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Abstract

The paper studies the visibility maintenance problem (VMP) for a leader-follower pair of Dubins-like vehicles with input
constraints, and proposes an original solution based on the notion of controlled invariance. The nonlinear model describing
the relative dynamics of the vehicles is interpreted as linear uncertain system, with the leader robot acting as an external
disturbance. The VMP is then reformulated as a linear constrained regulation problem with additive disturbances (DLCRP).
Positive D-invariance conditions for linear uncertain systems with parametric disturbance matrix are introduced and used to
solve the VMP when box bounds on the state, control input and disturbance are considered. The proposed design procedure
is shown to be easily adaptable to more general working scenarios. Extensive simulation results are provided to illustrate the
theory and show the effectiveness of our approach.
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1 Introduction

1.1 Problem description and motivation

This paper considers a number of visibility mainte-
nance problems between autonomous vehicles. The sim-
plest formulation is a leader-follower setup, in which
both leader and follower are nonholonomic vehicles
constrained to move along planar paths of bounded
curvature, with limited positive forward speed. The
follower vehicle’s goal is to maintain the leader inside
an appropriate sensing region. The theory of controlled
invariance for uncertain linear systems is shown to be
well suited for this objective as well as for achieving
more involved tasks, such as, e.g., simultaneously reject
unknown but bounded disturbances or preserve visibi-
lity in multi-vehicle chain formations.
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We have two main motivations for the visibility main-
tenance problems studied in this article. First, we are
interested in surveillance and patrolling problems with
formations of robotic vehicles in aerial and ground
environments. We envision scenarios where a robot
equipped with sensors with limited sensing footprints
(such as, e.g., panoramic cameras, laser range finders,
or high resolution radars) moves in such a way as to
maintain a second moving target within its field of view.
Second, this work is motivated by the need to design
network-wide visibility and connectivity maintenance
algorithms for groups of robotic vehicles. In the multi-
agent network domain, connectivity is indeed a classic
requirement necessary to guarantee the correct comple-
tion of numerous distributed algorithms.

1.2 Literature review

In the context of visibility maintenance between pairs of
vehicles, two distinct literature domains are relevant to
this work. First, visibility-based pursuit-evasion prob-
lems for robots in complex environments have been in-
vestigated in continuous-time in (Guibas et al., 1997;
Gerkey et al., 2006; Bhattacharya andHutchinson, 2010)
and in discrete-time in (Isler et al., 2005): in these works
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the vehicles’ dynamic models are elementary and the
proposed solutions are not applicable to nonholonomic
vehicles with limited positive forward speed. Second,
the vast literature on aircraft pursuit-evasion has fo-
cused much attention to game theory, optimal control,
and numerical algorithms. A hybrid-systems and game-
theoretic approach to aircraft conflict resolution is pur-
sued in (Tomlin et al., 2000). Differential game problems
between aircraft are discussed in (Merz andHague, 1977;
Jarmark and Hillberg, 1984; Shima and Shinar, 2002).
In (Glizer, 1999), a planar pursuit-evasion problem in
which the target set is defined by a capture radius and
constraints on the angular state variables (line-of-sight
angle) is analyzed, and a necessary and sufficient con-
dition for capture of the evader from any initial state is
established using a variational method. However, differ-
ently from the problem studied in this paper, the author
considers constant positive forward speed for the non-
holonomic vehicles and unlimited turning rate for the
evader. More recently, in (Mazo Jr et al., 2004), the prob-
lem of estimating and tracking the motion of a moving
target by a team of unicycles equipped with directional
sensors with limited range, is addressed using a hierar-
chical control scheme.
In the context of connectivity maintenance in multi-
agent networks, the literature has experienced a recent
spurt of growth (we refer to (Bullo et al., 2009; Mesbahi
and Egerstedt, 2010) for recent surveys on this topic):
two typical multi-agent tasks requiring network connec-
tivity are “consensus” (Moreau, 2005; Olfati-Saber et
al., 2007) and “rendezvous” (Cortés et al., 2006; Lin et
al., 2007). In this active research area, robots with li-
mited communication capability are often modeled as
transmitters with disks of finite radius. As the vehicles
move to achieve a goal, it is generally hard to guaran-
tee the connectivity among the members of the group
is preserved over time. In terms of design, it is then re-
quired to constrain robots’ control inputs such that the
resulting topology is always connected throughout its
course of evolution. Potential fields and geometric opti-
mization methods are the standard tools used in the lit-
erature to address the connectivity maintenance prob-
lem: a list of key references, yet far from being complete,
is (Ando et al., 1999; Spanos and Murray, 2005; Ji and
Egerstedt, 2007; Zavlanos and Pappas, 2007; Dimarog-
onas and Kyriakopoulos, 2008; Savla et al., 2009; Yang
et al., 2010). These works differ from the setup pro-
posed in this paper in at least two important ways: first,
the vehicle’s dynamics is assumed to be locally con-
trollable, and second, connections between two robots
are bidirectional. In our problem, instead, we consider
nonholonomic vehicles that are not locally controllable
(they move forward with positive speed, along paths
of bounded curvature) and we deal with sensor foot-
prints such that the visibility links are not bidirectional.
We finally point out that most of the works cited above
do not explicitly account for robots’ input constraints.

1.3 Original contributions

The basic setup considered in this paper consists of
two nonholonomic agents: a leader (or evader) L and
a follower (or pursuer) F. The robots can rotate with
bounded angular velocity, but similarly to Dubins’
vehicles (Dubins, 1957) can only move forward. The
follower is equipped with a sensing device characterized
by a visibility set S, a compact and convex polyhedral
region encoding both the position and angle informa-
tion. The leader moves along a given trajectory and
the follower aims at maintaining L always inside its
visibility set S, while respecting suitable bounds on
the control inputs. Inspired by (Tiwari et al., 2004),
where the concept of cone invariance is used to solve
the multiagent rendezvous problem and by the results
in (Blanchini, 1990; Blanchini, 1991), this paper ad-
dresses the visibility maintenance problem (VMP) using
the notion of controlled invariance. The key idea is to
interpret the nonlinear model describing the relative
dynamics of the leader and the follower, as a linear sys-
tem with model parameter uncertainty, with the control
input of the leader playing the role of an external di-
sturbance. The VMP can then be easily reformulated as
linear constrained regulation problem with additive dis-
turbances (DLCRP). Positive D-invariance conditions
for general linear uncertain systems with parametric
disturbance matrix are introduced and used to solve the
VMP when box bounds on the state, control inputs and
disturbances are considered. Analytical conditions for
the solution of the VMP are obtained by symbolically
solving with the Fourier-Motzkin elimination method,
the set of linear inequalities defining the polytope of all
the feasible state feedback matrices. The proposed de-
sign procedure can be easily adapted to provide the con-
trol with unknown but bounded (UBB) disturbances re-
jection capabilities. Other extensions are also discussed:
we present conditions for the solution of the VMP when
robots’ desired displacement is defined through angular
parameters instead of distances, and extend the results
valid for a leader-follower pair of robots to chains of
n vehicles. Extensive simulation results illustrate the
theory in the different working scenarios. The present
paper builds upon (Morbidi et al., 2008), compared to
which we provide herein a more detailed and extended
theory, as well as a more accurate numerical validation.

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2
the linear constrained regulation problem is reviewed
and new positive D-invariance conditions for linear
systems with parameter uncertainty are presented.
In Sect. 3 we introduce the VMP and prove the main
result of the paper. In Sect. 4 we investigate some exten-
sions of the basic setup of Sect. 3. In Sect. 5, simulation
results are presented. In Sect. 6 the main contributions
of the paper are summarized and possible avenues for
future research are highlighted.
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2 The linear constrained regulation problem

This section presents a series of results that are
instrumental in addressing the visibility maintenance
problem in Sect. 3. Our exposition will basically fol-
low (Blanchini, 1991): Theorem 10, Corollary 11,
Theorem 12 and Corollary 13 extend the corre-
sponding results in (Blanchini, 1990; Blanchini, 1991)
(see also (Blanchini and Miani, 2008, Ch. 4)), to linear
uncertain systems with parametric disturbance matrix.
Consider the following system,

ṡ(t) = A(q(t)) s(t) +B(q(t))u(t), (1)

where s(t) ∈ X ⊂ R
n and u(t) ∈ U ⊂ R

m are respec-
tively the state and input vectors, q(t) ∈ Q ⊂ R

p is the
model parameter uncertainty vector, while U , X , Q are
assigned sets containing the origin, with U and Q com-
pact.We assume thatA(q) andB(q) are matrices of suit-
able dimensions whose entries are continuous functions
of q. We will suppose q(t) to be a piecewise continuous
function of time.

Definition 1 (Positive invariance) The set S ⊂ R
n

is positively invariant for system (1), if and only if, for
every initial condition s(0) ∈ S and every admissible
q(t) ∈ Q, the solution obtained for u(t) ≡ 0, satisfies the
condition s(t) ∈ S for t > 0.

Definition 2 (Admissible region) A region S ⊂ R
n

is said to be admissible for the feedback control law u =
Ks, if and only if, for every s ∈ S, the condition u ∈ U
holds. If U and S are convex polyhedral sets containing
the origin, the admissibility of S is simply equivalent to

Kvi ∈ U , vi ∈ vert(S), i ∈ {1, . . . , µ}, (2)

where vert(S) denotes the set of vertices of S.

We can now introduce the linear constrained regulation
problem (LCRP), (Blanchini, 1991).

Problem 3 (LCRP) Given a system in the form (1),
find a linear feedback control law u(t) = Ks(t) and a set
S ⊂ X such that, for every initial condition s(0) ∈ S
and every admissible function q(t) ∈ Q, the conditions
s(t) ∈ X and u(t) ∈ U are fulfilled for t > 0.

Theorem 4 The LCRP has a solution if and only if
there exists a feedback matrix K and a set S ⊂ X that
is positively invariant and admissible for the closed loop
system

ṡ(t) = F (q(t)) s(t), (3)

where F (q(t)) = A(q(t)) +B(q(t))K.

Theorem 5 (Sub-tangentiality condition) Let
S ⊂ R

n be a compact and convex set with nonempty in-
terior. The positive invariance of S for (1) is equivalent

to the following condition: for every s0 ∈ ∂S and q ∈ Q,

A(q) s0 ∈ TS(s0), (4)

where TS(s0) is the tangent cone toS at s0 (see (Blanchini,
1999, Def. 3.1), and (Aubin and Frankowska, 1990,
Ch. 4), (Aubin and Cellina, 1984, Ch. 5)) for more
details).

The main difficulty in exploiting condition (4) to study
the positive invariance of an assigned region S is that
it has to be checked on the boundary of S. However, if
convex polyhedral sets are considered, only their vertices
must be taken into account and easy algebraic conditions
can be derived. In this respect, let us consider a system
of the form (1), with

A(q(t)) = A0+

p
∑

l=1

Al ql(t), B(q(t)) = B0+

p
∑

l=1

Bl ql(t),

(5)
where Al and Bl, l ∈ {1, . . . , p}, are constant matrices
of appropriate dimension and q(t) takes values in a com-
pact and convex polyhedron Q ⊂ R

p, (ql(t) denotes the
l-th component of vector q(t)). Let the set U be compact,
convex and polyhedral as well. We consider a candidate
compact and convex polyhedral set S containing the ori-
gin in its interior and we search for a feedback matrix K
that assures the positive invariance of S for the closed
loop system (3), (note that the previous assumptions on
S will be retained throughout this section). Since S is
polyhedral, then condition (4) is fulfilled on ∂S if and
only if is fulfilled on every vertex of S.

Theorem 6 The set S is positively invariant for system
(3) with feedback u = Ks, if and only if, for all vi ∈
vert(S) and wj ∈ vert(Q) :

F (wj) vi ∈ TS(vi), i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}.

The LCRP as formulated in Problem 3 does not require
the stability. However, a desirable property is the global
uniform stability of the closed loop system. The link be-
tween the stability property and the existence of pos-
itively invariant regions is established by Theorem 5.2
in (Blanchini, 1991).
Let us now turn our attention to systems in the form

ṡ(t) = A(q(t)) s(t) +B(q(t))u(t) + E(q(t)) δ(t), (6)

where the unknown external disturbance δ(t) is con-
strained in a compact and convex polyhedral set D ⊂ R

l

containing the origin. Note that with respect to the sys-
tems considered in (Blanchini, 1991), the structure in (6)
is more general inasmuch as matrix E also depends on
the uncertain parameter q. As an immediate extension
of the positive invariance property introduced in Defi-
nition 1, we may require that the state s remains in S
despite the presence of the disturbance δ(t).
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Definition 7 (Positive D-invariance) The set S ⊂
R

n is positively D-invariant for system (6), if for every
initial condition s(0) ∈ S and all admissible q(t) ∈ Q
and δ(t) ∈ D, the solution obtained for u(t) ≡ 0, satisfies
the condition s(t) ∈ S for t > 0.

We can now introduce the linear constrained regulation
problem with additive disturbances (DLCRP).

Problem 8 (DLCRP) Given a system in the form (6),
find a linear feedback control law u(t) = Ks(t) and a set
S ⊂ X such that, for every initial condition s(0) ∈ S and
every admissible q(t) ∈ Q and δ(t) ∈ D, the conditions
s(t) ∈ X and u(t) ∈ U are fulfilled for t > 0.

Theorem 9 The DLCRP has a solution if and only if
there exists a feedback matrix K and a set S ⊂ X that is
positively D-invariant and admissible for the closed loop
system ṡ(t) = F (q(t)) s(t) + E(q(t)) δ(t).

Similarly to (5), we will henceforth suppose that
E(q(t)) = E0+

∑p

l=1 El ql(t). We are now ready to state
the main theorem of this section.

Theorem 10 (Main result) The set S is positive
D-invariant for system (6) with feedback u = Ks,
if and only if, for all vi ∈ vert(S), ωj ∈ vert(Q) and
rk ∈ vert(D),

F (wj) vi + E(wj) rk ∈ TS(vi),

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.
(7)

Proof: The proof is based on the same ideas as those in
(Blanchini, 1990, Th. 2.1) and (Blanchini, 1991, Th. 4.1)
(see also (Aubin and Cellina, 1984, Ch. 2, Sect. 4)) and
the references therein). For the necessity, we have to
prove that if S is a positiveD-invariant region for system
(6), then condition (7) holds. The proof is straightfor-
ward, since for the sub-tangentiality condition the posi-
tive D-invariance of S for system (6) is equivalent to

F (q) s+ E(q) δ ∈ TS(s), s ∈ ∂S, q ∈ Q, δ ∈ D, (8)

that trivially implies condition (7). For sufficiency, let
us consider s arbitrary in S, q arbitrary in Q and δ
arbitrary in D. Supposing condition (7) holds, inclu-
sion (8) has to be proved. We have that s =

∑µ

i=1 αi,
vi, q =

∑ν

j=1 βj wj , δ =
∑η

k=1 ρk rk with
∑µ

i=1 αi = 1,
∑ν

j=1 βj = 1,
∑η

k=1 ρk = 1, for some 0 ≤ αi ≤ 1, i ∈

{1, . . . , µ}, 0 ≤ βj ≤ 1, j ∈ {1, . . . , ν} and 0 ≤ ρk ≤ 1,
k ∈ {1, . . . , η}. We first prove that

F (q) vi + E(q) rk ∈ TS(vi),

i ∈ {1, . . . , µ}, q ∈ Q, k ∈ {1, . . . , η}.
(9)

Let wlj be the l-th entry of wj . We have that

F (q) vi + E(q) rk =

=
(

F0+

p
∑

l=1

Fl ql
)

vi +
(

E0 +

p
∑

l=1

El ql
)

rk

=
(

F0 +

p
∑

l=1

Fl

ν
∑

j=1

βj wlj

)

vi +
(

E0 +

p
∑

l=1

El

ν
∑

j=1

βj wlj

)

rk

=

ν
∑

j=1

βj

[(

F0 +

p
∑

l=1

Fl wlj

)

vi
]

+

ν
∑

j=1

βj

[(

E0+

p
∑

l=1

El wlj

)

rk
]

=
ν
∑

j=1

βj

[

F (wj) vi + E(wj) rk
]

,

i ∈ {1, . . . , µ}, k ∈ {1, . . . , η}.

From (7) we have that
∑ν

j=1 βj

[

F (wj) vi +E(wj) rk
]

∈

TS(vi), i ∈ {1, . . . , µ}, k ∈ {1, . . . , η}, therefore (9)
is proved. If πi is a delimiting plane of S for s (i.e.,
such that gTi s = ξi), we may write s as a convex
combination of the vertices of S that belong to πi:
s =

∑µi

h=1 αh vh, with gTi vh = ξi and
∑µi

h=1 αh = 1,
0 ≤ αh ≤ 1, h ∈ {1, . . . , µi}. Then gTi (F (q)s+E(q) δ) =
gTi (F (q)

∑µi

h=1 αh vh + E(q)
∑η

k=1 ρk rk). But from (9)
and recalling the expression of the tangent cone
when S is described in terms of its vertices, we
have that gTi (F (q) vh + E(q) rk) ≤ 0, that implies
gTi

(

F (q)
∑µi

h=1 αhvh + E(q)
∑η

k=1 ρk rk
)

≤ 0. By con-
sidering all the planes for s, condition (8) follows
immediately. �

The application of Theorem 10 requires the knowledge
of all cones TS(vi), i ∈ {1, . . . , µ}. An alternative solu-
tion is given by the following corollary (whose proof is
analogous to that of (Blanchini, 1991, Corollary 4.1))
in which the Euler auxiliary system associated to (6) is
involved (cf. (Blanchini and Miani, 2008, Sect. 12.1)).

Corollary 11 The set S is positively D-invariant for
system (6), if and only if there exists τ > 0 such that, for
all vi ∈ vert(S), ωj ∈ vert(Q) and rk ∈ vert(D),

vi + τ(F (wj) vi + E(wj) rk) ∈ S,

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.
(10)

To overcome the problem of the choice of τ , we intro-
duce Theorem 12 that provides a condition equivalent
to (10). The proof is analogous to that of (Blanchini,
1990, Th. 2.3). Let Ci be the convex cone defined by the
delimiting planes of S which contain vi (see (Panik, 1993,
Ch. 4)) :

Ci = {gTh s ≤ ξh, ξh > 0, for every gTh

and ξh : gTh vi = ξh, vi ∈ vert(S)}.
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Theorem 12 The set S is positively D-invariant for
system (6), if and only if, for all τ > 0, vi ∈ vert(S),
ωj ∈ vert(Q) and rk ∈ vert(D):

vi + τ(F (wj) vi + E(wj) rk) ∈ Ci,

i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν}, k ∈ {1, . . . , η}.

If the plane description of S is available, the next
corollary, whose proof directly follows from that of
Theorem 10, holds.

Corollary 13 The set S is positively D-invariant for
system (6), if and only if, for every τ > 0 and every
vi ∈ vert(S), ωj ∈ vert(Q),

(In + τ F (wj)) vi ∈ C⋆
i , i ∈ {1, . . . , µ}, j ∈ {1, . . . , ν},

(11)
where C⋆

i is the cone obtained by shifting the planes of Ci
as follows :

C⋆
i = {gTh s ≤ ξh − maxjk{τg

T
hE(wj) rk}, ωj ∈ vert(Q),

rk ∈ vert(D), for every gTh : gTh vi = ξh}.

Remark 14 According to Theorem 9, conditions (11)
and (2) provide us with a set of inequalities in the un-
known K defining the polytope K of all the state feedback
matrices solving the DLCRP.

3 The visibility maintenance problem

3.1 Modeling

Let Σ0 ≡ {O0 ;x0, y0} be the fixed reference frame inR2,
and ΣF ≡ {OF ;xF, yF} and ΣL ≡ {OL ;xL, yL} the
reference frames attached to a follower robot F and a
leader robot L (see Fig. 1). The robots are supposed to
have single integrator dynamics,

ṗF
F = σF

F ,

θ̇F = ωF ,

ṗL
L = σL

L ,

θ̇L = ωL ,
(12)

where pF
F = (xF, yF)

T , pL
L = (xL, yL)

T are the posi-
tions, σF

F = (σF
F [1], σ

F
F [2])

T , σL
L = (σL

L [1], σ
L
L [2])

T the lin-
ear velocities and ωF, ωL the angular velocities of robots
F and L in the frames ΣF andΣL, respectively.We are go-
ing to derive a dynamic model describing the relative dy-
namics of the robots F and L. Referring (12) to the frame
Σ0, we obtain (Siciliano et al., 2008), ṗ0F = R0

F(θF)σ
F
F ,

ṗ0L = R0
L(θL)σ

L
L , where

R0
F(θF)=

[

cos θF − sin θF

sin θF cos θF

]

, R0
L(θL)=

[

cos θL − sin θL

sin θL cos θL

]

.

PSfrag replacements

x0

y0

∑

0

xF

yF

θF
∑

F

xL

yL θL

∑

L

Fig. 1. Leader-follower setup.

The position of robot L with respect to ΣF is then
given by

pFL = RF
0 (θF)(p

0
L − p0F), (13)

where RF
0 (θF) = (R0

F(θF))
T . Differentiating (13) with

respect to time, we get

ṗF
L= ṘF

0 (θF)(p
0
L−p0F)+RF

0 (θF)
(

R0
L(θL)σ

L
L−R0

F(θF)σ
F
F

)

.
(14)

Since

ṘF
0 (θF) =

[

0 ωF

−ωF 0

]

RF
0 (θF),

we can rewrite (14) as

ṗFL =

[

0 ωF

−ωF 0

]

pFL +RF
L(β

F
L )σ

L
L − σF

F , (15)

where βF
L , θL−θF. Collecting equation (15) and the rel-

ative angular dynamics of the robots together, we obtain
the following system







ṗFL

β̇F
L






=











−I2

pFL[2]

−pFL[1]

0 0 −1











[

σF
F

ωF

]

+











RF
L(β

F
L )

0

0

0 0 1











[

σL
L

ωL

]

,

(16)
where pFL = (pFL[1], p

F
L[2])

T . For the sake of simplicity,
we will suppose that

σF
F = (1 + vF , 0)T,

σL
L = (1 + vL , 0)T,

(17)

where |vF(t)| < 1, |vL(t)| < 1, for all t ≥ 0. F and L will
then behave in a way similar to Dubins vehicles since
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they can only move forward (however, differently from
the standardDubins model, vF and vL are not necessarily
constant in our case). Substituting (17) in (16), we finally
come up with the following system













ṗFL[1]

ṗFL[2]

β̇F
L













=











cosβF
L − 1

sinβF
L

0











+











−1 pFL[2]

0 −pFL[1]

0 −1















vF

ωF





+











cosβF
L 0

sinβF
L 0

0 1















vL

ωL



,

(18)
with state vector s = (pFL[1], p

F
L[2], β

F
L )

T ∈ X ⊂ SE(2),
input vector u = (vF, ωF)

T ∈ U ⊂ (−1, 1) × R and
disturbance vector δ = (vL, ωL)

T ∈ D ⊂ (−1, 1) × R.
System (18) describes the relative dynamics of the
Dubins-like vehicles F and L in the configuration
space SE(2).

3.2 Problem statement

In the forthcoming analysis, we will suppose that robot
F is equipped with a sensor (e.g., a panoramic camera,
a laser range finder, etc.) with limited sensing range.
We will call visibility set of robot F any compact and
convex polyhedral set S ⊂ X containing the origin in
its interior. Please note that the visibility set generalizes
the notion of sensor footprint since it encodes both the
position and angle information.
Robot L moves along a given trajectory and robot F
aims at keeping L always inside its visibility set S, while
respecting the control bounds. By referring to system
(18), we can formalize this problem as follows:

Problem 15 (Visibility maintenance problem: VMP)

Let S be the visibility set of robot F and let s(0) ∈ S. Find
a control u(t) such that for all δ(t) ∈ D, the conditions
s(t) ∈ S and u(t) ∈ U are fulfilled for t > 0.

In the following, we will refer to Problem 15 as to the
VMP with candidate positively D-invariant set S, con-
trol set U and disturbance set D.

3.3 Solution method

Next, we will transcribe system (18) into the linear para-
metric form (6): in this way, the VMP simply reduces
to the DLCRP (Problem 8) introduced in Sect. 2 and
suitable solvability conditions can be derived by means
of (11) and (2).

After simple matrix manipulations in (18), we obtain











∆ṗFL[1]

ṗFL[2]

β̇F
L











=











0 0
cosβF

L
−1

βF

L

0 0
sin βF

L

βF

L

0 0 0





















∆pFL[1]

pFL[2]

βF
L











+











−1 pFL[2]

0 −d−∆pFL[1]

0 −1















vF

ωF



+











cosβF
L 0

sinβF
L 0

0 1















vL

ωL



,

(19)
which can be written in the form (6) with

A(q) =









0 0 q2

0 0 1 + q1

0 0 0









, B(q) =









−1 q4

0 −d− q3

0 −1









,

(20)

E(q) =









1 + q5 0

q6 0

0 1









,

where

q1 =
sinβF

L

βF
L

− 1, q2 =
cosβF

L − 1

βF
L

, q3 = ∆pFL[1],

q4 = pFL[2], q5 = cosβF
L − 1, q6 = sinβF

L .

(21)

We made the following change of variables in (19),

(pFL[1], p
F
L[2], β

F
L )

T → (∆pFL[1], p
F
L[2], β

F
L )

T ,

where ∆pFL[1] = pFL[1]−d and d is a strictly positive con-
stant. Two main reasons motivated this transformation:
first of all, if robot F is able to keep L always inside a vi-
sibility set displaced of d with respect to its center (with
d > max s1,s2 ∈ vert(S)

1
2 ‖s1 − s2‖2), then this automati-

cally guarantees robots’ collision avoidance. Second, this
choice simplifies the study of the VMP with chains of
robots (see Sect. 4.3).
Notice that A0, B0 and E0 in (20) (recall the notation
used in Sect. 2) correspond to the constant matrices ob-
tained by linearizing system (18) around the equilibrium
seq = (d, 0, 0)T , ueq = (0, 0)T , δeq = (0, 0)T .
For the sake of simplicity, we will henceforth make the
following assumption:

Assumption 16 Suppose that (see Fig. 2)

U =
{

(vF, ωF)
T : vF ∈ [−VF, VF], ωF ∈ [−ΩF, ΩF]

}

,

D =
{

(vL, ωL)
T : vL ∈ [−VL, VL], ωL ∈ [−ΩL, ΩL]

}

,

(22)
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S

Fig. 2. The visibility set S in (23) and the pose of the robots
L and F for (∆pFL[1], p

F

L[2], β
F

L )
T = (0, 0, 0)T , d > a.

S =
{

(∆pFL [1], p
F
L[2], β

F
L )

T : ∆pFL[1] ∈ [−a, a],

pFL[2] ∈ [−a, a], βF
L ∈ [−b, b]

}

,
(23)

where VF < 1, VL < 1, ΩF, ΩL, a, b, are strictly positive
constants.

The definition (22) of control and disturbance sets is mo-
tivated by the presence of saturation bounds on the driv-
ing motors of physical robots. The candidate invariant
set S is defined as in (23) because it is computationally
simple to handle (this will allow us to provide concise
solvability conditions for the VMP in Theorem 18), and
because its horizontal section represents a reasonable
good inner approximation of a disk sensor footprint e.g.,
due to an omnidirectional camera or a 360◦ laser scanner
(the problem of precisely quantify the non-conservatism
introduced by this approximation goes beyond the scope
of this paper, and it is left as a subject of future research).
Finally, it is worth emphasizing that is not unusual in
the multi-agent systems literature to encounter rectan-
gular footprints, that are typically used, for example, to
model “push-broom” or line-scanner sensors (see, e.g.,
(Finke et al., 2005)).
We now complete our transcription of system (18) into
the linear parametric form (6), by defining an appropri-
ate polyhedral set for the model parameter uncertainty:

Q =
{

(q1, . . . , q6)
T : q1 ∈

[

sin b
b

− 1, 0
]

,

q2 ∈
[

cos b−1
b

, 1−cos b
b

]

, q3 ∈ [−a, a] , q4 ∈ [−a, a] ,

q5 ∈
[

cos b− 1, 0
]

, q6 ∈ [− sin b, sin b]
}

.

(24)
It is easy to show that, if (∆pFL[1], p

F
L[2], β

F
L )

T ∈ S, then
definition (21) immediately implies that q ∈ Q.

Remark 17 In the previous passages, the nonlinear
system (18) has been absorbed into a linear (controlled)
differential inclusion (see (Blanchini and Miani, 2008,
Sect. 2.1.2)). This is an approximate transformation:
however, no matter how the input u is chosen, we

have that any trajectory of the original system (18) is
also a trajectory of the corresponding linear uncertain
system (the opposite is clearly not true in general).
As a consequence, if we are able to determine the qualita-
tive behavior of the absorbing system, we can determine
(in a conservative way) the behavior of the original sys-
tem. Some tools are available in the robust control liter-
ature to quantify this conservativeness, such as, e.g., the
recent nonlinear extensions of the gap and Vinnicombe’s
ν-gap metrics (see (Bian and French, 2005; James et
al., 2005) and the references therein). However, in the
interest of brevity, we will not perform such an analysis
in this paper.

We are now ready to state themain result of this section.

Theorem 18 (Solvability of the VMP) For the
robots F and L, consider the VMP with candidate posi-
tive D-invariant set S, control set U and disturbance set
D satisfying Assumption 16 with d > a, 0 < b ≤ π/2.
This VMP has a solution if the following conditions are
satisfied

VF ≥ VL

(

1 +
a sin b

d− a

)

+ 1− cos b +
a b

d− a
, (25)

ΩL ≤
(1 − VL) sin b

d+ a
,

VL sin b+ b

d− a
≤ ΩF . (26)

The state feedback matrix has the form

K =





k11 0 0

0 k22 k23



, (27)

where k11, k22 and k23 belong to the polytope K ⊂ R
3

defined by (30)-(31), (see the proof below).

Proof: Let us apply Corollary 13 to system (19). By se-
lecting τ = 1 in (11), we obtain













1− k11 + q4k21 −k12 + q4k22 q2 − k13 + q4k23

−(d+ q3)k21 1− (d+ q3)k22 1 + q1 − (d+ q3)k23

−k21 −k22 1− k23













vi ∈ C
⋆

i .

(28)

Condition (28) must be evaluated only on the vertices
v1 = (a, a, b)T , v2 = (a, a,−b)T , v3 = (a,−a, b)T , v4 =
(a,−a,−b)T since the set (23), whose plane representa-
tion is

























1/a 0 0

−1/a 0 0

0 1/a 0

0 −1/a 0

0 0 1/b

0 0 −1/b

























s ≤

























1

1

1

1

1

1

























,
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s = (∆pFL[1], p
F
L[2], β

F
L )

T , is symmetric with respect to
the origin. The cones C⋆

1 , . . . , C
⋆
4 are given by

C⋆
1 ={gT1 s ≤ 1− VL

a
, gT3 s ≤ 1− VL sin b

a
, gT5 s ≤ 1− ΩL

b
},

C⋆
2 ={gT1 s ≤ 1− VL

a
, gT3 s ≤ 1− VL sin b

a
, gT6 s ≤ 1− ΩL

b
},

C⋆
3 ={gT1 s ≤ 1− VL

a
, gT4 s ≤ 1− VL sin b

a
, gT5 s ≤ 1− ΩL

b
},

C⋆
4 ={gT1 s ≤ 1− VL

a
, gT4 s ≤ 1− VL sin b

a
, gT6 s ≤ 1− ΩL

b
}.

Condition (28) can then be rewritten as:











a(1− k11 + q4k21 − k12 + q4k22) + b(q2 − k13 + q4k23)

a(1− (k21 + k22)(d + q3)) + b(1 + q1 − k23(d + q3))

−a(k21 + k22) + b(1− k23)











∈ C⋆

1
,











a(1− k11 + q4k21 − k12 + q4k22)− b(q2 − k13 + q4k23)

a(1− (k21 + k22)(d + q3))− b(1 + q1 − k23(d + q3))

−a(k21 + k22)− b(1− k23)











∈ C⋆

2
,











a(1− k11 + q4k21 + k12 − q4k22) + b(q2 − k13 + q4k23)

a(−1 + (−k21 + k22)(d + q3)) + b(1 + q1 − k23(d+ q3))

−a(k21 − k22) + b(1− k23)











∈ C⋆

3
,











a(1− k11 + q4k21 + k12 − q4k22)− b(q2 − k13 + q4k23)

a(−1 + (−k21 + k22)(d + q3))− b(1 + q1 − k23(d+ q3))

−a(k21 − k22)− b(1− k23)











∈ C⋆

4
.

(29)

Because of the special structure of B(q) in (20), we
can select a simplified state feedback matrix K of the
form (27): this allows to the decouple the control inputs
vF and ωF and visualize the polytope K ⊂ R

3 of all the
feasible gain matrices. We can then rewrite (29) in the
following simplified form:

− k11 + q4k22 +
b

a
q4 k23 ≤−

b

a
q2 −

VL

a
,

−(d+ q3) k22 −
b

a
(d+ q3) k23 ≤−

b

a
(1 + q1)−

VL sin b

a
,

−k11 + q4 k22 −
b

a
q4 k23 ≤

b

a
q2 −

VL

a
,

−(d+ q3) k22 +
b

a
(d+ q3) k23 ≤

b

a
(1 + q1)−

VL sin b

a
,

−
a

b
k22 − k23 ≤−

ΩL

b
,

a

b
k22 − k23 ≤−

ΩL

b
,

−k11 − q4 k22 +
b

a
q4 k23 ≤−

b

a
q2 −

VL

a
,

−k11 − q4 k22 −
b

a
q4 k23 ≤

b

a
q2 −

VL

a
. (30)

The admissibility condition (2) leads to the additional
constraints

k11 ≤
VF

a
, k11 ≥ −

VF

a
,

k22 +
b

a
k23 ≤

ΩF

a
, k22 −

b

a
k23 ≤

ΩF

a
,

k22 −
b

a
k23 ≥ −

ΩF

a
, k22 +

b

a
k23 ≥ −

ΩF

a
.

(31)

The Fourier-Motzkin elimination is a mathematical al-
gorithm for eliminating variables from a system of linear
inequalities. Elimination of unknown kij from the sys-
tem of inequalities, consists in creating another system
of the same kind but without kij , such that both systems
have the same solutions over the remaining variables.
If one removes all variables from a system of inequalities
with numerical coefficients, then one obtains a system
of constant inequalities, which can be trivially decided
to be true or false. This procedure can then be used to
easily check whether a given system admits solutions
or not (see Appendix A for more details).
Applying the Fourier-Motzkin elimination to the in-
equalities (30)-(31) with the assumption that d > a
(in order to fix the sign of the coefficients of k22 and
k23 in the second and fourth inequality of (30)) we end
up with the following conditions on the variables a, b,
d, VF, VL, ΩF, ΩL and uncertain parameters q1, . . . , q4
(the detailed passages are reported in Appendix B),

ΩL ≤ b(1+q1)−VL sin b

d+q3
, b(1+q1)+VL sin b

d+q3
≤ ΩF ,

VF ≥ VL

(

1 + q4 sin b
d+q3

)

+ b
(

q2 +
q4(1+q1)
d+q3

)

, for q4 > 0 ,

VF ≥ VL

(

1 + q4 sin b
d+q3

)

− b
(

q2 +
q4(1+q1)
d+q3

)

, for q4 > 0 ,

VF ≥ VL + b q2, for q4 = 0 ,

VF ≥ VL

(

1− q4 sin b
d+q3

)

+ b
(

q2 +
q4(1+q1)
d+q3

)

, for q4 < 0 ,

VF ≥ VL

(

1− q4 sin b
d+q3

)

− b
(

q2 +
q4(1+q1)
d+q3

)

, for q4 < 0.

An appropriate selection of the parameters q1, . . . , q4 on
the extremes of the intervals (24), (i.e., q1 = sin b

b
− 1,

q3 = a, for the first inequality, q1 = 0, q3 = −a, for the
second and q1 = 0, q2 = 1−cos b

b
, q3 = −a, q4 = a, for

the third), leads to (25) and (26). �

Some remarks are in order at this point.
The inequalities (25) and (26) (which are linear in VF,
VL, ΩF, ΩL and nonlinear in a, b, d), specify the role
played by each of the parameters introduced in Assump-
tion 16, in the solvability of the VMP. In particular, they
show how the bounds on the forward and angular veloc-
ity of the follower robot are affected by the size of the
visibility set S and the velocity of the leader.
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Note that conditions (25) and (26) are necessary and
sufficient for the linear uncertain system (19). Note also
that owing to (26), we have ΩF ≥ ΩL. Once fixed the
variables a, b, d, VF, VL, ΩF, ΩL according to (25) and
(26), the polytope of all the feasible state feedbackmatri-
ces is given by (30)-(31): by evaluating (30)-(31) on the
vertices of the polyhedronQ, we can see thatK is defined
by a set of 392 inequalities, most of whom are redundant
(see, e.g., the external (green) polytope in Fig. 3, below).

Remark 19 (Selection of the gain matrix K)
Since the polytope K contains infinite gain matrices, one
needs an optimal criterion to select K, such as, e.g.,
minimizing any matrix norm. In the simulation experi-
ments reported in Sect. 5, we have chosen the matrix

K =





k11 0 0

0 k22 k23



 ,

with minimum 2-norm.

4 Extensions and applications

In this section, we propose various extensions of the basic
setup considered in Theorem 18, and discuss a few appli-
cations. We study the VMP in the presence of unknown
but bounded disturbances, and consider the case of the
leader moving along a circular path around a stationary
target. We also extend our results to chains of robots.

4.1 Rejection of unknown but bounded disturbances

Let us consider the following system











∆ṗFL[1]

ṗFL[2]

β̇F
L











=













0 0
cosβF

L
−1

βF

L

0 0
sin βF

L

βF

L

0 0 0























∆pFL[1]

pFL[2]

βF
L











+











−1 0 pFL[2]

0 −1−∆pFL[1]− d

0 0 −1





















vF

hF

ωF











+











cosβF
L− sinβF

L 0

sinβF
L cosβF

L 0

0 0 1





















vL

hL

ωL











.

(32)
With respect to (19), two new components, hF and hL,
are present in the input and disturbance vectors u and δ.
They are unknown but bounded disturbances acting on
the robots F and L (e.g., lateral wind in a real setup).
Our purpose here is to solve the VMP in the presence
of the disturbances hF, hL.
Collecting together all the perturbations acting
on the nominal system (i.e., vL, ωL, hF and hL),

5
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3
4

0. 4
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0. 9

1

PSfrag replacements

k11k22

k
2
3

Fig. 3. Polytopes K for a set of given parameters:
(blue, internal) with disturbances; (green, external) without
disturbances.

we can rewrite (32) as











∆ṗFL[1]

ṗFL[2]

β̇F
L











=













0 0
cosβF

L
−1

βF

L

0 0
sin βF

L

βF

L

0 0 0























∆pFL[1]

pFL[2]

βF
L











+











−1 pFL[2]

0 −∆pFL[1]− d

0 −1















vF

ωF



+









cosβF
L 0 0 − sinβF

L

sinβF
L 0 −1 cosβF

L

0 1 0 0

















vL
ωL

hF

hL









.

(33)
Let U be given in (22), and define

D ={(vL, ωL, hF, hL)
T : vL ∈ [−VL, VL],

ωL ∈ [−ΩL, ΩL], hF ∈ [−HF, HF], hL ∈ [−HL, HL]},

(34)
where HF, HL are strictly positive constants. Using the
same arguments as those in Theorem 18, we can prove
the following corollary (note that the feedback matrix
K is again of the form (27)).

Corollary 20 (VMP with disturbances) Choose U
and S as in Assumption 16, D as in (34), and let d > a,
0 < b ≤ π/2. The VMP for the robots F and L in the
presence of the unknown but bounded disturbances hF,
hL, has a solution if the following conditions are satisfied

VF ≥ VL

(

1 +
a sin b

d− a

)

+ 1− cos b

+
a(HF +HL + b)

d− a
+HL sin b,

(35)
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Fig. 4. VMP on a circle: pose of the robots L and F
for (∆pFL[1],∆pFL[2],∆βF

L )
T = (0, 0, 0)T , vL = vF and

ωL = ωF = ρ.

ΩL ≤
(1− VL) sin b − (HF +HL)

d+ a
,

ΩF ≥
VL sin b+ b+ (HF +HL)

d− a
.

(36)

Remark 21 Note that because of the additional terms
HF and HL, conditions (35)-(36) are stricter than (25)-
(26) and then the polytope K is smaller in this case. This
is evident in Fig. 3, where the polytope K (blue, internal)
obtained for a = 0.15 m, b = π/3 rad, d = 1.6 m, VF =
0.95 m/s, VL = 0.1 m/s, ΩF = π/2 rad/s, ΩL = π/20
rad/s andHF = 0.2m/s,HL = 0.1m/s is compared with
the polytope ( green, external) corresponding to HL =
HF = 0 m/s.

4.2 VMP on a circle

In this section, we will suppose that the leader robot
moves along a circular path, around a static target. This
scenario could be of interest in several real-world ap-
plications, such as, e.g., for environmental surveillance,
patrolling or terrain and utilities inspection (Casbeer et
al., 2006; Susca et al., 2008). Differently from Sect. 3.3,
we will assume that the pose of robot L with respect to
the frame of F is defined through the angle 0 < γ < π/2
and the angular velocity ρ > 0, instead of the distance
parameter d (see Fig. 4). Let us consider the following
change of variables in system (18):

(pFL [1], p
F
L[2], β

F
L )

T → (∆pFL[1],∆pFL[2],∆βF
L )

T ,

(vL, ωL)
T → (vL, ωL)

T ,

(vF, ωF)
T → (vF, ∆ωF)

T ,

where ∆pFL[1] = pFL[1]−
sin γ
ρ

, ∆pFL[2] = pFL[2]−
1−cos γ

ρ
,

∆βF
L = βF

L − γ and ∆ωL = ωL − ρ, ∆ωF = ωF − ρ.
Following the same procedure detailed in the previous
sections, we obtain the system











∆ṗFL[1]

∆ṗFL[2]

∆β̇F
L











=











0 ρ q2 − sin γ

−ρ 0 q1 + cos γ

0 0 0





















∆pFL[1]

∆pFL[2]

∆βF
L











+











−1 q4 +
1−cos γ

ρ

0 −q3 −
sin γ
ρ

0 −1















vF

∆ωF



+











q5 + cos γ 0

q6 + sin γ 0

0 1















vL

∆ωL



,

(37)
where

q1 =
sin(∆βF

L
+γ)−sin γ

∆βF

L

− cos γ,

q2 =
cos(∆βF

L
+γ)−cosγ

∆βF

L

+ sin γ,

q3 = ∆pFL[1], q5 = cos(∆βF
L + γ)− cos γ,

q4 = ∆pFL[2], q6 = sin(∆βF
L + γ)− sin γ.

Assumption 22 Let us suppose that

U =
{

(vF,∆ωF)
T : vF ∈ [−VF, VF], ∆ωF ∈ [−ΩF, ΩF]

}

,

D =
{

(vL,∆ωL)
T : vL ∈ [−VL, VL], ∆ωL ∈ [−ΩL, ΩL]

}

,

where 0 < VF < 1, 0 < VL < 1 and 0 < ΩF, 0 < ΩL < ρ.
Let us also consider the following visibility set (see Fig. 4)

S = {(∆pFL[1],∆pFL[2],∆βF
L )

T : ∆pFL[1] ∈ [−a, a],

∆pFL[2] ∈ [−a, a], ∆βF
L ∈ [−b, b]},

(38)

where a > 0 and b > 0.

Since the state of system (37) is constrained in (38), the
polyhedron Q ⊂ R

6 is defined as follows:

q1∈
[ sin(b+γ)−sinγ

b
− cos γ, sin(b−γ)+sin γ

b
− cos γ

]

,

q2∈ [ cos(b+γ)−cos γ
b

+ sin γ, − cos(b−γ)+cos γ
b

+ sin γ],

q3∈ [−a, a], q5∈ [cos(b+ γ)− cos γ, cos(b− γ)− cos γ],

q4∈ [−a, a], q6∈ [−sin(b− γ)− sin γ, sin(b+ γ)− sin γ].

The proof of the next theorem is analogous to that of
Theorem 18 and it is omitted. The feedback matrix K
has also in this case the form (27).

Theorem 23 (Solvability of the VMP on a circle)
Choose U , D and S as in Assumption 22 and let
1− cos γ > ρa, 0 ≤ b ± γ ≤ π/2. The VMP on a circle

10
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has a solution if the following conditions are satisfied

VF ≥ VL

(

cos(b − γ) + sin(b+γ)(1−cosγ−ρ a)
sin γ+ρa

)

+ cos γ + ρa

− 1−cos γ−ρ a
sin γ+ρa

(sin(b+ γ)− sin γ + ρa)− cos(b+ γ),

ΩL ≤ ρ

(

(1− VL) sin(b + γ)

sin γ + ρa
− 1

)

,

ΩF ≥ ρ

(

VL sin(b+ γ) + sin(b − γ) + sin γ + ρa

sin γ − ρa

)

.

(39)

Note that differently from Theorem 18, in this case,
owing to (39) is not always true (i.e., for all values of the
parameters) that ΩF ≥ ΩL.

4.3 Chain of robots

Next, we consider more complex robotic networks
built by concatenating multiple leader-follower units
(see Fig. 5). When equipped with wireless sensors,
these arrays of robots could be used, for example, to
efficiently monitor the temperature and/or salinity of
the ocean or measure the average concentration of air
pollutants (Lynch et al., 2008). In what follows, the
feasibility conditions of Theorem 18 will be extended
to such robot chains in order to maintain network-wide
visibility between the agents.
Because of the leader-follower hierarchy within the
chain, vehicle k + 1 (the “follower”) will aim at keeping
the vehicle ahead (robot k, the “leader”), in its visibility
set. Let ak, bk, dk, dk > ak, bk ≤ π/2, k ∈ {2, . . . , n},
n > 2, be the strictly positive parameters defining the
visibility set Sk of robot k-th and let 0 < Vk < 1, Ωk > 0,
k ∈ {1, . . . , n} be the bounds on k-th robot’s linear
and angular velocities (recall Assumption 16). By prop-
agating conditions (25)-(26) of Theorem 18 starting
from robot 1 (that guides the formation), we obtain the
following set of inequalities (linear in Vk and Ωk)

Vk+1 ≥ Vk

(

1 +
ak+1 sin bk+1

dk+1 − ak+1

)

+ 1− cos bk+1

+
ak+1 bk+1

dk+1 − ak+1
, k ∈ {1, . . . , n− 1},

(40)

Ω1 ≤
(1− V1) sin b2

d2 + a2
, Ωn ≥

Vn−1 sin bn + bn
dn − an

, (41)

and for all k ∈ {2, . . . , n− 1},

Vk−1 sin bk + bk
dk − ak

≤ Ωk ≤
(1− Vk) sin bk+1

dk+1 + ak+1
. (42)

It is an easy task to verify that if ak = a, bk = b, dk =
d, k ∈ {2, . . . , n} and Vk = V , k ∈ {1, . . . , n}, (a >
0, d > a, 0 < b ≤ π/2, 0 < V < 1), condition (42)
(and condition (40) as well) is not satisfied. Nevertheless,
it can be proved that if Vk and at least one of the three
parameters defining the visibility sets are left free to
vary from robot to robot, then (40)-(42) can be always
fulfilled. Fig. 6 shows the progression of a feasible set
of parameters Vk, Ωk, bk for a chain of n = 15 robots,
when ak = a = 0.1 and dk = d = 7, k ∈ {2, . . . , 15}.
We conclude this section with the following corollary
and a few remarks:

Corollary 24 The chain of robots can hold only a finite
number of agents and cannot be closed, i.e., robot 1 can-
not cyclically pursue robot n.

Proof: Let us study the connection existing between pa-
rameters V1 and Vn. After simple algebraic manipula-
tions on (40), we obtain the following inequality:

V1 ≤
1

n
∏

i=1

(

1 +
ai sin bi
di − ai

)

Vn

−

n
∑

i=2

1− cos bi +
ai sin bi
di − ai

i
∏

k=2

(

1 +
ak sin bk
dk − ak

)

.

(43)
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Fig. 6. Progression of a feasible set of parameters Vk, Ωk, bk
for a chain of n = 15 robots (ak = 0.1, dk = 7, for all k).
Angles are in radians.
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Fig. 7. Basic scenario: (a) Trajectory of the leader and follower, and visibility set S ; (b) ∆pFL[1], p
F

L[2], β
F

L (solid) and bounds
±a, ±a, ±b (dash); (c) vF, ωF (solid) and bounds ±VF, ±ΩF (dash).

When the number of robots n tends towards infinity, the
first term on the right-hand side of (43) converges to
zero (for any choice of the parameters ai, bi, di satisfy-
ing the previous assumptions) asymptotically leading to
the inequality V1 ≤ 0, which contradicts the initial hy-
pothesis of a strictly positive V1. On the other hand, if
the chain of robots were closed, the following additional
inequality should be satisfied

V1 ≥ Vn

(

1 +
a1 sin b1
d1 − a1

)

+ 1 − cos b1 +
a1 b1

d1 − a1
,

but it is incompatible with condition (43). �

It is easy to prove from condition (43), that once fixed
a rule for the evolution of the parameters defining the
visibility sets (i.e., ak = fa(k), bk = fb(k), dk = fd(k),
with fa, fb, fd : Z>1 → R given discrete maps), an up-
per bound on the maximum number of robots the chain
can hold is given by the maximum positive integer N
that fulfills the following inequality:

N
∑

i=2

(

1− cos bi +
ai bi

di − ai

)

N
∏

k= i+1

(

1 +
ak sin bk
dk − ak

)

< 1.

Note that once the state feedback matrices Ki, i ∈
{2, . . . , n} of the robots have been established, the im-
plementation of the control laws is totally distributed :
in fact, each agent only needs to know the relative posi-
tion and orientation of the preceding vehicle in the chain,
to execute its control action.

5 Simulation results

Extensive simulation experiments have been performed
to illustrate the theory and assess the soundness of
the proposed approach.

5.1 Basic scenario

The simulation results reported in Fig. 7 refer to the
basic scenario studied at the beginning of Sect. 3.
The leader robot moves with velocities vL(t) =
0.05 sin(t), ωL(t) =

π
20 cos(0.1t). We set VL = 0.1 m/s,

ΩL = π/15 rad/s, VF = 0.9 m/s, ΩF = π/3 rad/s,
a = 0.4 m, b = π/4 rad and d = 2 m, according to the
conditions of Theorem 18 and we chose the gain matrix
in K with minimum 2-norm:

K =

[

1.5173 0 0

0 0.3707 0.4925

]

.

Note that since K is in the interior of K, the asymptotic
stability is assured (cf. Theorem5.2 in (Blanchini, 1991)).
System (19) has been initialized with

(∆pFL[1](0), p
F
L[2](0), β

F
L (0))

T

= (0.3285, −0.1626, 0.1071)T.

(44)

Fig. 7(a) reports the trajectory of robot L and F and the
visibility set S, (in order to have a temporal reference
the robots are drawn every two seconds). Fig. 7(b) shows
that ∆pFL[1], p

F
L[2], β

F
L (solid), keep inside the respective

bounds±a,±a,±b (dash), as expected. Finally, Fig. 7(c)
exposes that the control inputs vF, ωF (solid), respect
the corresponding bounds ±VF, ±ΩF (dash).

5.2 Rejection of unknown but bounded disturbances

In the simulation results reported in Fig. 8, the
leader robot moves with velocities vL(t) = 0.01,
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Fig. 8. Rejection of unknown but bounded disturbances: (a) Trajectory of the leader and follower, and visibility set S ; (b) ∆pFL[1],
pFL[2], β

F

L (solid) and bounds ±a, ±a, ±b (dash); (c) vF, ωF (solid) and bounds ±VF, ±ΩF (dash).
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Fig. 9. VMP on a circle: (a) Trajectory of the leader and follower, and visibility set S ; (b) ∆pFL[1], ∆pFL[2], ∆βF

L (solid) and
bounds ±a, ±a, ±b (dash); (c) vF, ∆ωF (solid) and bounds ±VF, ±ΩF (dash).

ωL(t) = − π
20 sin(0.08t). Unknown but bounded dis-

turbances hL(t), hF(t) (uniform random noises in the
interval (−0.1, 0.1)) act on the leader and the follower
(recall Sect. 4.1). Owing to the conditions of Corol-
lary 20, we chose VL = 0.03 m/s, ΩL = π/18 rad/s,
VF = 0.95 m/s, ΩF = π/4 rad/s, HL = HF = 0.12 m/s,
a = 0.4 m, b = π/4 rad and d = 2 m. The initial condi-
tion of system (33) is (44) and, again, we selected the
gain matrix in K with minimum 2-norm:

K =





1.6735 0 0

0 0.5896 0.5326



.

Fig. 8(a) reports the trajectory of L and F and the visibi-
lity set S. From Figs. 8(b) and 8(c), we note that despite
the presence of the unknown but bounded disturbances,
∆pFL[1], p

F
L[2], β

F
L and vF, ωF respect the relative state

and control bounds.

5.3 VMP on a circle

In Fig. 9, the leader robot moves with velocities
vL(t) = 0.05 sin(t), ωL(t) = π/30, and the parame-
ters VL = 0.06 m/s, ΩL = π/25 rad/s, VF = 0.8 m/s,
ΩF = π/3 rad/s, a = 0.4 m, b = π/4 rad, ρ = 0.3 rad/s
and γ = π/6 rad, have been chosen according to
the conditions of Theorem 23 (recall Sect. 4.2).
The minimum 2-norm gain matrix in K is, in this case

K =

[

1.3812 0 0

0 0.6051 0.5508

]

,

and the initial condition of system (37) is (∆pFL[1](0),
∆pFL[2](0), ∆βF

L (0))
T = (0, 0, 0.5597)T . Fig. 9(a) re-

ports the trajectory of L and F and the visibility
set S. Figs. 9(b) and 9(c) show the time history of
∆pFL[1], ∆pFL[2], ∆βF

L and vF, ∆ωF, and the correspond-
ing bounds.
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Fig. 10. Chain of robots: Trajectory of the 4 robots and (a) visibility set S2, (b) visibility set S3, (c) visibility set S4; (d)
∆p21[1], p

2

1[2], β
2

1 (solid) and bounds ±a2, ±a2, ±b2 (dash); (e) ∆p32[1], p
3

2[2], β
3

2 and bounds ±a3, ±a3, ±b3; (f) ∆p43[1], p
4

3[2],
β4

3 and bounds ±a4, ±a4, ±b4; (g) v2, ω2 (solid) and bounds ±V2, ±Ω2 (dash); (h) v3, ω3 and bounds ±V3, ±Ω3; (i) v4, ω4

and bounds ±V4, ±Ω4.

5.4 Chain of robots

In Fig. 10 a chain of 4 robots is considered (recall
Sect. 4.3). Robot 1 guides the formation with veloci-
ties, v1(t) = 0.01, ω1(t) = π/52. The following set of

parameters, satisfying conditions (40)-(42), has been
used in the simulation: V1 = 0.02 m/s, V2 = 0.085 m/s,
V3 = 0.25 m/s, V4 = 0.8 m/s, Ω1 = π/50 rad/s,
Ω2 = π/35 rad/s, Ω3 = π/21 rad/s, Ω4 = π/6 rad/s,
and a2 = a3 = a4 = 0.4 m, b2 = π/14 rad, b3 = π/9 rad,
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b4 = π/4 rad and d2 = d3 = d4 = 3 m. The minimum
2-norm gain matrices in the polytopes K2, K3 and K4

of robots 2, 3 and 4, are respectively

K2 =





0.2066 0 0

0 0.0315 0.3361



, K3 =





0.5087 0 0

0 0.0669 0.3400



,

K4 =

[

1.7273 0 0

0 0.2678 0.3348

]

,

and the initial conditions for the three dynamic systems
in the form (19) are, (∆p21[1](0), p

2
1[2](0), β

2
1(0))

T =
(0, 0, 0.0374)T , (∆p32[1](0), p

3
2[2](0), β

3
2(0))

T = (0, 0,
0.2244)T , (∆p43[1](0), p

4
3[2](0), β

4
3(0))

T = (0, 0, 0.2618)T ,

where pk+1
k denotes the position of robot k with re-

spect to the reference frame attached to robot k + 1
and βk+1

k , θk − θk+1, k ∈ {1, 2, 3}. Figs. 10(a)-(c)
report the trajectory of the 4 robots and the visibility
sets S2 (green), S3 (cyan) and S4 (gray), respectively.
Figs. 10(d)-(f) and 10(g)-(i) show the time history

of ∆pk+1
k [1], pk+1

k [2], βk+1
k , k ∈ {1, 2, 3} and vk, ωk,

k∈ {2, 3, 4}, and the relative state and control bounds.

6 Conclusions and future work

The paper proposes an original solution to the visibi-
lity maintenance problem (VMP) for a leader-follower
pair of Dubins-like vehicles with input constraints.
By interpreting the nonlinear model describing the rel-
ative dynamics of the robots as a linear system with
parameter uncertainty, the VMP is reformulated as
a linear constrained regulation problem with additive
disturbances (DLCRP). General conditions for the
positive D-invariance of linear uncertain systems with
parametric disturbance matrix are derived and used
to study the feasibility of the VMP when box bounds
on the state, input and disturbance are considered.
The proposed design procedure can be easily adapted
to provide the control with unknown but bounded dis-
turbances rejection capabilities. Conditions for the so-
lution of the VMP when robots’ desired displacement is
defined through angular parameters are also presented,
and the extension to chains of n robots is discussed.
A drawback of the approach proposed in this paper is
that it requires a great amount of computational work
off-line, because the feedback matrix K is obtained as a
solution of a large set of inequalities. In addition all the
vertices of the visibility set S are required. In this re-
spect, the solution to the LCRP proposed in (Vassilaki
and Bitsoris, 1989) appears to be preferable to the
one in (Blanchini, 1990), even though neither distur-
bances nor model parametric uncertainty are considered
therein.
Future research lines include the extension of our re-
sults to robotic networks with arbitrary topologies and
the application of the proposed approach to the study
of consensus, rendezvous and coverage problems in the

presence of visibility constraints. The use of polar coor-
dinates to describe conic-like visibility sets S, is also a
subject of on-going research.

Appendix A: The Fourier-Motzkin elimination
method

The Fourier-Motzkin elimination (FME), a generaliza-
tion of Gauss elimination, is a computational method
for solving a system

Ax ≤ b, A ∈ R
m×n, b ∈ R

m,

of m linear inequalities in n variables (Motzkin, 1951;
Schrijver, 1986). The key idea of the FME method is
to eliminate one variable of the system Ax ≤ b at each
iteration and rewrite the resulting equations accord-
ingly. Even though the number of variables decreases at
each step, the number of inequalities in the remaining
variables grows exponentially fast: in fact, at iteration
j the number of inequalities to be evaluated is at most

⌊m
2 ⌋

2j . Because of its double-exponential computational
complexity, the FME method can be applied efficiently
only to problems with a small number of inequalities
and it is not competitive with standard LP solvers
However, differently from this numerical approach, the
method can handle symbolic inequalities. We illustrate
this idea with a simple example. Consider the following
set of symbolic inequalities

a11 x1 + a12 x2 ≤ b1, (45)

−a21 x1 − a22 x2 ≤ b2, (46)

a32 x2 ≤ b3, (47)

where a11, a12, a21, a22, a32, b1, b2, b3 ∈ R>0 are un-
known parameters. We wish to determine under which
conditions on these parameters, system (45)-(47) admits
solutions. The first step is to eliminate the variable x1.
To this end, solving (45)-(46) in x1, we get:

x1 ≤
b1 − a12 x2

a11
, x1 ≥

−b2 − a22 x2

a21
.

Joining the two inequalities, after a few computations,
we obtain the following condition on the variable x2

(assuming that a11 a22 − a12 a21 6= 0)

x2 ≥
−a11 b2 − a21 b1
a11 a22 − a12 a21

. (48)

If we finally combine inequalities (47) and (48), we end
up with the sought solvability condition of system (45)-
(47), in terms of the symbolic parameters a11, a12, a21,
a22, a32, b1, b2, b3:

b3
a32

≥
−a11 b2 − a21 b1
a11 a22 − a12 a21

.
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Appendix B: Application of the Fourier-Motzkin
elimination to the inequalities (30)-(31)

Our first step to solve the system of inequalities
(30)-(31), is to eliminate variable k11. Solving in k11
(under the assumption of d > a), we obtain the follow-
ing set of conditions:

k11 ≥ q4 k22 +
b

a
q4 k23 +

b

a
q2 +

VL

a
,

k11 ≥ q4 k22 −
b

a
q4 k23 −

b

a
q2 +

VL

a
,

k11 ≥ −q4 k22 +
b

a
q4 k23 +

b

a
q2 +

VL

a
,

k11 ≥ −q4 k22 −
b

a
q4 k23 −

b

a
q2 +

VL

a
,

k11 ≥ −
VF

a
, k11 ≤

VF

a
.

Combining these inequalities, we get:

q4 k22 ≤
VF

a
−

b

a
q4 k23 −

b

a
q2 −

VL

a
,

q4 k22 ≤
VF

a
+

b

a
q4 k23 +

b

a
q2 −

VL

a
,

q4 k22 ≥ −
VF

a
+

b

a
q4 k23 +

b

a
q2 +

VL

a
,

q4 k22 ≥ −
VF

a
−

b

a
q4 k23 −

b

a
q2 +

VL

a
.

In order to eliminate the second variable, k22, we should
consider three cases, according to the sign of q4. If we
assume that q4 > 0, we then obtain the following set of
inequalities:

k22 ≥ −
b

a
k23 +

b (1 + q1) + VL sin b

a(d+ q3)
, (49)

k22 ≥
b

a
k23 +

−b (1 + q1) + VL sin b

a(d+ q3)
, (50)

k22 ≥ −
b

a
k23 +

ΩL

a
, (51)

k22 ≥
b

a
k23 +

−VF + b q2 + VL

aq4
, (52)

k22 ≥ −
b

a
k23 +

−VF − b q2 + VL

aq4
, (53)

k22 ≥
b

a
k23 −

ΩF

a
, k22 ≥ −

b

a
k23 −

ΩF

a
, (54)

k22 ≤
b

a
k23 −

ΩL

a
, (55)

k22 ≤ −
b

a
k23 +

VF − b q2 − VL

aq4
, (56)

k22 ≤
b

a
k23 +

VF + b q2 − VL

aq4
, (57)

k22 ≤ −
b

a
k23 +

ΩF

a
, k22 ≤

b

a
k23 +

ΩF

a
. (58)

Combining conditions (49)-(54) and (55)-(58), we end
up with a total set of 35 inequalities, of whom only 4 are
non-trivial:

ΩL ≤
b (1 + q1)− VL sin b

d+ q3
, ΩF ≥

b (1 + q1) + VL sin b

d+ q3
,

VF ≥ VL

(

1 +
q4 sin b

d+ q3

)

+ b
(

q2 +
q4(1 + q1)

d+ q3

)

,

VF ≥ VL

(

1 +
q4 sin b

d+ q3

)

− b
(

q2 +
q4(1 + q1)

d+ q3

)

.

If we now assume that q4 = 0, we obtain the unique con-
dition: VF ≥ VL+ b q2. Finally, if we assume that q4 < 0,
we come up with the following inequalities

k22 ≥ −
b

a
k23 +

b (1 + q1) + VL sin b

a(d+ q3)
,

k22 ≥
b

a
k23 +

−b (1 + q1) + VL sin b

a(d+ q3)
,

k22 ≥ −
b

a
k23 +

ΩL

a
, k22 ≥ −

b

a
k23 +

VF − b q2 − VL

aq4
,

k22 ≥
b

a
k23 +

VF + b q2 − VL

aq4
, k22 ≥

b

a
k23 −

ΩF

a
,

k22 ≥ −
b

a
k23 −

ΩF

a
, k22 ≤

b

a
k23 −

ΩL

a
,

k22 ≤
b

a
k23 +

−VF + b q2 + VL

aq4
,

k22 ≤ −
b

a
k23 +

−VF − b q2 + VL

aq4
,

k22 ≤ −
b

a
k23 +

ΩF

a
, k22 ≤

b

a
k23 +

ΩF

a
,

from which we deduce the following two new conditions:

VF ≥ VL

(

1−
q4 sin b

d+ q3

)

+ b
(

q2 +
q4 (1 + q1)

d+ q3

)

,

VF ≥ VL

(

1−
q4 sin b

d+ q3

)

− b
(

q2 +
q4 (1 + q1)

d+ q3

)

.
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