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Abstract— The practical implementation of Min-Max MPC
(MMMPC) controllers is limited by the computational burden
required to compute the control law. This problem can be
circumvented by using approximate solutions or upper bounds
of the worst possible case of the performance index. In a
previous work, the authors presented a computationally efficient
MMMPC control strategy in which a close approximation of
the solution of the min-max problem is computed using a
quadratic programming problem. In this paper, this approach
is validated through its application to a pilot plant in which
the temperature of a reactor is controlled. The pilot plant is
operated with a Simatic IT SCADA system. The controller has
been implemented in Matlab and connected to the SCADA
using OPC. Realistic values of the parameters of the MMMPC
controller have been used. The behavior of the system and the
controller is illustrated by means of experimental results.

I. INTRODUCTION

The idea behind min-max model predictive controllers
(MMMPC) is not new ([4]). In these controllers, the control
signal is computed for the worst case of a cost function
that considers the effect of process model uncertainties
and disturbances in the controller performance. The main
drawback of this approach is the computational burden that
takes to compute the control signal. This usually involves the
solution of an NP-hard min-max problem ([10], [16]). As a
result, the number of applications of these control strategies
is very small, even when there is evidence that they work
better than standard predictive controllers in processes with
uncertain dynamics [5], [8].

Multi-parametric programming has been applied to show
that the MMMPC control law is piecewise affine when a
quadratic ([14]) or 1-norm based criterion ([2], [7]) is used as
cost function. Thus, explicit forms of the control law can be
built. Such explicit forms can be evaluated very fast provided
that the complexity of the state space partition is moderate,
which is the case for many applications. However, if the
process model or the controller tuning parameters change,
the computation of the controller has to be redone.

A common solution to the computational burden issue is
to use an upper bound of the worst case cost instead of com-
puting it explicitly. This upper bound can be computed by
using linear matrix inequalities (LMI) techniques such as in
[9], [11]. However, the LMI problems have a computational
burden that cannot be neglected in certain applications. In [1]
a different approach based on a computationally cheap upper
bound of the worst case cost is presented. In that work, the
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min-max problem is replaced by a quadratic programming
(QP) problem that provides a close approximation to the
solution of the original min-max problem. The computational
burden is much lower than that of the min-max problem and
is comparable to that of a standard constrained MPC based
on a quadratic cost function. Thus, it can be easily imple-
mented in almost any platform capable to run a constrained
MPC. Also, stability of the proposed approach is guaranteed.

In this work, the approach presented in [1] has been
validated by means of its application to a pilot plant. The
pilot plant is used to simulate an exothermic chemical
reaction with nonlinear dynamics. This process has been used
in previous works, thus the experimental results presented
can be compared with other strategies such as nonlinear and
linear predictive control [6]. In the experiments, restrictions
in the control action and the output have been considered.
The results obtained prove the validity of the control strategy.
The low computational burden of the control strategy applied
to the pilot plant allows realistic values for the control
and prediction horizons (i.e., the parameters on which the
computational burden depends). It is also noteworthy that the
computer on which the predictive control algorithm is imple-
mented and simultaneously executes the SCADA Simatic-IT,
does not have sufficient calculation power to implement a
conventional min-max predictive control strategy. Therefore
a computationally efficient strategy as that used in this work
is a good choice if the use of this type of control is desired.

The paper is organized as follows: section II presents
the MMMPC strategy. Section III presents the proposed
implementation strategy. In section IV a detailed description
of the used pilot plant is given. The strategy is illustrated by
means of experimental results of the pilot plant in section V.
Finally, section VI presents some conclusions.

II. MIN-MAX MPC WITH BOUNDED ADDITIVE

UNCERTAINTIES

Consider the following state space model with bounded
additive uncertainties ([3]):

x(t + 1) = Ax(t)+ Bu(t)+ Dθ (t + 1) (1)

with x(t) ∈ Rdimx the state vector, u(t) ∈ Rdimu the input
vector and θ (t) ∈ {θ ∈ Rdimθ : ∥θ∥∞ ≤ ε} the uncertainty,
that is supposed to be bounded. The system is subject to p

state and input time invariant constraints Fuu(t)+Fxx(t) ≤ g

where Fu ∈ Rp×dimu and Fx ∈ Rp×dimx. It is assumed a semi-
feedback approach in which the control input is given by

u(t) = −Kx(t)+ v(t), (2)
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where the feedback matrix K is chosen to achieve some
desired property such as nominal stability or LQR optimality
without constraints. The MMMPC controller will compute
the optimal sequence of correction control inputs v(t). The
state equation of system (1) can be rewritten as

x(t +1)= ACLx(t)+Bv(t)+Dθ (t +1), ACL = (A−BK). (3)

The proposed strategy also works without semi-feedback
approach (i.e., u(t) = v(t)). All the computational advantages
of the strategy remain the same. Furthermore if the process
is open-loop stable (as in the case of pilot plant used in
this work) the stabilizing conditions, which will be discussed
later, can be used without problems.

The cost function is a quadratic performance index:

V (x,v,θθθ ) =
N−1

∑
j=0

x(t + j|t)T Qx(t + j|t)+ (4)

N−1

∑
j=0

u(t + j|t)T Ru(t + j|t)

+x(t + N|t)T Px(t + N|t)

where x(t|t) = x, x(t + j|t) is the prediction of the state
for t + j made at t and u(t + j|t) = −Kx(t + j|t) + v(t +
j|t). Note that these values depend on the future val-
ues of the uncertainty. The sequence of future values of
θ (t) over a prediction horizon N is denoted by θθθ =
[

θ (t + 1)T , · · · ,θ (t + N)T
]T

, and ΘΘΘ = {θθθ ∈RN·dimθ : ∥θθθ∥∞ ≤
ε} is the set of possible uncertainty trajectories. On the

other hand, v =
[

v(t|t)T , · · · ,v(t + N −1|t)T
]T

is the control

correction sequence. Matrices Q,P ∈ Rdimx×dimx and R ∈
Rdimu×dimu are symmetric positive definite matrices used as
weighting parameters.

Min-Max MPC ([4]) minimizes the cost function for the
worst possible case of the predicted future evolution of the
process state or output signal. This is accomplished through
the solution of a min-max problem:

v∗(x) = argmin
v

max
θθθ∈Θ

V (x,v,θθθ )

s.t. Fuu(t + j|t)+ Fxx(t + j|t) ≤ g,
j = 0, . . . ,N, ∀θθθ ∈ Θ,

x(t + N|t) ∈ Ω, ∀θθθ ∈ Θ,

(5)

A terminal region constraint x(t + N|t) ∈ Ω, where Ω is a
polyhedron, is included to assure stability of the control law
([12]).

The predictions x(t + j|t) and u(t + j|t) depend linearly on
x, v and θθθ . This means that it is possible to find a vector
d ∈ Rp and matrices Gx, Gv and Gθ , such that all the robust
linear constraints of problem (5) can be rewritten as:

Gi
xx + Gi

vv + Gi
θ θθθ ≤ di, i = 1 . . . , p, ∀θθθ ∈ Θ,

where Gi
x, Gi

v, Gi
θ denote the i-th rows of Gx, Gv and Gθ

respectively and di is the i-th component of d ∈ Rp. Denote
now ∥Gi

θ∥1 the sum of the absolute values of row Gi
θ .

Taking into account that maxθθθ∈Θ Gi
θ θθθ = max∥θθθ∥∞≤ε Gi

θ θθθ =
ε∥Gi

θ∥1, the robust fulfillment of the constraints is satisfied
if and only if Gi

xx + Gi
vv + ε∥Gi

θ∥1 ≤ di, i = 1, . . . , p.

Therefore, to guarantee robust constraint satisfaction, the
following set of linear constraints must be satisfied:

Gxx + Gvv ≤ dε .

where the i-th component of dε is equal to di−ε∥Gi
θ∥1. Note

that this is a necessary and sufficient condition.
Taking into account (3),(2) and (4), the cost function can

be evaluated as a quadratic function:

V (x,v,θθθ ) = vT Mvvv + θθθT Mθθ θθθ + 2θθθT Mθvv

+2xT MT
v f v + 2xT MT

θ f θθθ + xT Mf f x (6)

where the matrices can be obtained from the system and the
control parameters ([3]). Due to the convexity properties of
V (x,v,θθθ ), problem (5) is equivalent to ([3])

v∗(x) = arg min
v

max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ )

s.t. Gxx + Gvv ≤ dε

(7)

where vert(ΘΘΘ) is the set of vertices of ΘΘΘ.
The terminal region Ω is assumed to satisfy the following

conditions:

• C1: If x ∈ Ω then ACLx + Dθ ∈ Ω, for every θ ∈ {θ ∈
Rdimθ : ∥θ∥∞ ≤ ε}.

• C2: If x ∈ Ω then u(x) = −Kx ∈ U , where U ! {u :
Fuu + Fxx ≤ g}.

Moreover, matrix P that characterizes the terminal cost is
assumed to satisfy

• C3: P−AT
CLPACL > Q+ KT RK.

The stability of ACL guarantees the existence of a positive
definite matrix P satisfying C3.

The maximum cost for a given x and v is denoted as

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)

V (x,v,θθθ ) = V (x,v,0) (8)

+ max
θθθ∈vert(Θ)

θθθT Hθθθ + 2θθθT q(x,v)

where H = Mθθ , q(x,v) = Mθvv + Mθ f x and V (x,v,0) =
vT Mvvv+2xT MT

v f v+xT Mf f x is the part of the cost that does
not depend on the uncertainty. With this definition, problem
(7) can be rewritten as

v∗(x) = argmin
v

V ∗(x,v)

s.t. Gxx + Gvv ≤ dε ,
(9)

and the system is controlled by KMPC(x(t)) = −Kx(t) +
v∗(t|t), where v∗(x(t)) =

[

v∗(t|t)T , · · · ,v∗(t + N −1|t)T
]T

.

III. A QP APPROACH TO MIN-MAX MPC

In this section the main results of [1] are presented briefly.
In that work, it is shown how the min-max problem (9) can
be replaced by a tractable QP problem which provides a close
approximation of the solution of the original problem. This
can be accomplished with the following steps:

1) Obtain an initial guess of the solution of (9), denoted
ṽ∗. As seen later, this can be achieved by solving a QP
problem.

2) Using ṽ∗, obtain a quadratic function of v that bounds
the worst case cost.
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3) Compute the control law. This involves the solution of
a QP problem.

All these steps will be detailed in the following.

A. Computing ṽ∗

Given H defined as in equation (8), denote Ti =
∑N·dimθ

j=1 |Hi j|, where Hi j denotes the (i, j)-th component of
matrix H. Then, define the diagonal matrix T as

T = diag(T1, · · · ,Tn) (10)

Because of how matrix T is defined, T −H is a symmetric
diagonally dominant real matrix with nonnegative diagonal
entries, thus T − H ≥ 0 which implies that T ≥ H. Let
Ṽ (x,v,θθθ ) be:

Ṽ (x,v,θθθ ) = V (x,v,0)+ θθθT Tθθθ + 2qT (x,v)θθθ (11)

From the inequality T ≥ H it is inferred that Ṽ (x,v,θθθ) ≥
V (x,v,θθθ ). The maximum of Ṽ (x,v,θθθ ) can be computed as

Ṽ ∗(x,v) = max
θθθ∈ΘΘΘ

Ṽ (x,v,θθθ )

= V (x,v,0)+ trace(T )ε2 + 2ε ∥q(x,v)∥1

= V (x,v,0)+∥H∥s ε2 + 2ε ∥q(x,v)∥1 (12)

where ∥H∥s denotes the sum of the absolute values of the
elements of H. Then an initial guess of the solution of (9)
can be obtained as

ṽ∗(x) = argmin
ṽ

Ṽ ∗(x, ṽ)

s.t. Gxx + Gvṽ ≤ dε ,
(13)

This problem can be casted as a QP problem by making use
of slack variables to deal with the 1-norm term in Ṽ ∗(x,v).

B. Obtaining an upper bound of the worst case cost

The upper-bound of the maximum will be obtained in two
steps. In the first one we compute a set of parameters from
ṽ∗ that allows us later, in the second step, to compute the
bound as a quadratic function of v.

1) Computing the parameter vector α(v): Note that:

V ∗(x,v) = max
θθθ∈vert(ΘΘΘ)

[

θθθ
1

]T [

H q(x,v)
qT (x,v) V (x,v,0)

][

θθθ
1

]

= max
∥z∥∞≤1

zT M(v)z (14)

with

z =

[

θθθT

ε
1

]T

, M(v) =

[

ε2H εq(x,v)
εqT (x,v) V (x,v,0)

]

∈ R
n×n,

where n = N ·dimθ + 1.
The following procedure provides an upper bound of

the worst case cost for a given v. It computes α(v) =
[α1(v), . . . ,αn−1(v)]T and a diagonal matrix Γ(v) ≥ M(v)
such that its trace is an upper bound of the worst case cost
for v (see property 1 of [1]).

Procedure 1: Computation of α(v) =
[α1(v), . . . ,αn−1(v)]T and Γ(v).

1) Let S(0 = M(v) ∈ Rn×n.

2) For k = 1 to n−1

3) Let M
(k−1
sub = [S(k−1

i j ] for i, j = k · · ·n.

4) Obtain the partition M
(k−1
sub =

[

a bT

b Mr

]

, where

a ∈ R, b ∈ Rn−k and Mr ∈ R(n−k)×(n−k) .
5) Make αk(v) =

√

∥b∥1.

6) If αk(v) = 0 then S(k = S(k−1, else S(k = S(k−1 +
[

0T
k−1,1 αk(v) −bT

αk(v)

]T [

0T
k−1,1 αk(v) −bT

αk(v)

]

.

7) end for
8) Make Γ(v) = S(n−1.
Note that in the previous procedure, 0m,n denotes a (m×n)

matrix of zeros. Property 1 of [1] shows that the trace of
Γ(v) constitutes an improved upper bound of V ∗(x,v). That
is, V ∗(x,v) ≤ trace(Γ(v)) ≤ Ṽ ∗(x,v).

2) Obtaining the bound as a quadratic function on v:

The diagonalization process shown in procedure 1 can be
used to obtain a matrix denoted by Γ̂(v), which allows one
to obtain a bound of the maximum that can be computed as
a quadratic function of v. This is achieved by means of the
following procedure:

Procedure 2: Obtaining the matrix Γ̂(v).
1) Obtain ṽ∗ from the QP problem defined in eq. (13).
2) Compute α(ṽ∗) by procedure 1.
3) Let Ŝ(0(v) = M(v) ∈ Rn×n.
4) For k = 1 to n−1

5) Let M̂sub(v) = [Ŝ(k−1
i j (v)] for i, j = k · · ·n.

6) Obtain the partition M̂sub(v) =

[

a(v) bT (v)
b(v) Mr(v)

]

,

where a(v) ∈ R.
7) If αk(ṽ∗) = 0 then Ŝ(k(v) =

Ŝ(k−1(v), else Ŝ(k(v) = Ŝ(k−1(v) +
[

0T
k−1,1 αk(ṽ∗)

−b(v)T

αk(ṽ∗)

]T [

0T
k−1,1 αk(ṽ∗)

−b(v)T

αk(ṽ∗)

]

.

8) end for
9) Make Γ̂(v) = Ŝ(n−1(v).
Denote that V̂ ∗(x,v) = trace (Γ̂(v)). Theorem 1 of [1]

shows that V̂ ∗(x,v) is a quadratic function on v and also
an upper bound of the original worst case cost V ∗(x,v).

C. Computing the control law

The value of the control signal is obtained by solving the
following QP optimization problem

v̂∗(x) = argmin
v̂

V̂ ∗(x, v̂)

s.t. Gxx + Gvv̂ ≤ dε ,
(15)

and the system is controlled by K̂MPC(x(t)) = −Kx(t) +
v̂∗(t|t), where v̂∗(t|t) is the first element of v̂∗(x).

The computational burden of the proposed strategy is
much lower than that of the exact MMMPC. This com-
putational burden is mostly due to the QP problems that
must be solved to obtain the initial guess and the proposed
solution itself. Note that in both cases, the complexity of
each problem is the same as that of a standard constrained
MPC using a quadratic cost function. In contrast to evaluate
the maximum cost V ∗(x,v) it is necessary to evaluate the
function for all the 2N∗dimθ vertices of Θ. Note that this is a
well known NP-hard problem.
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Fig. 1. Pilot plant used to apply the MMMPC.
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Fig. 2. Diagram of the pilot plant with its four main elements: reactor,
heat exchanger, cooling jacket and valve.

IV. PROCESS DESCRIPTION

A real process represented by a pilot plant has been chosen
for the application of the proposed algorithm. The process
has been studied previously by several authors [6], [17].

A. Laboratory process

The pilot plant (see Fig. 1) is used to simulate exothermic
chemical reactions based on temperature changes. It has
been used as a benchmark for control purposes by several
researchers [13], [6]. The main elements of the pilot plant
are the reactor, the heat exchanger, the cooling jacket and the
valve to manipulate the flow rate through the cooling jacket
(see Fig. 2).

A cooling jacket is used to reduce the reactor temperature.
The heat dissipation can be regulated by the valve v8 which
manipulates the flow rate Fj through the cooling jacket.
The cooling fluid, water, enters the cooling jacket with a
constant temperature. The reactive is supplied to the reactor
by the feed Ff ,in to keep the chemical reaction active. Before
entering the reactor, the feed passes through a heat exchanger
in order to adopt the temperature of the reactor content.

The outflow Ff ,out is used to keep the volume of the reactor
content constant.

To simulate exothermic reactions, the reactor possesses an
electrical resistance in order to supply caloric energy. The
energy to be supplied by the 14.4kW electrical resistance
is calculated by means of a mathematical model of the
simulated reaction. The use of a resistance means that no
chemical reaction takes place in the reactor, instead the
reaction is emulated on basis of temperature changes, as done
in [15].

B. Mathematical model

Although it is not necessary to have a mathematical model
for the design of the min-max predictive controller, this
section shows the process model to emphasize its nonlinear
character. The mathematical model also justifies the way to
emulate the heat generated by the chemical reaction with the
aid of the resistance.

The emulated chemical reaction, representing a refinement
process, was used previously in [6]. With Ff = Ff ,in = Ff ,out

and a constant volume, the model of the chemical reaction
can be defined as:

dT

dt
= −

Fj

V
(Tj,in −Tj,out)

+
(−∆H) ·V

MCp
k0 e−E/(RT)C2

A (16)

dCA

dt
=

Ff

V
(CA,in−CA)−k0 e−E/(RT)C2

A (17)

denoting Fj, Tj,in and Tj,out the flow rate through the jacket
and the temperature of the water entering and leaving the
cooling jacket, respectively. CA and CA,in represent the reac-
tive concentration in the reactor and in the feed, respectively.
The feed passes through the heat exchanger and enters the
reactor nearly with the temperature of the reactor content.
Thus it is assumed that no heat is neither removed or supplied
due to the feed. The heat exchange in the cooling jacket is
given by the following empirical model:

Fj · (Tj,out−Tj,in) =
T−α

β
(1−e−γFj ) (18)

with α = 292.19K, β = 14.94s/l and γ = 13.18s/l.

The chemical reaction is nonlinear in the dynamics of the
temperature and the concentration due to the quadratic terms
of the concentration in the model equations (16) and (17).
For further details on the model parameters see [6].

V. EXPERIMENTAL RESULTS

The strategy described in section III has been applied
to the refinement process. In this section the experimental
results will be exposed and discussed. CARIMA type predic-
tion models with bounded additive uncertainties were used in
the experiments. This type of model extends the concept of
noise in traditional CARIMA models so that an uncertainty
is considered:

A(z−1)y(t) = z−dB(z−1)u(t −1)+C(z−1)
θ (t)

∆
(19)
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with ∆ = 1− z−1, θ (t) ∈ {θ ∈ Rdimy : ∥θ∥∞ ≤ ε}, and dimy

the dimension of y(t). The use of this type of prediction
models results in a control law without error in steady
state. There are few differences between implementing the
algorithm of section III for a state space model and a
CARIMA model with bounded additive uncertainties. The
main difference is the method used to find the matrices of
the prediction equation [3]. The cost function is the same as
in (6). Appendix A presents practical aspects related to the
use of a CARIMA model (19) for prediction.

In the following sections the control system in the pilot
plant will be described and the necessary steps to obtain
a prediction model will be presented. Finally, experimental
results will be exposed.

A. Description of the control system

The sensors and actuators in the plant are connected
to a PMC-10 control unit. The PMC-10 is connected by
ARCnet to a personal computer that runs the control and
monitoring system Simatic-IT. The control algorithm has
been implemented directly in Matlab and the communication
with Simatic-IT is done using the OPC protocol (OLE for

Process Control). Both Simatic-IT and the controller run
on the same personal computer, based on a Pentium II
processor at 300 Mhz. This computer does not have enough
computational power to solve exactly the min-max problem
of a typical MMMPC, but can compute the control action
using the proposed strategy.

B. Identification of the prediction model

A PRMSS (Pseudo-Random Multilevel Step Sequence) has
been applied to the recirculation valve with the objective
of collecting data for the parameter identification of the
prediction model. The periods of the PRMSS have been
chosen sufficiently long to observe the reaction of the pilot
plant to changes in the input (see Fig. 3). It can be seen that
the temperature of the tank reaches steady state in each step
in something more than two hours, although the variations in
steady state are of several degrees. The reagent concentration
also suffers variations in steady state. It can be observed that
the input–output gain is negative and clearly variable (greater
gain for low openings of v8). A first order transfer function
model with delay is proposed as prediction model. This low
order model cannot correctly describe the dynamics of the
plant, but it is a good approach to check the robustness of
the controller in presence of uncertainties and disturbances.

Using the data of Fig. 3 the following model has been
identified:

G(s) =
−0.975

950s+ 1
e−31.25s (20)

This model was discretized with a sampling time of Ts = 60s.
The delay was rounded to 1 sampling time in order to avoid
approximations of the time delay, e.g. Padé approximation.
Thereby, the following CARIMA model was obtained:

y(t + 1) = 0.939y(t)−0.0597u(t−1)+
θ (t)

∆
(21)

with the noise polynomial C(z−1) = 1.
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Fig. 4. One step ahead prediction error during the experiment for the
model identification.

C. Experimental results of the controller

The proposed control strategy was applied to the pilot
plant described in section IV-A using (21) as a prediction
model. For the prediction and control horizons values of N =
15 and Nu = 12 have been used1. Therefore the prediction
horizons includes approximately one time constant of the
process, a common value for this parameter in predictive
control. The weighting factor for the control effort has been
chosen equal to R j = 2. Based upon the one step ahead
prediction error (see Fig. 4) the parameter ε has been chosen
to ε = 0.25. As a result, in 97% of the samples the one
step ahead prediction error is bounded by the chosen value.
Finally, in order to restrict the system input and output in

the experiments, the following constraints have been used:

30 ≤ ŷ(t + j|t) ≤ 70, j = 2, . . . ,16, ∀ θθθ ∈ vert(ΘΘΘ)

5 ≤ u(t + j|t) ≤ 100, j = 0, . . . ,11

−20 ≤ ∆u(t + j|t) ≤ 20, j = 0, . . . ,11

Note that in the output restrictions the effect of the uncer-
tainty has to be considered.

In order to analyse the system behaviour, several ex-
periments with reference changes and disturbance rejection
have been made using the proposed control strategy. Fig.
5 shows the results of the tracking experiment with ref-
erences different enough to result in control actions in a
large interval. After the first reference change no overshoot

1The model delay implies that the prediction horizon starts in t + 2 and
ends in t +16.
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appears in spite of a quite fast controller reaction. After
the second reference change a small overshoot (of about
−0.5oC), justified by the nonlinear process behaviour, can be
observed. In steady state the controller shows small changes
in the control action necessary to stabilize the output on the
reference in presence of variations in the generated heat and
the cold water temperature.

In second place a disturbance rejection experiment was
carried out. The results of a disturbance in the system
input, the opening of the valve v8, are presented in Fig.
6. As can be seen, after approximately 70min a constant
disturbance in the input of ∆v8 = 15% was applied. The
controller reacts rapidly and rejects the perturbation in about
20 minutes. After the disappearance of the perturbation in t =
101min the controlled system shows the same behaviour and
reaches steady state in approximately 20 minutes. Neither the
temperature nor the control action show oscillations after the
perturbation.

The third experiment, using an additive disturbance in the
feeding Ff , is shown in Fig. 7. In t = 70min a change in
the feeding flow of ∆Ff = 0.0125l/s, which corresponds to
an error of 25%, has been applied. With an increasing error,
the controller reduces the opening of the valve and reaches
a compensation of the divergence after 15 minutes. In this
experiment an overshoot of −0.50oC can be observed. The
oscillation in the temperature and the control action is quite
small and seems acceptable due to the strong disturbance.

The reference tracking experiment was repeated with a
linear constrained predictive controller (GPC) to allow the
comparison between the proposed strategy and a standard
MPC method. The GPC is based on the linear model (21)
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Fig. 6. Experiment with input disturbance rejection. From top to bottom:
Tank temperature (T ), valve opening(v8 ), controller output (u), reagent
concentration (CA) and cold water temperature (TT 2).
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Fig. 7. Experiment with disturbance rejection in the feed flow. From top
to bottom: Tank temperature (T ), valve opening(v8), reagent concentration
(CA) and cold water temperature (TT 2).
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Fig. 8. Reference tracking results of the MMMPC and the GPC. From top
to bottom: Tank temperature (T ), valve opening (v8).

and was used with the same parameters as the MMMPC. It
can be observed in the results (see Fig. 8) that the process
controlled by the GPC exhibits significant oscillations in
the temperature and the control action after the reference
changes. The comparison of the results shows that the
MMMPC stabilizes the temperature more efficiently and with
less oscillations in the opening of the valve.

Finally, it is important to mention that the calculation of
the control signal took place without problems within the
chosen sampling time (60 seconds). During the experiments
the average computation time was 5.64 seconds, with a
maximum of 9.90 seconds and a minimum of 1.863 seconds.

VI. CONCLUSIONS

In this paper an MMMPC based on an tractable QP prob-
lem was applied to a pilot plant. The results showed a good
system behaviour and the stabilisation of the plant tempe-
rature around the operation point. After reference changes the
controller quickly compensates deviations. Furthermore, the
MMMPC showed its capacity to compensate errors caused
by the disturbances.

The application to a process shown in this work joins
the small number of MMMPC applications reported in
specialised literature. The low computational requirements of
the proposed control strategy allowed the use of appropriate
sampling times and realistic prediction and control horizons.
Thereby it is shown that the use of proposed strategy allows
the application of this kind of controllers to a larger number
of processes.
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APPENDIX A. PRACTICAL ASPECTS RELATED TO THE

INPUT/OUTPUT DESCRIPTION

This appendix presents the main differences between the
implementation of the proposed strategy with a state space
model (1) and an input/output model like (19). In this case,
the evolution of the output along the prediction horizon can
be described in condensed form as [3]:

y = Guu+ Gθ θθθ + Fxx (22)

The matrices Gu,Gθ and Fx can be obtained from the original
model using several different methods, e.g. the Diophantine
equation [3]. A more intuitive method is the use of the
step response coefficients [3] to form matrix Gu. The free
response vector Fxx can easily be computed by iterating with
the process model with the assumption of a constant control
signal along the prediction horizon. Matrix Gθ is computed
by treating the uncertainty as an additional system input
weighted by a unit polynomial in the model. Thus, using the
method of the Diophantine equation, Gθ can be computed as
Gu, but assuming that B(z−1) = 1. Also, Gθ can be formed
from the coefficients of the system response to a step in the
uncertainty θ (t). The vector u contains the future control
increments if a CARIMA model is used [3]. In this case
state vector x contains the present and past output values as
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well as the past control increments:

x = [y(t), . . . ,y(t−na),∆u(t−1), . . . ,∆u(t−nb)]
T

denoting na and nb the polynomial orders of (1−z−1)A(z−1)
and B(z−1), respectively.

The different model implies changes in the cost function,
but, as shown in the following, it can be rewritten as in (6).
The usual form of the cost function with a prediction model
like (19) is:

V (x,u,θθθ ) =
N

∑
j=1

e(t + j|t)T Qe(t + j|t)+

Nu−1

∑
j=0

∆u(t + j)T Rm∆u(t + j) (23)

being e(t + j|t) the predicted reference tracking error at time
t + j:

e(t + j|t) = (y(t + j|t)−w(t + j))

where w(t + j) is the reference at time t + j. With the
prediction equation (22) and the assumption Q = 1 the cost
function can be written as:

V (x,u,θθθ ) = (Guu+ Gθ θθθ + Fxx−w)T

·(Guu+ Gθ θθθ + Fxx−w)

+uT Ru (24)

with R a diagonal matrix of the form:

R = diag(Rm, . . . , Rm) (25)

The vector w contains the future values of the reference
trajectory and is defined as w = [w(t + 1), . . . , w(t + N)]T .
If a zero reference is used, i.e. w(t + j) = 0 for j = 1, . . . , N,
the cost function can be expressed as in (6) being the
matrices Muu = GT

u Gu + R, Mθθ = GT
θ Gθ , Mθu = GT

θ Gu,
Mu f = GT

u Fx, Mθ f = GT
θ Fx and Mf f = FT

x Fx. In the case of
a nonzero reference, the computation of the cost function
can be carried out in an analogous way and does not change
the optimisation algorithm. From this point, the proposed
strategy can be applied in the same way as with state space
models.
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