ 2αL+ ‖ei(k)‖+
1

n

n
∑

j=1

‖ej(k)‖.

Sinceei(k) ≤ 1/Q [cf. Eq. (12)], we have

‖ei(k)‖ ≤
√
m

Q
for all i andk.

From the preceding two relations, and the inequality
maxj ‖xQ

j (0)‖ ≤ αL, we obtain for alli andk,

‖xQ
i (k)− y(k)‖ ≤ αLnβ⌈ k+1

B
⌉−2

+αLn

k−1
∑

s=1

β⌈ k−s+1

B
⌉−2 +

√
m

Q
n

k−1
∑

s=1

β⌈ k−s+1

B
⌉−2

+2αL+ 2

√
m

Q
.

By using
∑k−1

s=0 β
⌈ k−s+1

B
⌉−2 ≤ 1

β

∑∞
r=0 β

⌈ r+2

B
⌉−1,

and
∞
∑

r=0

β⌈ r+2

B
⌉−1 =

∞
∑

r=0

β⌈ r+2

B
⌉−1 ≤ B

∞
∑

t=0

βt =
B

1− β
,

we finally obtain

‖xQ
i (k)−y(k)‖ ≤ 2

(

αL +

√
m

Q

)(

1 +
nB

β(1− β)

)

.

According to part (a) of Lemma 2, the vectors
y(k) can be viewed as the iterates produced by the
“fictitious” centralized algorithm:

y(k + 1) = y(k)− α

n

n
∑

j=1

d̃j(k)−
1

n

n
∑

j=1

ej(k + 1),

(16)
which is an approximate subgradient method with
persistent noise: The direction

∑n

j=1 d̃j(k) is an
approximate subgradient of the objective function
f because each vector̃dj(k) is a subgradient of
fi at xQ

i (k) instead of aty(k). The error term
(1/n)

∑n

j=1 ej(k + 1) can be viewed as the noise



experienced by the whole system. The noise is per-
sistent since the magnitudes of the errorsej(k) are
non-diminishing.

We now focus on establishing an error bound
for the function values at the pointsy(k) of the
stopped process of Eq. (16), starting withy(0) =
1
n

∑n

j=1 x
Q
j (0), and with the directioñdj(k) being a

subgradient offj atxQ
j (k) for all j andk. The process

y(k) is similar to the stopped process analyzed in
[15], defined usingxj(k) in place ofxQ

j (k). Thus,
using the same analysis as in [15] (see Lemma 5
therein), we can show the following basic result.

Lemma 3:Let Assumptions 1 and 2 hold, and
assume that the setX∗ of optimal solutions of
problem (1) is nonempty. Let the sequence{y(k)}
be defined by Eq. (16), and the sequences{xQ

j (k)}
for j ∈ {1, . . . , n} be generated by the quantized
subgradient method (9). Also, assume that the sub-
gradients are uniformly bounded as in Eq. (6), and
thatmaxj ‖xQ

j (0)‖ ≤ αL. Then, the average vectors
ŷ(k) defined as in Eq. (7), satisfy for allk ≥ 1,

f(ŷ(k)) ≤ f∗ +
n dist2(y(0), X∗)

2αk
+

αL2C̃

2
,

where

C̃ = 1 +
8nC̃1

αL
,

C̃1 =

(

αL+

√
m

Q

)(

1 +
nB

β(1 − β)

)

,

β = 1− η
4n2 andy(0) = 1

n

∑n

j=1 x
Q
j (0).

Proof: Using the same line of analysis as in the
proof of Lemma 5 in [15], we can show that for all
k,
dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+
2α

n

n
∑

j=1

(

‖d̃j(k)‖ + ‖gj(k)‖
)

‖y(k)− xQ
j (k)‖

− 2α

n
[f(y(k))− f∗] +

α2

n2

n
∑

j=1

‖d̃j(k)‖2,

wheregj(k) is a subgradient offj at y(k). By using
the subgradient boundedness, we further obtain
dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+
4αL

n

n
∑

j=1

‖y(k)− xQ
j (k)‖

−2α

n
[f(y(k))− f∗] +

α2L2

n
.

By using Lemma 2(b), we have

dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗)

+8αLC̃1 −
2α

n
[f(y(k))− f∗] +

α2L2

n
,

whereC̃1 =
(

αL+
√
m

Q

) (

1 + nB
β(1−β)

)

. Therefore,

f(y(k)) ≤ f∗ + αL2

2 + 4nLC̃1

+
n

2α

(

dist2(y(k), X∗)− dist2(y(k + 1), X∗)
)

,

and by regrouping the terms and introducing
C̃ = 1 + 8nC̃1

αL
, we have for allk,

f(y(k)) ≤ f∗ + αL2C̃
2

+
n

2α

(

dist2(y(k), X∗)− dist2(y(k + 1), X∗)
)

.

By adding these inequalities for different values of
k, and by using the convexity off , we obtain the
desired inequality.

Assuming that the agents can store real values
(infinitely many bits), we consider the time-average
of the iteratesxQ

i (k), defined by

x̂Q
i (k) =

1

k

k−1
∑

h=0

xQ
i (h) for k ≥ 1.

Using Lemma 3, we have the following result.
Theorem 2:Under the same assumptions as in

Lemma 3, the averageŝxQ
i (k) of the iterates obtained

by the method (9) satisfy, for alli,

f(x̂Q
i (k)) ≤ f∗+

n dist2(y(0), X∗)

2αk
+
αL2C̃

2
+2nLC̃1,

whereC̃, C̃1, andy(0) are as in Lemma 3.

Proof: By the convexity of the functionsfj , we
have, for anyi andk,

f(x̂Q
i (k)) ≤ f(ŷ(k)) +

n
∑

j=1

gij(k)
′(x̂Q

i (k)− ŷ(k)),

wheregij(k) is a subgradient offj at x̂Q
i (k). Then,

by using the boundedness of the subgradients and
Lemma 2(b), we obtain for alli andk,

f(x̂Q
i (k)) ≤ f(ŷ(k)) + 2nLC̃1,

with C̃1 =
(

αL+
√
m

Q

)(

1 + nB
β(1−β)

)

. The result
follows by using Lemma 3.

When the quantization levelQ is increasingly finer
(i.e., Q → ∞), the results of Theorems 2 and 1
coincide. More specifically, whenQ → ∞, the
constantsC̃1 and C̃ of Theorem 2 satisfy

lim
Q→∞

C̃1 = αL

(

1 +
nB

β(1 − β)

)

= αLC1,

lim
Q→∞

C̃ = 1 +
8n

αL
lim

Q→∞
C̃1 = 1 + 8nC1,



with C1 = 1 + nB
β(1−β) . Thus, for the error term of

Theorem 2, we have

lim
Q→∞

(

αL2C̃

2
+ 2nLC̃1

)

=
αL2

2
C + 2nαL2C1

whereC = 1+8nC1 andC1 = 1+ nB
β(1−β) . Hence, in

the limit asQ → ∞, the error terms in the estimate of
Theorem 2 reduce to the error terms in the estimate
of Theorem 1.

IV. CONCLUSIONS

We studied distributed subgradient methods for
convex optimization problems that arise in networks
of agents connected through a time-varying topology.
We first considered an algorithm for the case where
agents can exchange and store continuous values, and
proved a bound on the convergence rate. We next
studied the algorithm under the additional constraint
that agents can only send and receive quantized
values. We showed that our algorithm guarantees con-
vergence of the agent values to the optimal objective
value within some error. Our bound on the error high-
lights the dependence on the number of quantization
levels, and the polynomial dependence on the number
n of agents. Future work includes investigation of the
effects of other quantization schemes and of noise
in the agents’ estimates on the performance of the
algorithm.
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