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Abstract— We consider a convex unconstrained opti-
mization problem that arises in a network of agents
whose goal is to cooperatively optimize the sum of
the individual agent objective functions through local
computations and communications. For this problem,
we use averaging algorithms to develop distributed
subgradient methods that can operate over a time-
varying topology. Our focus is on the convergence rate
of these methods and the degradation in performance
when only quantized information is available. Based on
our recent results on the convergence time of distributed
averaging algorithms, we derive improved upper bounds
on the convergence rate of the unquantized subgradient
method. We then propose a distributed subgradient
method under the additional constraint that agents can
only store and communicate quantized information, and
we provide bounds on its convergence rate that highlight
the dependence on the number of quantization levels.

I. INTRODUCTION

There has been much interest in developing dis-
tributed methods for optimization in networked-
systems consisting of multiple agents with local in-
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where eachf; : R™ — R is a convex function,
representing the local objective function of agent
and known only to this agent. The decision vector

in problem [1) can be viewed as either a resource
vector whose components correspond to resources
allocated to each agent, or a global decision vector
which the agents are trying to optimize using local
information. The proposed method builds on the
work in [23], [24] (see also, [3]). It relies on every
agent maintaining estimates of an optimal solution
to problem [(1), and communicating these estimates
locally to its neighbors. The estimates are updated
using a combination of a subgradient terafi@amd an
averaging algorithm. The subgradient step optimizes
the local objective function while the averaging algo-
rithm is used to obtain information about the objective
functions of the other agents.

In this paper, we consider the distributed subgradi-
ent method discussed in [15], and provide improved
convergence rate results. In particular, we use our

formation structures. Such problems arise in a variety,ant results on the convergence time of averaging

of environments including resource allocation among,
heterogeneous agents in large-scale networks, a

orithms [13] and establish new upper bounds on
difference between the objective function value

information processing and estimation in sensor nef e estimates of each agent and the optimal value

works. Optimization algorithms deployed in such net

of problem [1). These bounds have a polynomial

works should be completely distributed, relying Onlydependence on the number of agentgin contrast

on local observations and information, and robus\;v

ith the error bounds in [15], [14], which involve

against changes in network topology due to mOb”i%xponential dependence e Furthermore, we study

or node failures.

a variation of the distributed subgradient method in

Recent work [15] has proposed a subgradienfy,ich the agents have access to quantized informa-

method for optimizing the sum of convex objective

functions corresponding to agents connected over a

time-varying topology (see also the short paper [14]).
e

The goal of the agents is to cooperatively solve th
unconstrained optimization problem

minimize Y1, fi(z) (1)
subjectto  x € R™,

This research was partially supported by the National $eien

tion, and provide bounds on the convergence time that
contain additional error terms due to quantization.

In addition to the papers cited above, our work is
related to the literature on reaching consensus on a
particular scalar value or on computing exact averages
of the initial values of the agents, a subject moti-
vated by natural models of cooperative behavior in
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networked-systems (see, e.g., [25], [9], [4], [16], [5],agents;. Specifically, agent updates its estimates by

and [17], [18]). Closely related is also the work in [10] setting

and [7], [6], which study the effects of quantization on n

_the performance of a\_/graging_ aI_gor_ithms. Our work zi(k+1) = Zaij(k):vj(k) —adi(k), (2

is also related to thetility maximizationframework =

for resource allocation in networks (see [11], [12],

[22]). In contrast to this literature, however, we allowwhere the scalarg; (k), ..., a:n(k) are nonnegative

the local objective functions to depend on the entiréveights and the scalar > 0 is a stepsize. The vector

resource allocation vector. d;(k) is a subgradient of the agentcost function
The rest of this paper is organized as follows. Infi(z) at z = z;(k). We use the notatiom(k) to

Section[D), we describe the distributed subgradierfienote theveight matrix[a;; (k)] j=1,....n-

method and present an improved convergence rate The evolution of the estimates;(k) generated by

estimate using our recently established bounds drd- (2) can be equivalently represented using tran-

the convergence time of our averaging a|g0rithm§iti0n matrices. In particular, we definetansition

[13]. In Section[dll, we consider a version of the matrix®(k, s) for anys andk with k > s, as follows:

method under the additional constraint that the agents

can only exchange quantized information. We provide Ok, s) = A(k)A(k — 1) - A(s + 1)A(s).

convergence and rate of convergence results as@jng these transition matrices, we relate the estimate
function of the number of quantization levels. Sectlor&i(k + 1) to the estimates; (s) 2, (s) for any

[Vlcontains our concluding remarks. s < k. In particular, for the iterates generated by Eq.
Notation and Basic Notions.We view all vectors (@), we have for any, and anys and k with k > s,
as columns. We use; to denote the vector withith .
entry equal to 1 and all other entries equal to 0. We

. . i(k+1) = Dk, s)]ijx;
usel to denote a vector with all entries equal to 1. zi(k+1) Z[ (k. s)]ijz; (s)

For a matrix A, we usea;; or [4];; to denote the ‘77;_1 n

matrix entry in theith row and;th column. We write -« Z[(I)(k’ 4 1)]ijd; (1)
[A]; and[A])? to denote respectively thgh row and r—s j—1

the jth column of a matrixA. A vector a is said — adi(k) 3)

to be astochastic vectowhen its components; are )
nonnegative an", a; = 1. A square matrixd is said (for more details, see [15]). As seen from the pre-
to be stochastiowhen each row ofd is a stochastic €€ding relation, to study the asymptotic behavior
vector, and it is said to beoubly stochastiwwhen ©Of the estimates:’(k), we need to understand the
both A and its transposel’ are stochastic matrices. Pehavior of the transition matricés(k, s). We do this

For a convex functionF : R™ — R. we use the under some assumptions on the agent interactions that

notion of a subgradient (see [2]) a VeCtQF(i') e translate into some properties of transition matrices.

R™ is a subgradient of a convex functidh at 7 if Our first assumption imposes some conditions on
the weightsa;; (k) in Eq. (2).
F(z)+ sp(z) (z —z) < F(x), for all z. Assumption 1:For all £ > 0, the weight matrix

A(k) is doubly stochastic with positive diagonal.
We use the notationf(x) = >7_, fi(z). We Additionally, there is a scalanp > 0 such that if
denote the optimal value of probleml (1) Ky and aij(k) >0, thenag; (k) > 7.
the set of optimal solutions by*. The doubly stochasticity assumption on the weight
matrix will guarantee that the subgradient of the
objective functionf; of every agenti will receive

We first introduce our distributed subgradienthe same weight in the long run. The second part of
method for solving problem[]1) and discuss thdhe assumption states that each agent gives significant
assumptions imposed on the information exchang&eight to its own values and to the values of its
among the agents. We consider aget {1,...,n} neighbors.
of agents. Each agent starts with an initial estimate At each timek, the agents’ connectivity can be rep-
2:(0) € R™ and updates its estimate at discretéesented by a directed gragh(k) = (V,E(A(k))),
timesty, k = 1,2,.... We denote by; (k) the vector Where £(A4) is the set of directed edgesy, i), in-
estimate maintained by agemtat time ¢,. When cluding self-edges(i, ), such thata;; > 0. Our
updating, an agentcombines its current estimate ~ next assumption ensures that the agents are connected
with the estimates:; received from its neighboring frequently enough to persistently influence each other.

II. DISTRIBUTED SUBGRADIENT METHOD



T—1
Assumption 2:There exists an intege® > 1 such < (1 _ %)t V(s).
that the directed graph 2n

Note thatk—s < (t—7)B+B implying that A==+ <
( AkB)) U Ug (k+1)B 1))) t — 7+ 1, where we used the fact that both 5|des of
is strongly connected for alt > 0. the inequality are integers. Therefo(ré}ﬁ—*]
o t — 7 — 1, and we have for alk and s with & 2 S,
A. Preliminary Results -
Here, we provide some results that we use later in V(k) < (1 _ _)( 1-2 Vs). 5)
our convergence analysis of methgdl (2). These results 2n?
hold under Assumptiorid 1 and 2. By Eq. @), we havez(k + 1) = A(k)z(k), and
Consider a related update rule of the form thereforez(k+1) = ®(k, s)z(s) for all k > s. Letting
k+1) = A(k)z(k), a) #(s)=e¢;we obtainz(k+ 1) = [®(k, s)]". Using the
2k +1) (k)2 (k) @ inequalities[(b) and/(e;) < 1, we obtain
wherez(0) € R" is an initial vectdi. Define S~
1 5|72
u V(@) < (1-55
V(k) = (z(k) - 2(k))>  forall k>0, ( 2n2)
g=1 The matrix®(k, s) is doubly stochastic, because it is

wherez(k) is the average of the entries of the vectothe product of doubly stochastic matrices. Thus, the

z(k). Under the doubly stochasticity afi(k), the average entry of®(k,s)]; is 1/n implying that for

initial averagez(0) is preserved by the update ruleall 7 andj,

@), i.e., z(k) = z(0) for all k. Hence, the function 2

V (k) measures the “disagreement” in agent values. ([‘1>(k78)]ij _ l)
In the next lemma, we give a bound on the decrease n

IN

V([@(k, )]

k—
5112

of the agent disagreemebt(kB), which is linear in ( _ _)(
n and quadratic im~!. This bound is an immediate 2n?

consequence of Lemma 5 in [13]. From the preceding relation ang/T —1/(2n2) <
Lemma 1:Let Assumptiong]l anfll2 hold. Then,1 — j/(4n?), we obtain

V (k) is nonincreasing irk. Furthermore,

IN

1 n 52
V((k+1)B) < (1 - %) V(kB) forall k> 0. ‘[‘I’(ka s))ij — o < (1 - m)
Using LemmdL we obtain the following result for -

the transition matrice®(k, s) of Eq. [3).
Corollary 1: Let Assumption§]l and 2 hold. Then, g Convergence time

for all 4, and allk, s with & > s, we have )
We now study the convergence of the subgradient

‘[q)(k,s)]ij _ _‘ < ( _ _)(k EHFQ_ method [[2) and obtain a convergence time bound.
n 4n? We assume the uniform boundedness of the set of
Proof: By Lemmall, we have for alt > s, subgradients of the cost functiorfs at all point:
n ks for some scalad. > 0, we have for allx € R™ and
V(kB) < (1 - ﬁ) V(sB). all 4,
lgll< L forall g€ dfi(x), (6)

Let k£ and s be arbitrary withk > s, and let

TB<s<(r+1)B, tB<k<(t+1)B, wheredf;(z) is the set of all subgradients ¢f at z.
We define the time-averaged vectargk) of the
with 7 < t. Hence, by the nonincreasing property °f|terate5xl( k) generated by Eq[12), i.e.,
V(k), we have

. 1
V(k) < V(tB) p \i—rt Bik) = 7 > wi(h). @)
< (1-.5) V((r+1)B =0
< (1-55 (r+1)B)
- _ The use of these vectors allows us to bound the
This update rule captures the averaging part of ER. (2), as gpjective function improvement at every iteration;
operates on a particular component of the agent estimaiés, w
the vectorz(k) € R™ representing the estimates of the different
agents for that component. 3This assumption can be relaxed, see [15].



see [15], [14]. Under the subgradient boundedness To analyze the proposed method, we find it useful

assumption, we have the following reult to rewrite Eq. [[®) as follows:
Theorem 1:Let Assumptiong]1 andl2 hold, and
assume that the séf* of optimal solutions of prob- k +1) Z aij(k — adi(k:) —ei(k+1),
lem (@) is nonempty. Let the sets of subgradients be
bounded as in Eq[]6). Also, let the initial vectors (10)

z;(0) in Eq. @) be such thatax;<;<, ||;(0)|| < Where the error vectar;(k + 1) is given by
aL. Then, the averages (k) of the iterates obtained

by the method[{2) satisfy J(k+1) Z aij(k —ad;(k) — 22 (k +1).
dist’ X+
oI2C 2ak Thus, the method can be viewed as a subgradient
+ + 2anL?Cy, method with external (possibly persistent) noise, rep-
resented by;(k + 1). Due to the rounding down to
where the nearest multiple of/Q, the error vectoe; (k+1)
_ _ nB 4 satisfies
C—1+87’L01, Ci=1+ ﬂ(l—ﬂ)7ﬁ an2’

1
(8) 0<ei(k+1)< 0 1, forall i andk, (12)
andy(0) = (1/n) 323 @:(0). _ » :
Proof: The proof is identical to that of Proposi- where the inequalities above hold componentwise.
tion 3 in [15] and relies on the use of our improved YSiNg the transition matricesb(k,s), we can
convergence rate bound in Corolldry 1. m rewite the update equation {10) as
The convergence rate result in the preceding the- n
orem improves that of Proposition 3 in [15], where ;" (k+1) > [®(k,0)];525(0)
an analogous estimate is shown with a worse value =

<.
—

for the constants. In particular, there the constant Y

B in [15] is given by . = 1 — n(»~VE and C; az (s—1)

increases exponentially with. As seen from Eq[{8), . - fl

our new constant’, increases only polynomially with _ Z Z )ijei(s)

n, indicating a much more favorable scaling as the s=1 j=1

network size increases. —adi(k) —ei(k+1). (13)
[1l. QUANTIZATION EFFECTS In addition, we consider a relatestopped model

We next study the effects of quantization on thevhere after some timé, the agents cease computing
convergence properties of the subgradient method. Bubgradlentsd (k), and also after timek + 1 stop
particular, we assume that each agent receives angdantizing (so that they can send and receive real
sends only quantized estimates, i.e., vectors whoseimbers). Thus, in this stopped model, we have

entries are mtgger multl_pIeS oI/IQ. At time k, Ji(k) —0ande;(k+1)=0, foralliandk > i
an agent receives quantized estimaté¥k) from

some of its neighbors and updates according to the Let {;(k)}, i = 1,...,n be the sequences gener-
following rule: ated by the stopped model, associated with a particu-
lar time k. In view of the preceding relation, we have
Qk+1) Za” —ady(k)|, (9) foreachi,

Zi(k) = 22(k)  for k <k,
whered; (k) is a subgradient of; at x?(k), and|y] andfork >k +1,

denotes the operation of (componentwise) rounding n
the entries of a vectoy to the nearest multiple of Zi(k) = Z[ (k, 0)]mx (0)
1/Q. We also assume that the agents’ initial estimates =
2 (0) are quantized. Eon
—« Z lijdj(s —1)

4The assumptiomax; <;<y, [|z;(0)|| < aL in this theorem is -
not essential. We use this assumption mainly to present @ mor %
compact expression for the bound on the convergence time. A
bound that explicitly depends ofjz;(0)|| can be obtained by —Z
following a similar line of analysis s=1j=1

1]1
n

)ijes(s). (14)



Using the result of Corollary]1, we can show that the

stopped process convergesias— oo. In particular,
we have the following result.

+2aL + [|e;(k

W 5 3l

Lemma 2:Let Assumption§J1 anfll2 hold. Then,BY using CorollaryLlL, we have for ail and j, and

for any i and anyk > 0, the sequencegz;(k)}

generated by Eq[{14) converges and the limit vector

does not depend of i.e.,

lim #;(k) =y(k)  for all i andk.
k—o00

Furthermore, for the limit sequengék), we have:
() For allk,

n 1 n
- y(k)—% ; — ;e, (k+1).

(b) When the subgradient normjsl; (k)| are uni-
formly bounded by some scalal [cf. Eq.

y(k+1)

anyk > s,

= ktiq_
B <> 8172 a?(0)]
k—1 n

+ aLZZgF%Tﬂ

s=1 j=1
k—1

" k—st1q_
+ S BRI e )
s=1 j=1
1
B+ S les (k)
Jj=1

Sincee; (k) < 1/Q [cf. Eq. (I2)], we have

|l (k)

+ 2aL+ |lei(

(@] and the agents’ initial values are such that

max; H:c] (0)]] < «L, then for all 7 and k,

22 (k) = y (k)| <
(o g) (s
whereg =1 —

the vectors:.

Proof: By Corollary[1, for anys > 0, the
entries[®(k, s)];; converge tol/n, ask — oo. By

letting & — oo in Eq. (14), we see that the limit
limg_, oo Z; (k) exists and is independent d2f Denote

this limit by y(k), and note that it is given by

n I:Z n
S a0 - 23D dits - 1)
j=1 " s=1 j=1
1 E n
-5 2 el

s=1j=1

S|

(15)

ues ofk, we see that

for all - and k.

llei(R)II <

From the preceding two relations, and the inequality
max; |27 (0)|| < oL, we obtain for alli and &,

vm
Q

1= andm is the dimension of 122 (k) — y(k)|| < aLnBl5H1-2

+ L kilﬁ[kfgfrl-l_Q_'_ \/ﬁ Iilﬂ"k7§+l—|—2
aLn — N
s=1 62 s=1
+20¢L+2@.
Q
k—s+1

By using Y07 g A 172 < Ly gl
and

iﬁf%ﬁ-l

r=0

— iﬁwgﬁ—l < Biﬁt _ %
r=0 t=0

we finally obtain

From the preceding relation, applied to different val- 5
z (k) -y ()] < 2 (aug) (Hﬁ(ni),

y(k+1) =

——Zd —%iejk—i—l
7j=1

This establishes part (a).

1-8)
]

According to part (a) of Lemmé&] 2, the vectors
y(k) can be viewed as the iterates produced by the

Using the relations in Eqs[_(1L.3) and [15), and the

subgradient boundedness, we obtain forkall

122 |<Z — | 120
k 1 n 1
—i—ozLZ —
s=1j=1
k—1 n
300 (@)l — | les(s)]
s=1j5=1

n

“fictitious” centralized algorithm:
A e -~
k+1) — d;(k) — = i(k+1
( + n jéj ;g;ej( + )7
(16)

which is an approximate subgradient method with
persistent noise: The directioE;?:1 d;(k) is an
approximate subgradient of the objective function
f because each vectat;(k) is a subgradient of
fi at x; Q(k) instead of aty(k). The error term
(1/n)z _,¢j(k + 1) can be viewed as the noise



experienced by the whole system. The noise is pewhereC; = (aL + g) (1 + L). Therefore,

; . : B(1-5)
sistent since the magnitudes of the errerék) are

non-diminishing. Fy(k) < f*+ L2 1 anLCy
We now focus on establishing an error bound n
for the function values at the pointg(k) of the +% (distz(y(k:),X*) — dist?(y(k + 1), X)),

stopped process of Eq._{16), starting wigi0) = _ _ _

157 2%2(0), and with the directionl; (k) beinga and by regrouping the terms and introducing

subgradient of; at= (k) for all j andk. The process C =1+ =3¢+, we have for allk,

y(k) is similar to the stopped process analyzed in Ty

[15], defined usingz; (k) in place ofz% (k). Thus, [((k)=f"+ el

using the same analysis as in [15] (see Lemma 5 n . .9 y

therein), we can show the following basic result. +£ (dlst (y(k), X7) = dist™(y(k + 1), X )) :
Lemma 3:Let Assumptions[]1 and]2 hold, and

assume that the sek™* of optimal solutions of

problem [(1) is nonempty. Let the sequenggk)}

be defined by Eq[{16), and the sequen{:eg(k)}

for j € {1,...,n} be generated by the quantized Assuming that the agents can store real values

subgradient method(9). Also, assume that the sufinfinitely manbeits), we consider the time-average

gradients are uniformly bounded as in Egl (6), an@f the iteratesc;?(k), defined by

that max; H:c;‘.’?(O)H < aL. Then, the average vectors

By adding these inequalities for different values of
k, and by using the convexity of, we obtain the
desired inequality. [ |

; k—1
9(k) defined as in Eq{7), satisfy for all > 1, 29(k) = 1 ZxQ(h) for k> 1.
~ K3 k 3 —
. ndist*(y(0), X*)  aL?*C h=0
< * )
FER) = 1+ 20k + 2 7 Using LemmdB, we have the following result.
where . Theorem 2:Under the same assumptions as in
G—11 8nCy Lemma3, the average$’ (k) of the iterates obtained
al’ by the method[{9) satisfy, for ail
Gy = <aL+ @> (1 + ﬂ) , .0 . ndist*(y(0), X*) aL?*C ~
Q B(1—-7) f@z (k) < [+ Sk +——+2nLCy,
—1— - 1y @ .
B=1- = andy(0) =33, 27 (0). whereC, C4, andy(0) are as in Lemm@l3.

Proof: Using the same line of analysis as in the

proof of Lemma 5 in [15], we can show that for all Proof: By the convexity of the functiong;, we

have, for anyi and k,

kl
dist?(y(k + 1), X*) < dist®(y(k), X*) A A " A A
2 F@ER) < F@R) + D g (k) (@7 (k) — k),
« ~ —
+ = (@) + g0l ) lly(e) = £ (k)] =
) =1 , n whereg;; (k) is a subgradient of; at 2% (k). Then,
o (6] ~ : .
— Z k) - 1+ = d;(k)||%, by using the boundedness of the subgradients and
o FW(®) I+ ; I &)1 Lemmal2(b), we obtain for all and &,
whereg, (k) is a subgradient of; aty(k). By using f(;g?(k)) < f(y(k) + onLCy,
the subgradient boundedness, we further obtain )
dist®(y(k + 1), X*) < dist*(y(k), X*) with ¢y = (aL+ VTT) (31+ 5(’1’——35)) The result
Aol & follows by using Lemmé&]3. |
o Q o - . .
t— > lly(k) = 2L (k)| When the quantization levé) is increasingly finer
j=1 - (i.e., @ — o0), the results of Theorenid 2 amd 1
—2—a[f(y(k))—f*]+ oL ' coincide. More specifically, wher) — oo, the
n constants’; andC of Theoren 2 satisfy

By using LemmdR(b), we have B
lim C; =al 1+
Qb T ( B(

A7) ~ o0

dist?(y(k + 1), X*) < dist®(y(k), X*)
2 a?L? 8n

Ao 2 g lim C=1+— lim C; =1
+8aLCy — — [f(y(k) = £] + ——. Jim =1+ lim ¢y =1+8nC),




with C; = 1+

5) Thus, for the error term of [11]

Theoren{®2, we have

lim
Q—o0

whereC = 1+8nC andC; = 1+6(

9 ~

¢, wnLC, (12]

L2
QTC + 2nal?Cy

[13]
. Hence, in

the limit asQ) — oo, the error terms in the estimate of
TheorenT® reduce to the error terms in the estlmatﬁ4]
of TheorentlL.

We studied distributed subgradient methods fO(16

V. CONCLUSIONS [15]

convex optimization problems that arise in networks
of agents connected through a time-varying topology.
We first considered an algorithm for the case WherF17
agents can exchange and store continuous values, an
proved a bound on the convergence rate. We next
studied the algorithm under the additional constrairt
that agents can only send and receive quantized
values. We showed that our algorithm guarantees cof=]
vergence of the agent values to the optimal objectiv o]
value within some error. Our bound on the error high-
lights the dependence on the number of quantizatidall
levels, and the polynomial dependence on the number
n of agents. Future work includes investigation of thgz2]
effects of other quantization schemes and of noise

in the agents’ estimates on the performance of thig®

algorithm.
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